105
ISTANBUL TECHNICAL UNIVERSITY DEPARTMENT OF ELECTRICAL ENGINEERING POWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV DC/AC INVERTER GROUP MEMBERS 040060450 040050442 040050437 BİROL ÇAPA ELİF KÖKSAL BURAK BEŞER SUBMISSION DATE: JANUARY 21, 2009

POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

  • Upload
    lehuong

  • View
    237

  • Download
    6

Embed Size (px)

Citation preview

Page 1: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

ISTANBUL TECHNICAL UNIVERSITYDEPARTMENT OF ELECTRICAL ENGINEERING

POWER ELECTRONIC CIRCUITSFALL 2008, CRN: 11473

ASST. PROF. DENİZ YILDIRIM

PROJECT REPORT

MINIPROJECT IV

DC/AC INVERTER

GROUP MEMBERS

040060450040050442040050437

BİROL ÇAPAELİF KÖKSALBURAK BEŞER

SUBMISSION DATE: JANUARY 21, 2009

Page 2: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

2

1. PURPOSE

The purpose of the project is to design and construct an inverter that produces

220V, 50Hz sinusoidal AC voltage from a DC power supply.

The project contains three main steps, design an inverter, simulating the

circuit, and construct the circuit. After construction, the circuit will be tested to

see if it obeys simulation results.

In conclusion, 220V 50Hz sinusoidal output should be obtain.

2. DESIGN

Figure 2.1 - AC inverter circuit

A typical circuit to receive a sinusoidal signal at the output is shown in Figure

2.1. To achieve this purpose the most important part is to design a PWM inverter.

This PWM signal will be applied to the MOSFET H bridge through the gate drive

IC. MOSFETs will be triggered according to the following equation:

Page 3: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

3

For obtaining necessary PWM signal, sinusoidal and triangular signal must be

produced and compared. Triangular wave in the carrier wave and the sinusoidal

wave is the main wave. There are many different methods for obtaining those

signals, but XR2206 IC is chosen.

Figure 2.2 - XR2206 waveform generator

Figure 2.3 - Timing resistor vs. frequency

Page 4: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

4

It is possible getting desired signals at desired frequencies by choosing

resistors and capacitors. R resistor and C capacitor, in Figure 2.2, are chosen for

frequency range. Figure 2.3 shows the resistor values for particular frequency

range. Equation 1 is the formula of frequency.

f= 1/ R*C (1)

To obtain the PWM signal, frequencies of the sinus and triangle waves are

chosen carefully. The frequency of triangular wave must be larger than the

sinusoidal. Therefore frequency of sinusoidal wave is 50 Hz, triangular one is

20KHz. With help of the Figure 2.3, resistors for 50Hz as 100K and for 20KHz as

10 K are suitable. From the equation (1) capacitors are calculated 200nF for sinus,

5nF for triangular.

For sinusoidal wave, S1 switch must be off.

For obtaining a modulated wave as PWM, a comparator in used. In Figure 2.4

LM311 can be seen basically. When the input 3 larger than the input 2 the output

is +Vcc, on the other condition the output is –Vcc. the modulated signal is as

Figure 2.5.

Figure 2.4 - LM311

HC7804 “NOT gate” is placed at the output of the LM311, in order to obtain

necessary signals for HIP4082. LM805 regulator is used to get the supply voltage

for HC7804 IC.

Page 5: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

5

Figure 2.5 - Modulated signal

Modulated signal which is the output of the comparator and the inverse of it is

applied the HIP4082 IC. The purpose of this IC is to trigger MOSFETs properly.

Typical application schema for HIP4082 is shown in Figure 2.6.

Figure 2.6 - HIP4082 application

Page 6: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

6

Diodes between 12 and 9 pins and 12 and 1 pins and capacitors are for

bootstrap, which are needed for full bridge drive.

For trigger MOSFETs correctly 10Ω resistors are placed.

3. SIMULATION

The simulations are done with PSIM. As the sine and triangle waves are

generated from function generator XR2206 IC, these signals are simulated as sine

and triangle wave sources. In Figure 3.1 the simulation circuit is seen with voltage

and current probes attached to it.

Figure 3.1 – The simulation circuit

LM311 comparator is simulated as an ideal op-amp with ±5V supply voltage.

The transformer has a ratio 24:220. Rload is identified as a 484Ω resistance as it is

a 100W 220V incandescent lamp in real construction. Simulation results are given

below due to full load and no load respectively.

Page 7: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

7

Figure 3.2 – Waveforms of Vsine, Vtri and Vcontrol at full load

Page 8: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

8

Figure 3.3 – Waveforms of Vac, Iac and Vpwm at full load

When no load is attached to circuit the simulation results are acquired as

below. However simulations cannot be run with zero load, Rload is selected

0,00001Ω which can be considered as zero.

Figure 3.4 – Waveforms of Vsine, Vtri and Vcontrol at no load

Page 9: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

9

Figure 3.5 – Waveforms of Vac, Iac and Vpwm at no load

As it can be seen from Figure 3.2 through Figure 3.5, only the value of Iac is

related with the value of Rload. Besides that the PWM signal’s waveform is

consistent with theoretical expectations.

4. CONSTRUCTION AND TESTING

Tests of the circuit are executed in parts. Firstly, the sine and triangular waves

are tested which can be seen in Figure 4.1 and Figure 4.2.

Page 10: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

10

Figure 4.1 – The sinusoidal waveform

Figure 4.2 – The triangular waveform

After that the comparator’s output signal waveform is observed in

oscilloscope. This waveform can be seen in Figure 4.3 and it is also well-matched

with theoretical calculations.

Page 11: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

11

Figure 4.3 – The waveform at the output of LM311

The PWM signal that is produced from voltage comparator LM311 and the

inverted PWM signal that is produced from hex inverter 74HC04 are applied to

the inputs of HIP4082. These waveforms can be seen in Figure 4.4

simultaneously.

Figure 4.4 – Inverted and non-inverted PWM waveform

Page 12: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

12

In Figure 4.5 the waveforms of the outputs of HIP4082, PWM signal and

inverted PWM signal that change between 0-12V are given. However, as no load

is attached to the circuit, a 12V DC voltage is seen at the other 2 outputs as it is

given in Figure 4.6.

Figure 4.5 – Waveform at the low-side MOSFET

Figure 4.5 – Waveform at the high-side MOSFET

Page 13: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

13

At the testing part a 100W 220V incandescent lamp is connected as a load to

the secondary side of a 22:220 transformer. In figure 4.6 the waveform of the

Vload that is not filtered can be seen.

Figure 4.6 – Waveform of Vload with no capacitor

After connecting a 3.33nF filter capacitor, the waveform of Vload is changed

and approximated to a sinusoidal wave that can be seen in Figure 4.7.

Figure 4.6 – Waveform of Vload with 3.33nF capacitor

Page 14: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

14

In Figure 4.7 the waveform of Vload is seen when higher capacitor is used for

filtering. A 150nF capacitor is used for this purpose.

Figure 4.7 – Waveform of Vload with 150nF capacitor

At the secondary side of the transformer the rms value of the voltage is

127.8V and the current that flows through the load is 0.12A as it can be seen in

Figure 4.8.

Figure 4.8 – RMS value of Vlaod and value of Iload

Page 15: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

15

Figure 4.9 shows all the testing setup.

Figure 4.9 – The complete testing setup

5. CONCLUSION

In conclusion, the sinusoidal wave is produced from a DC voltage by using a

DC/AC inverter circuit. Adding a capacitance filter the output voltage of the load

approximate to a sinusoidal waveform. In addition designing a L-C low pass filter

aid to obtain a smooth sinusoidal waveform.

6. EQUIPMENT

2*XR2206 Function Generator

LM311 Voltage Comparator

74HC04 Hex Inverter

HIP4082 MOSFET Driver

LM7805 Voltage Regulator

4*IRF540 N-Type MOSFET

2*UF4002 Ultrafast Diode

4*1N5245 Ultrafast Zener Diode

Page 16: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

16

2*0.01uF, 2*2.2uF, 3*1uF, 1.5uF, 200nF, 5nF, 0.33uF 2*10uF (electrolyte

type), 2*1uF (electrolyte type) Capacitors

6*1KΩ, 4*5.1KΩ, 4*15Ω, 2*10KΩ, 2*100KΩ, 220Ω Resistors

100KΩ Potentiometer, 10KΩ Potentiometer

7. REFERENCES

1. Exar Corp. (1997). XR-2206 Monolithic Function Generator. Retrieved

January 20, 2009, from http://www.datasheetcatalog.com/

2. Fairchild Semiconductor Corporation (2001). MC78XX/LM78XX/MC78XXA

3-Terminal 1A positive voltage regulator. Retrieved January 20, 2009,

from http://www.datasheetcatalog.com/

3. General Semiconductor (1998). UF4001 THRU UF4007 Ultrafast effıcıent

plastıc rectifier. Retrieved January 20, 2009, from

http://www.datasheetcatalog.com/

4. Intersil (2004). HIP4082. Retrieved January 20, 2009, from

http://www.datasheetcatalog.com/

5. Philips Semiconductors (1999). IRF540, IRF540S. Retrieved January 20,

2009, from http://www.datasheetcatalog.com/

6. Semelab Plc. (1999). 1N5221B-LCC3 TO 1N5281B-LCC3. Retrieved

January 20, 2009, from http://www.datasheetcatalog.com/

7. ST Microelectronics (2002). LM111 - LM211 - LM311 Voltage comparators.

Retrieved January 20, 2009, from http://www.datasheetcatalog.com/

Page 17: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

17

8. Texas Instruments Incorporated (2004). CD54HC04, CD74HC04,

CD54HCT04, CD74HCT04 High-speed CMOS logic hex inverter.

Retrieved January 20, 2009, from http://www.datasheetcatalog.com/

8. APPENDIX

Appendix 1 – XR-2206 datasheet

Appendix 2 – UF4007 datasheet

Appendix 3 – HIP4082 datasheet

Appendix 4 – IRF540 datasheet

Appendix 5 – 1N5245 datasheet

Appendix 6 – LM311 datasheet

Appendix 7 – CD74HC05 datasheet

Appendix 8 – LM7805 datasheet

Page 18: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206...the analog plus companyTM

MonolithicFunction Generator

Rev. 1.031972

EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 (510) 668-7000 (510) 668-7017

1

June 1997-3

FEATURES

Low-Sine Wave Distortion, 0.5%, Typical

Excellent Temperature Stability, 20ppm/°C, Typ.

Wide Sweep Range, 2000:1, Typical

Low-Supply Sensitivity, 0.01%V, Typ.

Linear Amplitude Modulation

TTL Compatible FSK Controls

Wide Supply Range, 10V to 26V

Adjustable Duty Cycle, 1% TO 99%

APPLICATIONS

Waveform Generation

Sweep Generation

AM/FM Generation

V/F Conversion

FSK Generation

Phase-Locked Loops (VCO)

GENERAL DESCRIPTION

The XR-2206 is a monolithic function generatorintegrated circuit capable of producing high quality sine,square, triangle, ramp, and pulse waveforms ofhigh-stability and accuracy. The output waveforms can beboth amplitude and frequency modulated by an externalvoltage. Frequency of operation can be selectedexternally over a range of 0.01Hz to more than 1MHz.

The circuit is ideally suited for communications,instrumentation, and function generator applicationsrequiring sinusoidal tone, AM, FM, or FSK generation. Ithas a typical drift specification of 20ppm/°C. The oscillatorfrequency can be linearly swept over a 2000:1 frequencyrange with an external control voltage, while maintaininglow distortion.

ORDERING INFORMATION

Part No. PackageOperating

Temperature Range

XR-2206M 16 Lead 300 Mil CDIP -55°C to +125°C

XR-2206P 16 Lead 300 Mil PDIP –40°C to +85°C

XR-2206CP 16 Lead 300 Mil PDIP 0°C to +70°C

XR-2206D 16 Lead 300 Mil JEDEC SOIC 0°C to +70°C

Page 19: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

2

Rev. 1.03

11 SYNCO

VCO

4

VCC

12

GND

10

BIAS

TimingCapacitor

5TC1

6TC2

TimingResistors

7TR1

8TR2

9FSKI

1AMSI

CurrentSwitches

MultiplierAnd SineShaper

2 STO

3 MO

13WAVEA1

14WAVEA2

15SYMA1

16SYMA2

Figure 1. XR-2206 Block Diagram

+1

Page 20: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

3

Rev. 1.03

16 Lead PDIP, CDIP (0.300”)

SYMA2SYMA1WAVEA2WAVEA1GNDSYNCOBIASFSKI

AMSISTOMOVCCTC1TC2TR1TR2

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

AMSISTOMOVCCTC1TC2TR1TR2

SYMA2SYMA1WAVEA2WAVEA1GNDSYNCOBIASFSKI

16 Lead SOIC (Jedec, 0.300”)

161

98

2

3

4

5

6

7

15

14

13

12

11

10

PIN DESCRIPTION

Pin # Symbol Type Description

1 AMSI I Amplitude Modulating Signal Input.

2 STO O Sine or Triangle Wave Output.

3 MO O Multiplier Output.

4 VCC Positive Power Supply.

5 TC1 I Timing Capacitor Input.

6 TC2 I Timing Capacitor Input.

7 TR1 O Timing Resistor 1 Output.

8 TR2 O Timing Resistor 2 Output.

9 FSKI I Frequency Shift Keying Input.

10 BIAS O Internal Voltage Reference.

11 SYNCO O Sync Output. This output is a open collector and needs a pull up resistor to VCC.

12 GND Ground pin.

13 WAVEA1 I Wave Form Adjust Input 1.

14 WAVEA2 I Wave Form Adjust Input 2.

15 SYMA1 I Wave Symetry Adjust 1.

16 SYMA2 I Wave Symetry Adjust 2.

Page 21: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

4

Rev. 1.03

DC ELECTRICAL CHARACTERISTICSTest Conditions: Test Circuit of Figure 2 Vcc = 12V, TA = 25°C, C = 0.01F, R1 = 100k, R2 = 10k, R3 = 25kUnless Otherwise Specified. S1 open for triangle, closed for sine wave.

XR-2206M/P XR-2206CP/D

Parameters Min. Typ. Max. Min. Typ. Max. Units Conditions

General Characteristics

Single Supply Voltage 10 26 10 26 V

Split-Supply Voltage +5 +13 +5 +13 V

Supply Current 12 17 14 20 mA R1 10k

Oscillator Section

Max. Operating Frequency 0.5 1 0.5 1 MHz C = 1000pF, R1 = 1k

Lowest Practical Frequency 0.01 0.01 Hz C = 50F, R1 = 2M

Frequency Accuracy +1 +4 +2 % of fo fo = 1/R1C

Temperature StabilityFrequency

+10 +50 +20 ppm/°C 0°C TA 70°CR1 = R2 = 20k

Sine Wave Amplitude Stability2 4800 4800 ppm/°C

Supply Sensitivity 0.01 0.1 0.01 %/V VLOW = 10V, VHIGH = 20V,R1 = R2 = 20k

Sweep Range 1000:1 2000:1 2000:1 fH = fL fH @ R1 = 1kfL @ R1 = 2M

Sweep Linearity

10:1 Sweep 2 2 % fL = 1kHz, fH = 10kHz

1000:1 Sweep 8 8 % fL = 100Hz, fH = 100kHz

FM Distortion 0.1 0.1 % +10% Deviation

Recommended Timing Components

Timing Capacitor: C 0.001 100 0.001 100 F Figure 5

Timing Resistors: R1 & R2 1 2000 1 2000 k

Triangle Sine Wave Output 1 Figure 3

Triangle Amplitude 160 160 mV/k Figure 2, S1 Open

Sine Wave Amplitude 40 60 80 60 mV/k Figure 2, S1 Closed

Max. Output Swing 6 6 Vp-p

Output Impedance 600 600

Triangle Linearity 1 1 %

Amplitude Stability 0.5 0.5 dB For 1000:1 Sweep

Sine Wave Distortion

Without Adjustment 2.5 2.5 % R1 = 30k

With Adjustment 0.4 1.0 0.5 1.5 % See Figure 7 and Figure 8

Notes1 Output amplitude is directly proportional to the resistance, R3, on Pin 3. See Figure 3.2 For maximum amplitude stability, R3 should be a positive temperature coefficient resistor.Bold face parameters are covered by production test and guaranteed over operating temperature range.

Page 22: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

5

Rev. 1.03

DC ELECTRICAL CHARACTERISTICS (CONT’D)

XR-2206M/P XR-2206CP/D

Parameters Min. Typ. Max. Min. Typ. Max. Units Conditions

Amplitude Modulation

Input Impedance 50 100 50 100 k

Modulation Range 100 100 %

Carrier Suppression 55 55 dB

Linearity 2 2 % For 95% modulation

Square-Wave Output

Amplitude 12 12 Vp-p Measured at Pin 11.

Rise Time 250 250 ns CL = 10pF

Fall Time 50 50 ns CL = 10pF

Saturation Voltage 0.2 0.4 0.2 0.6 V IL = 2mA

Leakage Current 0.1 20 0.1 100 A VCC = 26V

FSK Keying Level (Pin 9) 0.8 1.4 2.4 0.8 1.4 2.4 V See section on circuit controls

Reference Bypass Voltage 2.9 3.1 3.3 2.5 3 3.5 V Measured at Pin 10.

Notes1 Output amplitude is directly proportional to the resistance, R3, on Pin 3. See Figure 3.2 For maximum amplitude stability, R3 should be a positive temperature coefficient resistor.Bold face parameters are covered by production test and guaranteed over operating temperature range.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS

Power Supply 26V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Dissipation 750mW. . . . . . . . . . . . . . . . . . . . . . . Derate Above 25°C 5mW/°C. . . . . . . . . . . . . . . . . . . . . .

Total Timing Current 6mA. . . . . . . . . . . . . . . . . . . . . . . .

Storage Temperature -65°C to +150°C. . . . . . . . . . . .

SYSTEM DESCRIPTION

The XR-2206 is comprised of four functional blocks; avoltage-controlled oscillator (VCO), an analog multiplierand sine-shaper; a unity gain buffer amplifier; and a set ofcurrent switches.

The VCO produces an output frequency proportional toan input current, which is set by a resistor from the timing

terminals to ground. With two timing pins, two discreteoutput frequencies can be independently produced forFSK generation applications by using the FSK inputcontrol pin. This input controls the current switches whichselect one of the timing resistor currents, and routes it tothe VCO.

Page 23: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

6

Rev. 1.03

5

Figure 2. Basic Test Circuit

Symmetry Adjust

25K

1

6

7

8

9

11

3

2

13

1415

16

4

10 12 XR-2206

1F

VCC

C

R1

R2

FSK Input

S1 THD Adjust

500Triangle OrSine WaveOutputSquare WaveOutput

VCC

10K

1F

R325K

5.1K 5.1KVCC

1F

CurrentSwitches

Mult.AndSine

Shaper

+1

VCO

+

S1 = Open For Triangle

= Closed For Sinewave

Figure 3. Output Amplitudeas a Function of the Resistor,

R3, at Pin 3

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Triangle

Sinewave

26

22

18

14

108 12 16 20 24 28

70°C Max.PackageDissipation

1K

2K

10K

30K

Figure 4. Supply Current vsSupply Voltage, Timing, R

0 20 40 60 80 100

1

2

3

4

5

6

Pea

k O

utpu

t Vol

tage

(V

olts

)

R3 in (K

I CC

(mA

)

VCC (V)

Page 24: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

7

Rev. 1.03

ÁÁÁÁÁÁÁÁÁÁ

MINIMUM TIMING R

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Figure 5. R versus Oscillation Frequency.

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

4V 4V

10M

1M

100K

10K

1K

10-2 10 102

ÁÁÁÁÁÁÁÁÁÁÁÁ

MAXIMUM TIMING R

VCC / 2

DC Voltage At Pin 1Frequency (Hz)

Tim

ing

Res

isto

r

0

0.5

1.0

Nor

mal

Out

put A

mpl

itude

Figure 6. Normalized Output Amplitude versus DC Bias at AM Input (Pin 1)

Figure 7. Trimmed Distortion versusTiming Resistor.

Dis

tort

ion

(%)

Timing R K(

0

1

2

3

4

5

1.0 10 100 103

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

C = 0.01FTrimmed For MinimumDistortion At 30 K

Figure 8. Sine Wave Distortion versus Operating Frequency with Timing Capacitors Varied.

10 100 1K 10K 100K 1M

0

1

2

3

4

5

Dis

tort

ion

(%)

Frequency (Hz)

ÁÁÁR=3K

ÁÁÁÁÁÁÁÁ

RL=10K

ÁÁÁÁÁÁÁÁÁÁ

NORMAL RANGE

ÁÁÁÁÁÁÁÁÁÁ

TYPICAL VALUE

=0.5VRMS Pin 2VOUT

()

104 106

Page 25: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

8

Rev. 1.03

Figure 9. Frequency Drift versusTemperature.

3

2

1

0

-1

-2

-3-50 -25 0 25 50 75 125

C=0.01F

R=1M

R=2K

R=10KR=200K

R=1M

R=1K

R=10KR=2K

R=1K

Ambient Temperature (C °)

Figure 10. Circuit Connection for Frequency Sweep.

SweepInput +

- VC

R

IB

ICRc

IT Pin 7or 8

12

ÁÁ100

Figure 11. Circuit tor Sine Wave Generation without External Adjustment.(See Figure 3 for Choice of R 3)

R=200K

Fre

quen

cy D

rift (

%)

+

-

1 5

6

7 8

9

11

3

2

13

14

15

164

10 1 2 XR-2206

1F

C

R12M 1K

S1

Triangle OrSine Wave Output

Square WaveOutput

200

10KR350K

5.1K 5.1KVCC

10F

1F

R

VCC

VCC

CurrentSwitches

Mult.AndSine

Shaper

+1

+

+

VCO

S1 Closed For Sinewave

3V

Page 26: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

9

Rev. 1.03

0

Figure 12. Circuit for Sine Wave Generation with Minimum Harmonic Distortion. (R3 Determines Output Swing - See Figure 3 )

Figure 13. Sinusoidal FSK Generator

Symmetry Adjust

25K RB

1 5

6

7 8

9

11

3

2

13

1415

164

1 12 XR-2206

1F

C

1KR12M

F =S1

Triangle OrSine Wave OutputSquare WaveOutput

RA

500

10K

5.1K 5.1K

10F

R350K

1F

R

Mult.AndSine

Shaper

CurrentSwitches

VCC

VCC

VCO

+

+

+1

VCC

1 5

6

7 8

9

11

3

2

13

14

15

164

10 12 XR-2206

1F

VCC

C

FSK InputR1

R2

<1V

>2V F1

F2

F1=1/R1C

200

5.1K 5.1K

10F

1F

R350K

F2=1/R2C

VCC

Mult.AndSine

Shaper

VCO

+

+

+1Current

Switches

S1 Closed For Sinewave1RC

FSK Output

Page 27: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

10

Rev. 1.03

Figure 14. Circuit for Pulse and Ramp Generation.

1 5

6

7 8

9

11

3

2

13

1415

16

4

10 12 XR-2206

1F

VCC

C

R1R2

5.1K

5.1K 5.1K

10F

1F

R324K

VCC

VCC

Mult.AndSine

Shaper

VCO

+1

+

+

CurrentSwitches

f 2C 1

R1 R2

R1

R1 R2Duty Cycle =

Sawtooth Output

Pulse Output

Frequency-Shift Keying

The XR-2206 can be operated with two separate timingresistors, R1 and R2, connected to the timing Pin 7 and 8,respectively, as shown in Figure 13. Depending on thepolarity of the logic signal at Pin 9, either one or the otherof these timing resistors is activated. If Pin 9 isopen-circuited or connected to a bias voltage 2V, onlyR1 is activated. Similarly, if the voltage level at Pin 9 is1V, only R2 is activated. Thus, the output frequency canbe keyed between two levels. f1 and f2, as:

f1 = 1/R1C and f2 = 1/R2C

For split-supply operation, the keying voltage at Pin 9 isreferenced to V-.

Output DC Level Control

The dc level at the output (Pin 2) is approximately thesame as the dc bias at Pin 3. In Figure 11, Figure 12 andFigure 13, Pin 3 is biased midway between V+ andground, to give an output dc level of V+/2.

APPLICATIONS INFORMATION

Sine Wave Generation

Without External Adjustment

Figure 11 shows the circuit connection for generating asinusoidal output from the XR-2206. The potentiometer,R1 at Pin 7, provides the desired frequency tuning. Themaximum output swing is greater than V+/2, and thetypical distortion (THD) is < 2.5%. If lower sine wavedistortion is desired, additional adjustments can beprovided as described in the following section.

The circuit of Figure 11 can be converted to split-supplyoperation, simply by replacing all ground connectionswith V-. For split-supply operation, R3 can be directlyconnected to ground.

Page 28: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

11

Rev. 1.03

With External Adjustment:

The harmonic content of sinusoidal output can bereduced to -0.5% by additional adjustments as shown inFigure 12. The potentiometer, RA, adjusts thesine-shaping resistor, and RB provides the fineadjustment for the waveform symmetry. The adjustmentprocedure is as follows:

1. Set RB at midpoint and adjust RA for minimum distortion.

2. With RA set as above, adjust RB to further reduce distortion.

Triangle Wave Generation

The circuits of Figure 11 and Figure 12 can be convertedto triangle wave generation, by simply open-circuiting Pin13 and 14 (i.e., S1 open). Amplitude of the triangle isapproximately twice the sine wave output.

FSK Generation

Figure 13 shows the circuit connection for sinusoidal FSKsignal operation. Mark and space frequencies can beindependently adjusted by the choice of timing resistors,R1 and R2; the output is phase-continuous duringtransitions. The keying signal is applied to Pin 9. Thecircuit can be converted to split-supply operation bysimply replacing ground with V-.

Pulse and Ramp Generation

Figure 14 shows the circuit for pulse and ramp waveformgeneration. In this mode of operation, the FSK keyingterminal (Pin 9) is shorted to the square-wave output (Pin11), and the circuit automatically frequency-shift keysitself between two separate frequencies during thepositive-going and negative-going output waveforms.The pulse width and duty cycle can be adjusted from 1%to 99% by the choice of R1 and R2. The values of R1 andR2 should be in the range of 1k to 2M.

PRINCIPLES OF OPERATION

Description of Controls

Frequency of Operation:

The frequency of oscillation, fo, is determined by theexternal timing capacitor, C, across Pin 5 and 6, and bythe timing resistor, R, connected to either Pin 7 or 8. Thefrequency is given as:

f0 1

RC Hz

and can be adjusted by varying either R or C. Therecommended values of R, for a given frequency range,as shown in Figure 5. Temperature stability is optimumfor 4k < R < 200k. Recommended values of C are from1000pF to 100F.

Frequency Sweep and Modulation:

Frequency of oscillation is proportional to the total timingcurrent, IT, drawn from Pin 7 or 8:

f 320IT (mA)

C(F)Hz

Timing terminals (Pin 7 or 8) are low-impedance points,and are internally biased at +3V, with respect to Pin 12.Frequency varies linearly with IT, over a wide range ofcurrent values, from 1A to 3mA. The frequency can becontrolled by applying a control voltage, VC, to theactivated timing pin as shown in Figure 10. The frequencyof oscillation is related to VC as:

f 1RC1 R

RC

1 –VC

3Hz

where VC is in volts. The voltage-to-frequency conversiongain, K, is given as:

K fVC – 0.32RCC

HzV

CAUTION: For safety operation of the circuit, IT should belimited to 3mA.

Page 29: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

12

Rev. 1.03

Output Amplitude:

Maximum output amplitude is inversely proportional tothe external resistor, R3, connected to Pin 3 (seeFigure 3). For sine wave output, amplitude isapproximately 60mV peak per k of R3; for triangle, thepeak amplitude is approximately 160mV peak per k ofR3. Thus, for example, R3 = 50k would produceapproximately 13V sinusoidal output amplitude.

Amplitude Modulation:

Output amplitude can be modulated by applying a dc biasand a modulating signal to Pin 1. The internal impedance

at Pin 1 is approximately 100k. Output amplitude varieslinearly with the applied voltage at Pin 1, for values of dcbias at this pin, within 14 volts of VCC/2 as shown inFigure 6. As this bias level approaches VCC/2, the phaseof the output signal is reversed, and the amplitude goesthrough zero. This property is suitable for phase-shiftkeying and suppressed-carrier AM generation. Totaldynamic range of amplitude modulation is approximately55dB.

CAUTION: AM control must be used in conjunction with awell-regulated supply, since the output amplitude now becomesa function of VCC.

Figure 15. Equivalent Schematic Diagram

21616145 1311VR V215VCC

5

6

7VCC

VR

V1

V2Reg.Int’nI.

12

4

VCC10

VR

V1

VR

8

9

3

Page 30: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

13

Rev. 1.03

A 0.100 0.200 2.54 5.08

A1 0.015 0.060 0.38 1.52

B 0.014 0.026 0.36 0.66

B1 0.045 0.065 1.14 1.65

c 0.008 0.018 0.20 0.46

D 0.740 0.840 18.80 21.34

E1 0.250 0.310 6.35 7.87

E 0.300 BSC 7.62 BSC

e 0.100 BSC 2.54 BSC

L 0.125 0.200 3.18 5.08

α 0° 15° 0° 15°

D

B

e

B1

16 LEAD CERAMIC DUAL-IN-LINE(300 MIL CDIP)

Rev. 1.00

SYMBOL MIN MAX MIN MAX

INCHES MILLIMETERS

1 8

9

αc

E1

A

L

A1

SeatingPlane

BasePlane

16

E

Note: The control dimension is the inch column

Page 31: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

14

Rev. 1.03

16 LEAD PLASTIC DUAL-IN-LINE(300 MIL PDIP)

Rev. 1.00

16

1

9

8

D

e B1

A1

E1

E

AL

B

SeatingPlane

SYMBOL MIN MAX MIN MAX

INCHES

A 0.145 0.210 3.68 5.33

A1 0.015 0.070 0.38 1.78

A2 0.115 0.195 2.92 4.95

B 0.014 0.024 0.36 0.56

B1 0.030 0.070 0.76 1.78

C 0.008 0.014 0.20 0.38

D 0.745 0.840 18.92 21.34

E 0.300 0.325 7.62 8.26

E1 0.240 0.280 6.10 7.11

e 0.100 BSC 2.54 BSC

eA 0.300 BSC 7.62 BSC

eB 0.310 0.430 7.87 10.92

L 0.115 0.160 2.92 4.06

α 0° 15° 0° 15°

MILLIMETERS

α

A2

C

Note: The control dimension is the inch column

eB

eA

Page 32: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

15

Rev. 1.03

SYMBOL MIN MAX MIN MAX

A 0.093 0.104 2.35 2.65

A1 0.004 0.012 0.10 0.30

B 0.013 0.020 0.33 0.51

C 0.009 0.013 0.23 0.32

D 0.398 0.413 10.10 10.50

E 0.291 0.299 7.40 7.60

e 0.050 BSC 1.27 BSC

H 0.394 0.419 10.00 10.65

L 0.016 0.050 0.40 1.27

α 0° 8° 0° 8°

INCHES MILLIMETERS

16 LEAD SMALL OUTLINE(300 MIL JEDEC SOIC)

Rev. 1.00

e

16 9

8

D

E H

B

A

L

C

A1

SeatingPlane α

Note: The control dimension is the millimeter column

1

Page 33: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

XR-2206

16

Rev. 1.03

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits arefree of patent infringement. Charts and schedules contained here in are only for illustration purposes and may varydepending upon a user’s specific application. While the information in this publication has been carefully checked;no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure ormalfunction of the product can reasonably be expected to cause failure of the life support system or to significantlyaffect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporationreceives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) theuser assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-stances.

Copyright 1972 EXAR CorporationDatasheet June 1997Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

Page 34: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

UF4001 THRU UF4007ULTRAFAST EFFICIENT PLASTIC RECTIFIER

Reverse Voltage - 50 to 1000 Volts Forward Current - 1.0 Ampere

FEATURES ♦ Plastic package has Underwriters Laboratory

Flammability Classification 94V-0♦ 1.0 ampere operation at TA=55°C with no thermal

runaway♦ Glass passivated chip junction♦ Low cost♦ Ultrafast recovery

time for high efficiency♦ Low forward voltage ♦ Low leakage current♦ High surge current capability♦ High temperature soldering guaranteed:

250°C/10 seconds, 0.375" (9.5mm) lead length,5 lbs. (2.3kg) tension

MECHANICAL DATA Case: JEDEC DO-204AL molded plastic body overpassivated chipTerminals: Plated axial leads, solderable per MIL-STD-750,Method 2026Polarity: Color band denotes cathode end Mounting Position: AnyWeight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified..

UF UF UF UF UF UF UFSYMBOLS 4001 4002 4003 4004 4005 4006 4007 UNITS

Maximum repetitive peak reverse voltage VRRM 50 100 200 400 600 800 1000 Volts

Maximum RMS voltage VRMS 35 70 140 280 420 560 700 Volts

Maximum DC blocking voltage VDC 50 100 200 400 600 800 1000 Volts

Maximum average forward rectified current 0.375" (9.5mm) lead length at TA=55°C I(AV) 1.0 Amp

Peak forward surge current8.3ms single half sine-wave superimposed on IFSM 30.0 Ampsrated load (JEDEC Method)

Maximum instantaneous forward voltage at 1.0A VF 1.0 1.7 Volts

Maximum DC reverse current TA=25°C 10.0at rated DC blocking voltage TA=100°C IR 50.0 µA

Maximum reverse recovery time (NOTE 1) trr 50.0 75.0 ns

Typical junction capacitance (NOTE 2) CJ 17.0 pF

Typical thermal resistance (NOTE 3) RΘJA 60.0RΘJL 15.0 °C/W

Operating junction and storage temperature range TJ, TSTG -55 to +150 °C

NOTES:(1) Reverse recovery test conditions: IF=0.5A, IR=1.0A, Irr=0.25A(2) Measured at 1.0 MHZ and applied reverse voltage of 4.0 Volts(3) Thermal resistance from junction to ambient and from junction to lead length 0.375" ( 9.5mm), P.C.B. mounted

4/98

0.107 (2.7)0.080 (2.0)

0.034 (0.86)0.028 (0.71)

DIA.

1.0 (25.4) MIN.

1.0 (25.4) MIN.

0.205 (5.2)0.160 (4.1)

DIA.

NOTE: Lead diameter is for suffix "E" part numbers0.026 (0.66)0.023 (0.58)

DO-204AL

Dimensions in inches and (millimeters)

Page 35: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

1.0

20 40 60 80 100 120 140 1600

0.5

1 10 1000

5.0

10

15

20

25

30

0.1 1 10 1001

10

100

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.001

0.01

0.1

1

10

0 20 40 60 80 1000.01

0.1

1

10

100

RATINGS AND CHARACTERISTIC CURVES UF4001 THRU UF4007

FIG. 1 - MAXIMUM FORWARD CURRENT DERATING CURVE

AMBIENT TEMPERATURE, °C

AV

ER

AG

E F

OR

WA

RD

RE

CT

IFIE

DC

UR

RE

NT,

AM

PE

RE

S

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

NUMBER OF CYCLES AT 60 HZ

PE

AK

FO

RW

AR

D S

UR

GE

CU

RR

EN

T,A

MP

ER

ES

FIG. 3 - TYPICAL INSTANTANEOUSFORWARD CHARACTERISTICS

FIG. 4 - TYPICAL REVERSE LEAKAGECHARACTERISTICS

INS

TAN

TAN

EO

US

FO

RW

AR

D C

UR

RE

NT,

AM

PE

RE

S

INS

TAN

TAN

EO

US

RE

VE

RS

E L

EA

KA

GE

CU

RR

EN

T,

MIC

RO

AM

PE

RE

S

INSTANTANEOUS FORWARD VOLTAGE,VOLTS

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

JUN

CT

ION

CA

PAC

ITA

NC

E,

pF

REVERSE VOLTAGE, VOLTS

TA=55°C8.3ms SINGLE HALF SINE-WAVE(JEDEC Method)

TJ=125°C

TJ=125°C

TJ=25°C

TJ=25°CPULSE WIDTH=300µs1% DUTY CYCLE

RESISTIVE ORINDUCTIVE LOAD0.375" (9.5mm)LEAD LENGTH

TJ=100°C

UF4001-UF4004UF4005-UF4007

TJ=100°C

UF4001 - UF4004

UF4005 - UF4007

TJ=25°Cf=1.0 MHzVsig=50mVp-p

Page 36: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

1

®

HIP4082

July 2004Data Sheet FN3676.3

80V, 1.25A Peak Current H-Bridge FET DriverThe HIP4082 is a medium frequency, medium voltage H-Bridge N-Channel MOSFET driver IC, available in 16 lead plastic SOIC (N) and DIP packages.

Specifically targeted for PWM motor control and UPS applications, bridge based designs are made simple and flexible with the HIP4082 H-bridge driver. With operation up to 80V, the device is best suited to applications of moderate power levels.

Similar to the HIP4081, it has a flexible input protocol for driving every possible switch combination except those which would cause a shoot-through condition. The HIP4082’s reduced drive current allows smaller packaging and it has a much wider range of programmable dead times (0.1 to 4.5µs) making it ideal for switching frequencies up to 200kHz. The HIP4082 does not contain an internal charge pump, but does incorporate non-latching level-shift translation control of the upper drive circuits.

This set of features and specifications is optimized for applications where size and cost are important. For applications needing higher drive capability the HIP4080A and HIP4081A are recommended.

Features• Independently Drives 4 N-Channel FET in Half Bridge or

Full Bridge Configurations

• Bootstrap Supply Max Voltage to 95VDC

• Drives 1000pF Load in Free Air at 50°C with Rise and Fall Times of Typically 15ns

• User-Programmable Dead Time (0.1 to 4.5µs)

• DIS (Disable) Overrides Input Control and Refreshes Bootstrap Capacitor when Pulled Low

• Input Logic Thresholds Compatible with 5V to 15V Logic Levels

• Shoot-Through Protection

• Undervoltage Protection

• Pb-free Available

Applications• UPS Systems

• DC Motor Controls

• Full Bridge Power Supplies

• Switching Power Amplifiers

• Noise Cancellation Systems

• Battery Powered Vehicles

• Peripherals

• Medium/Large Voice Coil Motors

• Related Literature- TB363, Guidelines for Handling and Processing

Moisture Sensitive Surface Mount Devices (SMDs)

PinoutHIP4082

(PDIP, SOIC)TOP VIEW

Ordering InformationPART

NUMBERTEMP.

RANGE (°C) PACKAGEPKG.

DWG. #

HIP4082IB -55 to +125 16 Ld SOIC (N) M16.15

HIP4082IBZ (Note)

-55 to +125 16 Ld SOIC (N) (Pb-free) M16.15

HIP4082IP -55 to +125 16 Ld PDIP E16.3

HIP4082IPZ (Note)

-55 to +125 16 Ld PDIP (Pb-free) E16.3

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J Std-020B.

14

15

16

9

13

12

11

10

1

2

3

4

5

7

6

8

BHB

BHI

BLI

ALI

DEL

VSS

DIS

AHI

BHO

BLO

ALO

VDD

AHS

AHO

AHB

BHS

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.

Copyright Harris Corporation 1995. Copyright Intersil Americas Inc. 2003, 2004. All Rights ReservedAll other trademarks mentioned are the property of their respective owners.

Page 37: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

HIP4082

Application Block Diagram

Functional Block Diagram

80V

GND

LOAD

HIP4082

GND

12V

AHI

ALI

BLI

BHI BLO

BHS

BHO

ALO

AHS

AHO

3

8

2

7

4

12

5

6

TURN-ONDELAY

DRIVER

13

LEVELSHIFT

DRIVER

AHB

AHS

9

10

11

14

15

16

1DRIVER

TURN-ONDELAY

DRIVERTURN-ON

DELAY

LEVELSHIFT

AHO

BHB

BHS

BHO

ALO BLO

TURN-ONDELAY

UNDERVOLTAGEDETECTOR

VDD

BHI

AHI

DIS

ALI

VDD

DEL

BLI

VSS

U/V U/V

2

Page 38: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

HIP4082

Typical Application (PWM Mode Switching)

80V

12V

12V

DIS

GND

GND

TO OPTIONALCURRENT CONTROLLER OR

PWM

LOAD

INPUT

+-

14

15

16

9

13

12

11

10

1

2

3

4

5

7

6

8

BHB

BHI

BLI

ALI

DEL

VSS

DIS

AHI

BHO

BLO

ALO

VDD

AHS

AHO

AHB

BHS

OVERCURRENT LATCH

RDIS

DELAY RESISTOR

FROMOPTIONAL

OVERCURRENT LATCH

RSH

3

Page 39: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

HIP4082

Absolute Maximum Ratings Thermal InformationSupply Voltage, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 16VLogic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD +0.3VVoltage on AHS, BHS . . . . . -6V (Transient) to 80V (25°C to 150°C)Voltage on AHS, BHS . . . . . -6V (Transient) to 70V (-55°C to150°C)Voltage on AHB, BHB . . . . . . . . VAHS, BHS -0.3V to VAHS, BHS +VDDVoltage on ALO, BLO . . . . . . . . . . . . . . . . . VSS -0.3V to VDD +0.3VVoltage on AHO, BHO . . . VAHS, BHS -0.3V to VAHB, BHB +0.3V InputCurrent, DEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -5mA to 0mAPhase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/nsNOTE: All voltages are relative VSS unless otherwise specified.

Thermal Resistance, Junction-Ambient θJA (°C/W)SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Maximum Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . See CurveStorage Temperature Range . . . . . . . . . . . . . . . . . . -65°C to +150°COperating Max. Junction Temperature . . . . . . . . . . . . . . . . . +150°CLead Temperature (Soldering 10s) . . . . . . . . . . . . . . . . . . . . +300°C

(For SOIC - Lead Tips Only))

Operating ConditionsSupply Voltage, VDD . . . . . . . . . . . . . . . . . . . . . . . . . +8.5V to +15VVoltage on VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +1.0VVoltage on AHB, BHB . . . . . . . VAHS, BHS +7.5V to VAHS, BHS +VDDInput Current, DEL . . . . . . . . . . . . . . . . . . . . . . . . . -4mA to -100µA

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of thedevice at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications VDD = VAHB = VBHB = 12V, VSS = VAHS = VBHS = 0V, RDEL = 100K

PARAMETER SYMBOL TEST CONDITIONS

TJ = +25°CTJ = -55°C TO +150°C

UNITSMIN TYP MAX MIN MAX

SUPPLY CURRENTS & UNDER VOLTAGE PROTECTION

VDD Quiescent Current IDD All inputs = 0V, RDEL = 100K 1.2 2.3 3.5 0.85 4 mA

All inputs = 0V, RDEL = 10K 2.2 4.0 5.5 1.9 6.0 mA

VDD Operating Current IDDO f = 50kHz, no load 1.5 2.6 4.0 1.1 4.2 mA

50kHz, no load, RDEL = 10kΩ 2.5 4.0 6.4 2.1 6.6 mA

AHB, BHB Off Quiescent Current IAHBL, IBHBL AHI = BHI = 0V 0.5 1.0 1.5 0.4 1.6 mA

AHB, BHB On Quiescent Current IAHBH, IBHBH AHI = BHI = VDD 65 145 240 40 250 µA

AHB, BHB Operating Current IAHBO, IBHBO f = 50kHz, CL = 1000pF .65 1.1 1.8 .45 2.0 mA

AHS, BHS Leakage Current IHLK VAHS = VBHS = 80VVAHB = VBHB = 96

- - 1.0 - - µA

VDD Rising Undervoltage Threshold VDDUV+ 6.8 7.6 8.25 6.5 8.5 V

VDD Falling Undervoltage Threshold VDDUV- 6.5 7.1 7.8 6.25 8.1 V

Undervoltage Hysteresis UVHYS 0.17 0.4 0.75 0.15 0.90 V

AHB, BHB Undervoltage Threshold VHBUV Referenced to AHS & BHS 5 6.0 7 4.5 7.5 V

INPUT PINS: ALI, BLI, AHI, BHI, & DIS

Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V

High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 V

Input Voltage Hysteresis - 35 - - - mV

Low Level Input Current IIL VIN = 0V, Full Operating Conditions -145 -100 -60 -150 -50 µA

High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 µA

TURN-ON DELAY PIN DEL

Dead Time TDEAD RDEL = 100K 2.5 4.5 8.0 2.0 8.5 µS

RDEL = 10K 0.27 0.5 0.75 0.2 0.85 µS

GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, & BHO

Low Level Output Voltage VOL IOUT = 50mA 0.65 1.1 0.5 1.2 V

High Level Output Voltage VDD-VOH IOUT = -50mA 0.7 1.2 0.5 1.3 V

4

Page 40: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

HIP4082

Peak Pullup Current IO+ VOUT = 0V 1.1 1.4 2.5 0.85 2.75 A

Peak Pulldown Current IO- VOUT = 12V 1.0 1.3 2.3 0.75 2.5 A

Switching Specifications VDD = VAHB = VBHB = 12V, VSS = VAHS = VBHS = 0V, RDEL= 100K, CL = 1000pF.

PARAMETER SYMBOL TEST CONDITIONS

TJ = +25°CTJ = -55°C TO

+150°C

UNITSMIN TYP MAX MIN MAX

Lower Turn-off Propagation Delay(ALI-ALO, BLI-BLO)

TLPHL - 25 50 - 70 ns

Upper Turn-off Propagation Delay(AHI-AHO, BHI-BHO)

THPHL - 55 80 - 100 ns

Lower Turn-on Propagation Delay(ALI-ALO, BLI-BLO)

TLPLH - 40 85 - 100 ns

Upper Turn-on Propagation Delay(AHI-AHO, BHI-BHO)

THPLH - 75 110 - 150 ns

Rise Time TR - 9 20 - 25 ns

Fall Time TF - 9 20 - 25 ns

Minimum Input Pulse Width TPWIN-ON/OFF 50 - - 50 - ns

Output Pulse Response to 50 ns Input Pulse TPWOUT 63 80 ns

Disable Turn-off Propagation Delay(DIS - Lower Outputs)

TDISLOW - 50 80 - 90 ns

Disable Turn-off Propagation Delay(DIS - Upper Outputs)

TDISHIGH - 75 100 - 125 ns

Disable Turn-on Propagation Delay(DIS - ALO & BLO)

TDLPLH - 40 70 - 100 ns

Disable Turn-on Propagation Delay (DIS- AHO & BHO)

TDHPLH RDEL = 10K - 1.2 2 - 3 µs

Refresh Pulse Width (ALO & BLO) TREF-PW 375 580 900 350 950 ns

TRUTH TABLE

INPUT OUTPUT

ALI, BLI AHI, BHI VDDUV VHBUV DIS ALO, BLO AHO, BHO

X X X X 1 0 0

X X 1 X X 0 0

0 X 0 1 0 0 0

1 X 0 X 0 1 0

0 1 0 0 0 0 1

0 0 0 0 0 0 0

NOTE: X signifies that input can be either a “1” or “0”.

Electrical Specifications VDD = VAHB = VBHB = 12V, VSS = VAHS = VBHS = 0V, RDEL = 100K (Continued)

PARAMETER SYMBOL TEST CONDITIONS

TJ = +25°CTJ = -55°C TO +150°C

UNITSMIN TYP MAX MIN MAX

5

Page 41: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

6

HIP4082

Pin Descriptions PIN

NUMBER SYMBOL DESCRIPTION

1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrapdiode and positive side of bootstrap capacitor to this pin.

2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 16). BLI (Pin 3) high level input overrides BHI highlevel input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides BHI high levelinput. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).

3 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 14). If BHI (Pin 2) is driven high or not connectedexternally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin8) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V (no greater thanVDD).

4 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connectedexternally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin8) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V (no greater thanVDD).

5 DEL Turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the dead time between drivers.All drivers turn-off with no adjustable delay, so the DEL resistor guarantees no shoot-through by delaying the turn-onof all drivers. The voltage across the DEL resistor is approximately Vdd -2V.

6 VSS Chip negative supply, generally will be ground.

7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 10). ALI (Pin 4) high level input overrides AHI highlevel input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides AHI high levelinput. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).

8 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs.When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to15V (no greater than VDD).

9 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrapdiode and positive side of bootstrap capacitor to this pin.

10 AHO A High-side Output. Connect to gate of A High-side power MOSFET.

11 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side ofbootstrap capacitor to this pin.

12 VDD Positive supply to control logic and lower gate drivers. De-couple this pin to VSS (Pin 6).

13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET.

14 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET.

15 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side ofbootstrap capacitor to this pin.

16 BHO B High-side Output. Connect to gate of B High-side power MOSFET.

HIP4082

Page 42: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

7

HIP4082

Timing Diagrams

FIGURE 1. INDEPENDENT MODE

FIGURE 2. BISTATE MODE

FIGURE 3. DISABLE FUNCTION

DIS=0

XLI

XHI

XLO

XHO

TLPHL THPHL

THPLH TLPLH TR(10% - 90%)

TF(10% - 90%)

X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT

and UV

DIS=0

XLI

XHI = HI OR NOT CONNECTED

XLO

XHO

and UV

DIS or UV

XLI

XHI

XLO

XHO

TDLPLH TDIS

TDHPLH

TREF-PW

HIP4082

Page 43: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

HIP4082

Performance Curves

FIGURE 4. IDD SUPPLY CURRENT vs TEMPERATURE AND VDD SUPPLY VOLTAGE

FIGURE 5. VDD SUPPLY CURRENT vs TEMPERATURE AND SWITCHING FREQUENCY (1000pF LOAD)

FIGURE 6. FLOATING (IXHB) BIAS CURRENT vs FREQUENCY AND LOAD

FIGURE 7. GATE SOURCE/SINK PEAK CURRENT vs BIAS SUPPLY VOLTAGE AT 25°C

FIGURE 8. GATE CURRENT vs TEMPERATURE, NORMALIZED TO 25°C

FIGURE 9. VDD-VOH vs BIAS VOLTAGE TEMPERATURE

-60 -40 -20 0 20 40 60 80 100 120 1401.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

JUNCTION TEMPERATURE (°C)

I DD

SU

PP

LY C

UR

RE

NT

(mA

) VDD = 16VVDD = 15V

VDD = 12V

VDD = 10V

VDD = 8V

-60 -40 -20 0 20 40 60 80 100 120 140456789

10111213141516

JUNCTION TEMPERATURE (°C)

I DD

SU

PP

LY C

UR

RE

NT

(mA

)

200kHz

100kHz

50kHz

10kHz

0 50 100 150 2000

1

2

3

4

5

6

7

8

FREQUENCY (kHz)

LOA

DE

D, N

L B

IAS

CU

RR

EN

TS (m

A)

1000pF LOAD

NO LOAD

8 9 10 11 12 13 14 150.5

0.75

1

1.25

1.5

1.75

BIAS SUPPLY VOLTAGE (V) AT 25°C

PE

AK

GA

TE C

UR

RE

NT

(A)

1.925

0.815

ISRC(BIAS)

ISNK(BIAS)

BIAS

2

8 15

SOURCE

SINK

-75 -50 -25 0 25 50 75 100 125 1500.8

0.9

1

1.1

1.2

JUNCTION TEMPERATURE (°C)

NO

RM

ALI

ZED

GA

TES

INK

/SO

UR

CE

CU

RR

EN

T (A

)

8 9 10 11 12 13 14 15

0.6

1

1.4

VDD SUPPLY VOLTAGE (V)

VD

D-V

OH

(V)

1.2

0.8

-55°C-40°C

0°C25°C

125°C 150°C

8

Page 44: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

HIP4082

FIGURE 10. VOL vs BIAS VOLTAGE AND TEMPERATURE FIGURE 11. UNDERVOLTAGE TRIP VOLTAGES vs TEMPERA-TURE

FIGURE 12. UPPER LOWER TURN-ON/TURN-OFF PROPAGA-TION DELAY vs TEMPERATURE

FIGURE 13. UPPER/LOWER DIS(ABLE) TO TURN-ON/OFF vs TEMPERATURE (°C)

FIGURE 14. FULL BRIDGE LEVEL-SHIFT CURRENT vs FREQUENCY (kHz)

FIGURE 15. MAXIMUM POWER DISSIPATION vs AMBIENT TEMPERATURE

Performance Curves (Continued)

8 9 10 11 12 13 14

1.4

VDD SUPPLY VOLTAGE (V)

VO

L (V

)

15

1.2

0.8

0.6

-55°C-40°C 0°C 25°C

125°C

150°C

1

-60 -40 -20 0 20 40 60 80 100 120 140 1605

5.5

6

6.5

7

7.5

8

JUNCTION TEMPERATURE (°C)

VD

D, B

IAS

SU

PP

LY V

OLT

AG

E (V

) LOWER U/V RESET

LOWER U/V SET

UPPER U/V SET/RESET

-60 -40 -20 0 20 40 60 80 100 120 140 16020

30

40

50

60

70

80

90

100

JUNCTION TEMPERATURE (°C)

PR

OP

AG

ATI

ON

DE

LAY

S (n

s)

UPPER tON

UPPER tOFF

LOWER tON

LOWER tOFF

-60 -40 -20 0 20 40 60 80 100 120 140 16010

100

104

JUNCTION TEMPERATURE (°C)

DIS

TO

TU

RN

-ON

/OFF

TIM

E (n

s)

1000

DISHTON

DISHTOFF

DISLTONDISLOFF

0 20 40 60 80 1000.5

1

1.5

2

SWITCHING FREQUENCY (kHz)

LEV

EL-

SH

IFT

CU

RR

EN

T (m

A)

-60 -30 0 30 60 90 120 1500

0.5

1

1.5

2

2.5

AMBIENT TEMPERATURE (°C)

TOTA

L P

OW

ER

DIS

SIP

ATI

ON

(W)

SOIC

16 PIN DIP

QUIESCENT BIAS COMPONENT

9

Page 45: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

HIP4082

FIGURE 16. DEAD-TIME vs DEL RESISTANCE AND BIAS SUPPLY (VDD) VOLTAGE

FIGURE 17. MAXIMUM OPERATING PEAK AHS/BHS VOLTAGE vs TEMPERATURE

Performance Curves (Continued)

0 10 20 30 40 50 60 70 80 90 100100

1000

104

DEAD TIME RESISTANCE (kΩ)

DE

AD

TIM

E (n

s)

VDD = 12V

VDD = 9V

VDD = 15V

100 50 0 50 100 15070

75

80

85

90

TEMPERATURE (°C)

VX

HS-V

SS

10

Page 46: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

11

HIP4082

Dual-In-Line Plastic Packages (PDIP)

NOTES:1. Controlling Dimensions: INCH. In case of conflict between English and

Metric dimensions, the inch dimensions control.2. Dimensioning and tolerancing per ANSI Y14.5M-1982.3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of

Publication No. 95.4. Dimensions A, A1 and L are measured with the package seated in JE-

DEC seating plane gauge GS-3.5. D, D1, and E1 dimensions do not include mold flash or protrusions.

Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).6. E and are measured with the leads constrained to be perpendic-

ular to datum .7. eB and eC are measured at the lead tips with the leads unconstrained.

eC must be zero or greater.8. B1 maximum dimensions do not include dambar protrusions. Dambar

protrusions shall not exceed 0.010 inch (0.25mm).9. N is the maximum number of terminal positions.

10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

eA-C-

CL

E

eA

C

eB

eC

-B-

E1INDEX 1 2 3 N/2

N

AREA

SEATING

BASEPLANE

PLANE

-C-

D1

B1B

e

D

D1

AA2

L

A1

-A-

0.010 (0.25) C AM B S

E16.3 (JEDEC MS-001-BB ISSUE D)16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A - 0.210 - 5.33 4

A1 0.015 - 0.39 - 4

A2 0.115 0.195 2.93 4.95 -

B 0.014 0.022 0.356 0.558 -

B1 0.045 0.070 1.15 1.77 8, 10

C 0.008 0.014 0.204 0.355 -

D 0.735 0.775 18.66 19.68 5

D1 0.005 - 0.13 - 5

E 0.300 0.325 7.62 8.25 6

E1 0.240 0.280 6.10 7.11 5

e 0.100 BSC 2.54 BSC -

eA 0.300 BSC 7.62 BSC 6

eB - 0.430 - 10.92 7

L 0.115 0.150 2.93 3.81 4

N 16 16 9

Rev. 0 12/93

Page 47: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

12

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time withoutnotice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate andreliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may resultfrom its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

HIP4082HIP4082

Small Outline Plastic Packages (SOIC)

NOTES:1. Symbols are defined in the “MO Series Symbol List” in Section

2.2 of Publication Number 95.2. Dimensioning and tolerancing per ANSI Y14.5M-1982.3. Dimension “D” does not include mold flash, protrusions or gate

burrs. Mold flash, protrusion and gate burrs shall not exceed0.15mm (0.006 inch) per side.

4. Dimension “E” does not include interlead flash or protrusions. In-terlead flash and protrusions shall not exceed 0.25mm (0.010inch) per side.

5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.

6. “L” is the length of terminal for soldering to a substrate.7. “N” is the number of terminal positions.8. Terminal numbers are shown for reference only.9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater

above the seating plane, shall not exceed a maximum value of0.61mm (0.024 inch)

10. Controlling dimension: MILLIMETER. Converted inch dimen-sions are not necessarily exact.

INDEXAREA

E

D

N

1 2 3

-B-

0.25(0.010) C AM B S

e

-A-

L

B

M

-C-

A1

A

SEATING PLANE

0.10(0.004)

h x 45o

C

H

µ

0.25(0.010) BM M

α

M16.15 (JEDEC MS-012-AC ISSUE C)16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A 0.053 0.069 1.35 1.75 -

A1 0.004 0.010 0.10 0.25 -

B 0.014 0.019 0.35 0.49 9

C 0.007 0.010 0.19 0.25 -

D 0.386 0.394 9.80 10.00 3

E 0.150 0.157 3.80 4.00 4

e 0.050 BSC 1.27 BSC -

H 0.228 0.244 5.80 6.20 -

h 0.010 0.020 0.25 0.50 5

L 0.016 0.050 0.40 1.27 6

N 16 16 7

α 0o 8o 0o 8o -

Rev. 1 02/02

Page 48: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

FEATURES SYMBOL QUICK REFERENCE DATA

• ’Trench’ technology• Low on-state resistance VDSS = 100 V• Fast switching• Low thermal resistance ID = 23 A

RDS(ON) ≤ 77 mΩ

GENERAL DESCRIPTIONN-channel enhancement mode field-effect power transistor in a plastic envelope using ’trench ’ technology.

Applications:-• d.c. to d.c. converters• switched mode power supplies• T.V. and computer monitor power supplies

The IRF540 is supplied in the SOT78 (TO220AB) conventional leaded package.The IRF540S is supplied in the SOT404 (D2PAK) surface mounting package.

PINNING SOT78 (TO220AB) SOT404 (D2PAK)

PIN DESCRIPTION

1 gate

2 drain1

3 source

tab drain

LIMITING VALUESLimiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

VDSS Drain-source voltage Tj = 25 ˚C to 175˚C - 100 VVDGR Drain-gate voltage Tj = 25 ˚C to 175˚C; RGS = 20 kΩ - 100 VVGS Gate-source voltage - ± 20 VID Continuous drain current Tmb = 25 ˚C; VGS = 10 V - 23 A

Tmb = 100 ˚C; VGS = 10 V - 16 AIDM Pulsed drain current Tmb = 25 ˚C - 92 APD Total power dissipation Tmb = 25 ˚C - 100 WTj, Tstg Operating junction and - 55 175 ˚C

storage temperature

d

g

s

1 3

tab

2

1 2 3

tab

1 It is not possible to make connection to pin:2 of the SOT404 package

August 1999 1 Rev 1.100

Page 49: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

AVALANCHE ENERGY LIMITING VALUESLimiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

EAS Non-repetitive avalanche Unclamped inductive load, IAS = 10 A; - 230 mJenergy tp = 350 µs; Tj prior to avalanche = 25˚C;

VDD ≤ 25 V; RGS = 50 Ω; VGS = 10 V; referto fig:14

IAS Peak non-repetitive - 23 Aavalanche current

THERMAL RESISTANCES

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

Rth j-mb Thermal resistance junction - - 1.5 K/Wto mounting base

Rth j-a Thermal resistance junction SOT78 package, in free air - 60 - K/Wto ambient SOT404 package, pcb mounted, minimum - 50 - K/W

footprint

ELECTRICAL CHARACTERISTICSTj= 25˚C unless otherwise specified

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

V(BR)DSS Drain-source breakdown VGS = 0 V; ID = 0.25 mA; 100 - - Vvoltage Tj = -55˚C 89 - - V

VGS(TO) Gate threshold voltage VDS = VGS; ID = 1 mA 2 3 4 V Tj = 175˚C 1 - - VTj = -55˚C - - 6 V

RDS(ON) Drain-source on-state VGS = 10 V; ID = 17 A - 49 77 mΩresistance Tj = 175˚C - 132 193 mΩ

gfs Forward transconductance VDS = 25 V; ID = 17 A 8.7 15.5 - SIGSS Gate source leakage current VGS = ± 20 V; VDS = 0 V - 10 100 nAIDSS Zero gate voltage drain VDS = 100 V; VGS = 0 V - 0.05 10 µA

current VDS = 80 V; VGS = 0 V; Tj = 175˚C - - 250 µA

Qg(tot) Total gate charge ID = 17 A; VDD = 80 V; VGS = 10 V - - 65 nCQgs Gate-source charge - - 10 nCQgd Gate-drain (Miller) charge - - 29 nC

td on Turn-on delay time VDD = 50 V; RD = 2.2 Ω; - 8 - nstr Turn-on rise time VGS = 10 V; RG = 5.6 Ω - 39 - nstd off Turn-off delay time Resistive load - 26 - nstf Turn-off fall time - 24 - ns

Ld Internal drain inductance Measured tab to centre of die - 3.5 - nHLd Internal drain inductance Measured from drain lead to centre of die - 4.5 - nH

(SOT78 package only)Ls Internal source inductance Measured from source lead to source - 7.5 - nH

bond pad

Ciss Input capacitance VGS = 0 V; VDS = 25 V; f = 1 MHz - 890 1187 pFCoss Output capacitance - 139 167 pFCrss Feedback capacitance - 83 109 pF

August 1999 2 Rev 1.100

Page 50: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

REVERSE DIODE LIMITING VALUES AND CHARACTERISTICSTj = 25˚C unless otherwise specified

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

IS Continuous source current - - 23 A(body diode)

ISM Pulsed source current (body - - 92 Adiode)

VSD Diode forward voltage IF = 28 A; VGS = 0 V - 0.94 1.5 V

trr Reverse recovery time IF = 17 A; -dIF/dt = 100 A/µs; - 61 - nsQrr Reverse recovery charge VGS = 0 V; VR = 25 V - 200 - nC

August 1999 3 Rev 1.100

Page 51: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

Fig.1. Normalised power dissipation.PD% = 100⋅PD/PD 25 ˚C = f(Tmb)

Fig.2. Normalised continuous drain current.ID% = 100⋅ID/ID 25 ˚C = f(Tmb); conditions: VGS ≥ 10 V

Fig.3. Safe operating area. Tmb = 25 ˚CID & IDM = f(VDS); IDM single pulse; parameter tp

Fig.4. Transient thermal impedance.Zth j-mb = f(t); parameter D = tp/T

Fig.5. Typical output characteristics, Tj = 25 ˚C.ID = f(VDS)

Fig.6. Typical on-state resistance, Tj = 25 ˚C.RDS(ON) = f(ID)

Normalised Power Derating, PD (%)

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175Mounting Base temperature, Tmb (C)

0.01

0.1

1

10

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

Pulse width, tp (s)

Transient thermal impedance, Zth j-mb (K/W)

single pulse

D = 0.5

0.2

0.10.05

0.02tp D = tp/TDP

T

Normalised Current Derating, ID (%)

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175Mounting Base temperature, Tmb (C)

0

5

10

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8 9 10

Drain-Source Voltage, VDS (V)

Drain Current, ID (A)

4V

5 V

6 V

7 V

9 V 8 V

0.1

1

10

100

1000

1 10 100 1000Drain-Source Voltage, VDS (V)

Peak Pulsed Drain Current, IDM (A)

D.C.

100 ms10 ms

RDS(on) = VDS/ ID

1 ms

tp = 10 us

100 us

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50Drain Current, ID (A)

Drain-Source On Resistance, RDS(on) (Ohms)

VGS =9 V

8V

6V

7 V5 V

4V

5.5V

6.5V

August 1999 4 Rev 1.100

Page 52: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

Fig.7. Typical transfer characteristics.ID = f(VGS)

Fig.8. Typical transconductance, Tj = 25 ˚C.gfs = f(ID)

Fig.9. Normalised drain-source on-state resistance.RDS(ON)/RDS(ON)25 ˚C = f(Tj)

Fig.10. Gate threshold voltage.VGS(TO) = f(Tj); conditions: ID = 1 mA; VDS = VGS

Fig.11. Sub-threshold drain current.ID = f(VGS); conditions: Tj = 25 ˚C; VDS = VGS

Fig.12. Typical capacitances, Ciss, Coss, Crss.C = f(VDS); conditions: VGS = 0 V; f = 1 MHz

02468

1012141618202224262830

0 1 2 3 4 5 6 7 8 9 10

Gate-source voltage, VGS (V)

Drain current, ID (A)

VDS > ID X RDS(ON)

Tj = 25 C175 C

Threshold Voltage, VGS(TO) (V)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

Junction Temperature, Tj (C)

typical

maximum

minimum

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Drain current, ID (A)

Transconductance, gfs (S)

Tj = 25 C

175 C

VDS > ID X RDS(ON)

Drain current, ID (A)

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Gate-source voltage, VGS (V)

minimum

typical

maximum

Normalised On-state Resistance

0.50.70.91.11.31.51.71.92.12.32.52.72.9

-60 -40 -20 0 20 40 60 80 100 120 140 160 180Junction temperature, Tj (C)

10

100

1000

10000

0.1 1 10 100Drain-Source Voltage, VDS (V)

Capacitances, Ciss, Coss, Crss (pF)

Ciss

Coss

Crss

August 1999 5 Rev 1.100

Page 53: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

Fig.13. Typical reverse diode current.IF = f(VSDS); conditions: VGS = 0 V; parameter Tj

Fig.14. Maximum permissible non-repetitiveavalanche current (IAS) versus avalanche time (tAV);

unclamped inductive load

02468

1012141618202224262830

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Source-Drain Voltage, VSDS (V)

Source-Drain Diode Current, IF (A)

Tj = 25 C

175 C

VGS = 0 V

0.1

1

10

100

0.001 0.01 0.1 1 10

Avalanche time, t AV (ms)

Maximum Avalanche Current, I AS (A)

Tj prior to avalanche = 150 C

25 C

August 1999 6 Rev 1.100

Page 54: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

MECHANICAL DATA

Fig.15. SOT78 (TO220AB); pin 2 connected to mounting base (Net mass:2g)

Notes1. This product is supplied in anti-static packaging. The gate-source input must be protected against static

discharge during transport or handling.2. Refer to mounting instructions for SOT78 (TO220AB) package.3. Epoxy meets UL94 V0 at 1/8".

REFERENCESOUTLINEVERSION

EUROPEANPROJECTION ISSUE DATE

IEC JEDEC EIAJ

SOT78 TO-220

D

D1

q

P

L

1 2 3

L2(1)

b1

e e

b

0 5 10 mm

scale

Plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220 SOT78

DIMENSIONS (mm are the original dimensions)

AE

A1

c

Note

1. Terminals in this zone are not tinned.

Q

L1

UNIT A1 b1 D1 e P

mm 2.54

q QA b Dc L2(1)

max.

3.0 3.83.6

15.013.5

3.302.79

3.02.7

2.62.2

0.70.4

15.815.2

0.90.7

1.31.0

4.54.1

1.391.27

6.45.9

10.39.7

L1E L

97-06-11

August 1999 7 Rev 1.100

Page 55: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Philips Semiconductors Product specification

N-channel TrenchMOS transistor IRF540, IRF540S

MECHANICAL DATA

Fig.16. SOT404 surface mounting package. Centre pin connected to mounting base.

Notes1. This product is supplied in anti-static packaging. The gate-source input must be protected against static

discharge during transport or handling.2. Refer to SMD Footprint Design and Soldering Guidelines, Data Handbook SC18.3. Epoxy meets UL94 V0 at 1/8".

UNIT A

REFERENCESOUTLINEVERSION

EUROPEANPROJECTION ISSUE DATE

IEC JEDEC EIAJ

mm

A1 D1D

max.E e Lp HD Qc

2.54 2.602.20

15.4014.80

2.902.10

11 1.601.20

10.309.70

4.504.10

1.401.27

0.850.60

0.640.46

b

DIMENSIONS (mm are the original dimensions)

SOT404

0 2.5 5 mm

scale

Plastic single-ended surface mounted package (Philips version of D2-PAK); 3 leads(one lead cropped) SOT404

e e

E

b

D1

HD

D

Q

Lp

c

A1

A

1 3

2

mountingbase

98-12-1499-06-25

August 1999 8 Rev 1.100

Page 56: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Max Zener Impedance Max Reverse Leakage Current

Max Zener Voltage

Temp. Coeff

– 0.085– 0.085– 0.080– 0.080– 0.075– 0.070– 0.065– 0.060± 0.055± 0.030± 0.030+ 0.038+ 0.038+ 0.045+ 0.050

Prelim. 1/99

1N5221B-LCC3 TOB-LCC

1N5281B-LCC3

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.E-mail: [email protected] Website: http://www.semelab.co.uk

ZENER VOLTAGE REGULATORDIODE IN HERMETIC CERAMIC

SURFACE MOUNT PACKAGEFOR HIGH RELIABILITY

APPLICATIONS

Tcase Operating temperature Range

Tstg Storage Temperature Range

PTOT Power Dissipation TA = 25°C

RTHJ-A Thermal resistance (Junction to Ambient)

-55 to +175°C

-65 to +175°C

500mW

300°C/W

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS @ 25°C

FEATURES

• Military Screening Options available

MECHANICAL DATADimensions in mm (inches)

1

23

4

5.59 ± 0.13(0.22 ± 0.005)

0.23(0.009) rad.

1.02 ± 0.20(0.04 ± 0.008)

2.03 ± 0.20(0.08 ± 0.008)

1.40 ± 0.15(0.055 ± 0.006)

0.25 ± 0.03(0.01 ± 0.001)

0.23(0.009) min.1.

27 ±

0.0

5(0

.05

± 0.

002)

3.81

± 0

.13

(0.1

5 ±

0.00

5)

0.64

± 0

.08

(0.0

25 ±

0.0

03)

1 = CATHODE 2 = N/C 3 = N/C 4 = ANODE

Nominal

Zener Voltage

Vz @ IZT

Volts

2.42.52.72.83.03.33.63.94.34.75.15.66.06.26.8

ZZT @ IZT

Ohms

3030303029282423221917117.07.05.0

ZZK @ IZK = 0.25mA

Ohms

12001250130014001600160017001900200019001600160016001000750

IR

mmmmA

1001007575502515105.05.05.05.05.05.03.0

VR Volts

B, C & D

1.01.01.01.01.01.01.01.01.02.02.03.03.54.05.0

@

A

0.950.950.950.950.950.950.950.950.951.91.92.93.33.84.8

Test

Current

IZT

mA

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Part No.

1N52211N52221N52231N52241N52251N52261N52271N52281N52291N52301N52311N52321N52331N52341N5235

Page 57: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

Prelim. 1/99

1N5221B-LCC3 TOB-LCC

1N5281B-LCC3

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.E-mail: [email protected] Website: http://www.semelab.co.uk

Max Zener Impedance Max Reverse Leakage Current

Max Zener Voltage

Temp. Coeff

+ 0.058+ 0.062+ 0.065+ 0.068+ 0.075+ 0.076+ 0.077+ 0.079+ 0.082+ 0.082+ 0.083+ 0.084+ 0.085+ 0.086+ 0.086+ 0.087+ 0.088+ 0.089+ 0.090+ 0.091+ 0.091+ 0.092+ 0.093+ 0.094+ 0.095+ 0.095+ 0.096+ 0.096+ 0.097+ 0.097+ 0.097+ 0.098+ 0.098+ 0.099+ 0.099+ 0.110+ 0.110+ 0.110+ 0.110+ 0.110+ 0.110+ 0.110+ 0.110+ 0.110+ 0.110+ 0.110

Nominal

Zener Voltage

Vz @ IZT

Volts

7.58.28.79.110111213141516171819202224252728303336394347515660626875828791100110120130140150160170180190200

ZZT @ IZT

Ohms

6.08.08.01017223013151617192123252933354144495870809310512515017018523027033037040050075090011001300150017001900220024002500

ZZK @ IZK = 0.25mA

Ohms

500500600600600600600600600600600600600600600600600600600600600700700800900

100011001300140014001600170020002200230026003000400045004500500055005500600065007000

IR

mmmmA

3.03.03.03.03.02.01.00.50.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

VR Volts

B, C & D6.06.56.57.08.08.49.19.910111213141415171819212123252730333639434647525662686976849199

106114122129137144152

@

A

5.76.26.26.77.68.08.79.49.5

10.511.412.413.313.314.316.217.118.1202022242629313437414445495359656672808694101108116123130137144

Test

Current

IZT

mA

20

20

20

20

20

20

20

9.5

9.0

8.5

7.8

7.4

7.0

6.6

6.2

5.6

5.2

5.0

4.6

4.5

4.2

3.8

3.4

3.2

3.0

2.7

2.5

2.2

2.1

2.0

1.8

1.7

1.5

1.4

1.4

1.3

1.1

1.0

0.95

0.90

0.85

0.80

0.74

0.68

0.66

0.65

Part No.

1N52361N52371N52381N52391N52401N52411N52421N52431N52441N52451N52461N52471N52481N52491N52501N52511N52521N52531N52541N52551N52561N52571N52581N52591N52601N52611N52621N52631N52641N52651N52661N52671N52681N52691N52701N52711N52721N52731N52741N52751N52761N52771N52781N52791N52801N5281

ELECTRICAL CHARACTERISTICS @ 25°C continued

Page 58: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

1/9

MAXIMUM INPUT CURRENT : 150nA

MAXIMUM OFFSET CURRENT : 20nA

DIFFERENTIAL INPUT VOLTAGE RANGE : ±30V

POWER CONSUMPTION :135mW AT ±15V

SUPPLY VOLTAGE : +5V TO ±15V

OUTPUT CURRENT : 50mA

DESCRIPTION

The LM111, LM211, LM311 are voltage compara-tors that have low input currents.

They are also designed to operate over a widerange of supply voltages : from standard ±15V op-erational amplifier supplies down to the single +5Vsupply used for IC logic.

Their output is compatible with RTL-DTL and TTLas well as MOS circuits and can switch voltagesup to +50V at outputs currents as high as 50mA.

ORDER CODE

N = Dual in Line Package (DIP)D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

Part Number Temperature Range

Package

N D

LM111 -55°C, +125°C • •LM211 -40°C, +105°C • •LM311 0°C, +70°C • •Example : LM311D

DSO8

NDIP8

1

2

3

4

8

7

6

5

1 - Ground2 - Non-inverting input3 - Inverting input4 - VCC

-

5 - Balance6 - Strobe/Balance7 - Output

8 - VCC+

LM111 LM211 - LM311

VOLTAGE COMPARATORS

June 2002

Page 59: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

2/9

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

Symbol Parameter Value Unit

VCC Supply Voltage 36 V

Vid Differential Input Voltage ±30 V

Vi Input Voltage 1)

1. This rating applies for ±15V supplies. The positive input voltage limit is 30V above the negative. The negative input voltage is equal to thenegative supply voltage or 30V below the positive supply, whichever is less.

±15 V

V(1-4) Ground to Negative Supply Voltage 30 V

V(7-4)Output to Negative Supply Voltage LM111-LM211

LM3115040

V

Output Short-Circuit Duration 10 s

Voltage at strobe pin VCC+ -5 V

pdPower Dissipation 2) DIP8

SO8

2. Pd is calculated with Tamb = +25°C, Tj = +150°C and Rthja = 100°C/W for DIP8 package= 175°C/W for SO8 package

1250710

mW

Tj Junction Temperature +150 °C

Tstg Storage Temperature Range -65 to +150 °C

Symbol Parameter Value Unit

VCC Supply Voltage 5 to ±15 V

Toper

Operating Free-Air Temperature range LM111 LM211 LM311

-55 to +125-40 to +105

0 to +70°C

Page 60: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

3/9

ELECTRICAL CHARACTERISTICSVCC

+ = ±15V, Tamb = +25°C (unless otherwise specified)

Symbol ParameterLM111 - LM211 LM311

UnitMin. Typ. Max. Min. Typ. Max.

Vio

Input Offset Voltage (RS ≤ 50kΩ)- note 1) Tamb = +25°CTmin ≤ Tamb ≤ Tmax

1. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single +5V suplly up to ±15VsuppliesThe offset voltages and offset currents given are the maximum values required to drive the output down to +1V or up to +14V with a1mA load current. Thus, these parameters define an error band and take into account the worst-case of voltage gain and input impedance.

0.7 34

2 7.510

mV

Iio

Input Offset Current -(see note 1) Tamb = +25°CTmin ≤ Tamb ≤ Tmax

4 1020

6 5070

nA

Iib

Input Bias Current - (see note 1 )Tamb = +25°CTmin ≤ Tamb ≤ Tmax

60 100150

100 250300

nA

Avd Large Signal Voltage Gain 40 200 40 200 V/mV

ICC+

ICC-

Supply Currents Positive Negative

5.14.1

65

5.14.1

7.55

mA

VicmInput Common Mode Voltage Range

Tmin ≤ Tamb ≤ Tmax

-14.5 +13.8-14.7

+13 -14.5 +13.8-14.7

+13 V

VOL

Low Level Output VoltageTamb = +25°C, IO = 50mA Vi ≤ -5mV

Vi ≤ -10mVTmin ≤ Tamb ≤ Tmax

VCC+ ≥ +4.5V, VCC

- = 0IO = 8mA Vi ≤ -6m

Vi ≤ -10mV

0.75

0.23

1.5

0.4

0.75

0.23

1.5

0.4

V

IOH

High Level Output Current Tamb = +25°C Vi ≥ +5mV,Vo = +35V Vi ≥ +10mV,Vo = +5VTmin ≤ Tamb ≤ Tmax Vi ≥ +5mV,Vo = +35V

0.2

0.1

10

0.50.2 50

nAnAµA

Istrobe Strobe Current 3 3 mA

tre Response Time - note 2)

2. The response time specified (see definitions) is for a 100mV input step with 5mV overdrive.

200 200 ns

Page 61: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

4/9

Page 62: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

5/9

Page 63: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

6/9

Page 64: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

7/9

Page 65: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

8/9

PACKAGE MECHANICAL DATA8 PINS - PLASTIC DIP

DimensionsMillimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 3.32 0.131

a1 0.51 0.020

B 1.15 1.65 0.045 0.065

b 0.356 0.55 0.014 0.022

b1 0.204 0.304 0.008 0.012

D 10.92 0.430

E 7.95 9.75 0.313 0.384

e 2.54 0.100

e3 7.62 0.300

e4 7.62 0.300

F 6.6 0260

i 5.08 0.200

L 3.18 3.81 0.125 0.150

Z 1.52 0.060

Page 66: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

LM111-LM211-LM311

9/9

PACKAGE MECHANICAL DATA8 PINS - PLASTIC MICROPACKAGE (SO)

DimensionsMillimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 1.75 0.069

a1 0.1 0.25 0.004 0.010

a2 1.65 0.065

a3 0.65 0.85 0.026 0.033

b 0.35 0.48 0.014 0.019

b1 0.19 0.25 0.007 0.010

C 0.25 0.5 0.010 0.020

c1 45° (typ.)

D 4.8 5.0 0.189 0.197

E 5.8 6.2 0.228 0.244

e 1.27 0.050

e3 3.81 0.150

F 3.8 4.0 0.150 0.157

L 0.4 1.27 0.016 0.050

M 0.6 0.024

S 8° (max.)

b

e3

Aa2

s

L

C

E

c1

a3b1a1

DM

8 5

1 4F

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for theconsequences of use of such information nor for any infringement of patents or other rights of third parties which may result fromits use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specificationsmentioned in this publication are subject to change without notice. This publication supersedes and replaces all informationpreviously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices orsystems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - MalaysiaMalta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

© http://www.st.com

Page 67: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

1

Data sheet acquired from Harris SemiconductorSCHS117E

Features

• Buffered Inputs

• Typical Propagation Delay: 6ns at VCC = 5V,CL = 15pF, TA = 25oC

• Fanout (Over Temperature Range)- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads

• Wide Operating Temperature Range . . . -55oC to 125oC

• Balanced Propagation Delay and Transition Times

• Significant Power Reduction Compared to LSTTLLogic ICs

• HC Types- 2-V to 6-V Operation- High Noise Immunity: NIL = 30%, NIH = 30% of VCC

at VCC = 5V

• HCT Types- 4.5-V to 5.5-V Operation- Direct LSTTL Input Logic Compatibility,

VIL= 0.8V (Max), VIH = 2V (Min)- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH

Description

The CD54HC04, CD54HCT04, CD74HC04 andCD74HCT04 logic gates utilize silicon-gate CMOStechnology to achieve operating speeds similar to LSTTLgates, with the low power consumption of standard CMOSintegrated circuits. All devices have the ability to drive 10LSTTL loads. The 74HCT logic family functionally is pincompatible with the standard 74LS logic family.

PinoutCD54HC04, CD54HCT04 (CERDIP)

CD74HC04 (PDIP, SOIC)CD74HCT04 (PDIP, SOIC, TSSOP)

TOP VIEW

Ordering Information

PART NUMBERTEMP. RANGE

(oC) PACKAGE

CD54HC04F3A -55 to 125 14 Ld CERDIP

CD54HCT04F3A -55 to 125 14 Ld CERDIP

CD74HC04E -55 to 125 14 Ld PDIP

CD74HC04M -55 to 125 14 Ld SOIC

CD74HC04MT -55 to 125 14 Ld SOIC

CD74HC04M96 -55 to 125 14 Ld SOIC

CD74HCT04E -55 to 125 14 Ld PDIP

CD74HCT04M -55 to 125 14 Ld SOIC

CD74HCT04MT -55 to 125 14 Ld SOIC

CD74HCT04M96 -55 to 125 14 Ld SOIC

CD74HCT04PWR -55 to 125 14 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes96 and R denote tape and reel. The suffix T denotes asmall-quantity reel of 250.

1A

1Y

2A

2Y

3A

3Y

GND

VCC

6A

6Y

5A

5Y

4A

4Y

1

2

3

4

5

6

7

14

13

12

11

10

9

8

August 1997 - Revised June 2004

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.

Copyright © 2004, Texas Instruments Incorporated

CD54HC04, CD74HC04,CD54HCT04, CD74HCT04

High-Speed CMOS Logic Hex Inverter

[ /Title(CD54HC04,CD54HCT04,CD74HC04,CD74HCT04)/Subject(HighSpeed

Page 68: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

2

Functional Diagram

Logic Symbol

TRUTH TABLE

INPUTS

nA nY

L H

H L

H = High Voltage Level, L = Low Voltage Level

1A

1Y

2Y

3A

3Y

GND

1

2

3

4

5

6

14

13

12

11

VCC

5A

4Y

5Y

6Y

6A

10

87

94A

2A

nA nY

CD54HC04, CD74HC04, CD54HCT04, CD74HCT04

Page 69: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

3

Absolute Maximum Ratings Thermal InformationDC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7VDC Input Diode Current, IIK

For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mADC Output Diode Current, IOK

For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mADC Output Source or Sink Current per Output Pin, IO

For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mADC VCC or Ground Current, ICC or IGND . . . . . . . . . . . . . . . . . .±50mA

Operating ConditionsTemperature Range (TA) . . . . . . . . . . . . . . . . . . . . . -55oC to 125oCSupply Voltage Range, VCC

HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6VHCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V

DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCCInput Rise and Fall Time

2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)

Thermal Resistance (Typical, Note 1) θJA (oC/W)E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86PW (TSSOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Maximum Junction Temperature (Hermetic Package or Die) . . . 175oCMaximum Junction Temperature (Plastic Package) . . . . . . . . 150oCMaximum Storage Temperature Range . . . . . . . . . .-65oC to 150oCMaximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC

(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating, and operationof the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER SYMBOL

TESTCONDITIONS

VCC (V)

25oC -40oC TO +85oC -55oC TO 125oC

UNITSVI (V) IO (mA) MIN TYP MAX MIN MAX MIN MAX

HC TYPES

High Level InputVoltage

VIH - - 2 1.5 - - 1.5 - 1.5 - V

4.5 3.15 - - 3.15 - 3.15 - V

6 4.2 - - 4.2 - 4.2 - V

Low Level InputVoltage

VIL - - 2 - - 0.5 - 0.5 - 0.5 V

4.5 - - 1.35 - 1.35 - 1.35 V

6 - - 1.8 - 1.8 - 1.8 V

High Level OutputVoltageCMOS Loads

VOH VIH orVIL

-0.02 2 1.9 - - 1.9 - 1.9 - V

-0.02 4.5 4.4 - - 4.4 - 4.4 - V

-0.02 6 5.9 - - 5.9 - 5.9 - V

High Level OutputVoltageTTL Loads

- - - - - - - - - V

-4 4.5 3.98 - - 3.84 - 3.7 - V

-5.2 6 5.48 - - 5.34 - 5.2 - V

Low Level OutputVoltageCMOS Loads

VOL VIH orVIL

0.02 2 - - 0.1 - 0.1 - 0.1 V

0.02 4.5 - - 0.1 - 0.1 - 0.1 V

0.02 6 - - 0.1 - 0.1 - 0.1 V

Low Level OutputVoltageTTL Loads

- - - - - - - - - V

4 4.5 - - 0.26 - 0.33 - 0.4 V

5.2 6 - - 0.26 - 0.33 - 0.4 V

Input LeakageCurrent

II VCC orGND

- 6 - - ±0.1 - ±1 - ±1 µA

CD54HC04, CD74HC04, CD54HCT04, CD74HCT04

Page 70: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

4

Quiescent DeviceCurrent

ICC VCC orGND

0 6 - - 2 - 20 - 40 µA

HCT TYPES

High Level InputVoltage

VIH - - 4.5 to5.5

2 - - 2 - 2 - V

Low Level InputVoltage

VIL - - 4.5 to5.5

- - 0.8 - 0.8 - 0.8 V

High Level OutputVoltageCMOS Loads

VOH VIH orVIL

-0.02 4.5 4.4 - - 4.4 - 4.4 - V

High Level OutputVoltageTTL Loads

-4 4.5 3.98 - - 3.84 - 3.7 - V

Low Level OutputVoltageCMOS Loads

VOL VIH orVIL

0.02 4.5 - - 0.1 - 0.1 - 0.1 V

Low Level OutputVoltageTTL Loads

4 4.5 - - 0.26 - 0.33 - 0.4 V

Input LeakageCurrent

II VCCandGND

0 5.5 - ±0.1 - ±1 - ±1 µA

Quiescent DeviceCurrent

ICC VCC orGND

0 5.5 - - 2 - 20 - 40 µA

Additional QuiescentDevice Current PerInput Pin: 1 Unit Load

∆ICC(Note 2)

VCC- 2.1

- 4.5 to5.5

- 100 360 - 450 - 490 µA

NOTE:

2. For dual-supply systems, theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.

DC Electrical Specifications (Continued)

PARAMETER SYMBOL

TESTCONDITIONS

VCC (V)

25oC -40oC TO +85oC -55oC TO 125oC

UNITSVI (V) IO (mA) MIN TYP MAX MIN MAX MIN MAX

HCT Input Loading Table

INPUT UNIT LOADS

nB 1.2

NOTE: Unit Load is ∆ICC limit specified in DC ElectricalSpecifications table, e.g. 360µA max at 25oC.

Switching Specifications Input tr, tf = 6ns

PARAMETER SYMBOLTEST

CONDITIONSVCC(V)

25oC -40oC TO 85oC -55oC TO 125oC

UNITSMIN TYP MAX MIN MAX MIN MAX

HC TYPES

Propagation Delay,Input to Output (Figure 1)

tPLH, tPHL CL = 50pF 2 - - 85 - 105 - 130 ns

4.5 - - 17 - 21 - 26 ns

6 - - 14 - 18 - 22 ns

Propagation Delay, Data Input toOutput Y

tPLH, tPHL CL = 15pF 5 - 6 - - - - - ns

CD54HC04, CD74HC04, CD54HCT04, CD74HCT04

Page 71: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

5

Transition Times (Figure 1) tTLH, tTHL CL = 50pF 2 - - 75 - 95 18 110 ns

4.5 - - 15 - 19 - 22 ns

6 - - 13 - 16 - 19 ns

Input Capacitance CI - - - - 10 - 10 - 10 pF

Power Dissipation Capacitance(Notes 3, 4)

CPD - 5 - 21 - - - - - pF

HCT TYPES

Propagation Delay, Input toOutput (Figure 2)

tPLH, tPHL CL = 50pF 4.5 - - 19 - 24 - 29 ns

Propagation Delay, Data Input toOutput Y

tPLH, tPHL CL = 15pF 5 - 7 - - - - - ns

Transition Times (Figure 2) tTLH, tTHL CL = 50pF 4.5 - - 15 - 19 - 22 ns

Input Capacitance CI - - - - 10 - 10 - 10 pF

Power Dissipation Capacitance(Notes 3, 4)

CPD - 5 - 24 - - - - - pF

NOTES:

3. CPD is used to determine the dynamic power consumption, per gate.

4. PD = VCC2 fi (CPD + CL) where fi = input frequency, CL = output load capacitance, VCC = supply voltage.

Switching Specifications Input tr, tf = 6ns (Continued)

PARAMETER SYMBOLTEST

CONDITIONSVCC(V)

25oC -40oC TO 85oC -55oC TO 125oC

UNITSMIN TYP MAX MIN MAX MIN MAX

Test Circuits and Waveforms

FIGURE 1. HC TRANSITION TIMES AND PROPAGATIONDELAY TIMES, COMBINATION LOGIC

FIGURE 2. HCT TRANSITION TIMES AND PROPAGATIONDELAY TIMES, COMBINATION LOGIC

tPHL tPLH

tTHL tTLH

90%50%10%

50%10%INVERTING

OUTPUT

INPUT

GND

VCC

tr = 6ns tf = 6ns

90%

tPHL tPLH

tTHL tTLH

2.7V1.3V0.3V

1.3V10%INVERTING

OUTPUT

INPUT

GND

3V

tr = 6ns tf = 6ns

90%

CD54HC04, CD74HC04, CD54HTC04, CD74HCT04

Page 72: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

PACKAGING INFORMATION

Orderable Device Status (1) PackageType

PackageDrawing

Pins PackageQty

Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

CD54HC04F ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC

CD54HC04F3A ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC

CD54HCT04F ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC

CD54HCT04F3A ACTIVE CDIP J 14 1 None Call TI Level-NC-NC-NC

CD74HC04E ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU Level-NC-NC-NC

CD74HC04M ACTIVE SOIC D 14 50 Pb-Free(RoHS)

CU NIPDAU Level-2-260C-1 YEAR/Level-1-235C-UNLIM

CD74HC04M96 ACTIVE SOIC D 14 2500 Pb-Free(RoHS)

CU NIPDAU Level-2-260C-1 YEAR/Level-1-235C-UNLIM

CD74HC04MT ACTIVE SOIC D 14 250 Pb-Free(RoHS)

CU NIPDAU Level-2-260C-1 YEAR/Level-1-235C-UNLIM

CD74HCT04E ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU Level-NC-NC-NC

CD74HCT04M ACTIVE SOIC D 14 50 Pb-Free(RoHS)

CU NIPDAU Level-2-260C-1 YEAR/Level-1-235C-UNLIM

CD74HCT04M96 ACTIVE SOIC D 14 2500 Pb-Free(RoHS)

CU NIPDAU Level-2-260C-1 YEAR/Level-1-235C-UNLIM

CD74HCT04MT ACTIVE SOIC D 14 250 Pb-Free(RoHS)

CU NIPDAU Level-2-260C-1 YEAR/Level-1-235C-UNLIM

CD74HCT04PWR ACTIVE TSSOP PW 14 2000 Pb-Free(RoHS)

CU NIPDAU Level-1-250C-UNLIM

(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part ina new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additionalproduct content details.None: Not yet available Lead (Pb-Free).Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirementsfor all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be solderedat high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak soldertemperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it isprovided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to theaccuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to takereasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis onincoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limitedinformation may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TIto Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 28-Feb-2005

Addendum-Page 1

Page 73: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in
Page 74: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in
Page 75: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in
Page 76: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MECHANICAL DATA

MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE14 PINS SHOWN

0,65 M0,10

0,10

0,25

0,500,75

0,15 NOM

Gage Plane

28

9,80

9,60

24

7,90

7,70

2016

6,60

6,40

4040064/F 01/97

0,30

6,606,20

8

0,19

4,304,50

7

0,15

14

A

1

1,20 MAX

14

5,10

4,90

8

3,10

2,90

A MAX

A MIN

DIMPINS **

0,05

4,90

5,10

Seating Plane

0°–8°

NOTES: A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.D. Falls within JEDEC MO-153

Page 77: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,enhancements, improvements, and other changes to its products and services at any time and to discontinueany product or service without notice. Customers should obtain the latest relevant information before placingorders and should verify that such information is current and complete. All products are sold subject to TI’s termsand conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TIdeems necessary to support this warranty. Except where mandated by government requirements, testing of allparameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible fortheir products and applications using TI components. To minimize the risks associated with customer productsand applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or processin which TI products or services are used. Information published by TI regarding third-party products or servicesdoes not constitute a license from TI to use such products or services or a warranty or endorsement thereof.Use of such information may require a license from a third party under the patents or other intellectual propertyof the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is withoutalteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproductionof this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable forsuch altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for thatproduct or service voids all express and any implied warranties for the associated TI product or service andis an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and applicationsolutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

Page 78: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

©2001 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.1

Features• Output Current up to 1A • Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V • Thermal Overload Protection • Short Circuit Protection• Output Transistor Safe Operating Area Protection

DescriptionThe MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting,thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinkingis provided, they can deliver over 1A output current.Although designed primarily as fixed voltage regulators,these devices can be used with external components toobtain adjustable voltages and currents.

TO-220

D-PAK

1. Input 2. GND 3. Output

1

1

Internal Block Digram

MC78XX/LM78XX/MC78XXA3-Terminal 1A Positive Voltage Regulator

Page 79: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

2

Absolute Maximum Ratings

Electrical Characteristics (MC7805/LM7805)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI = 10V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Value UnitInput Voltage (for VO = 5V to 18V)(for VO = 24V)

VIVI

3540

VV

Thermal Resistance Junction-Cases (TO-220) RθJC 5 oC/WThermal Resistance Junction-Air (TO-220) RθJA 65 oC/WOperating Temperature Range TOPR 0 ~ +125 oCStorage Temperature Range TSTG -65 ~ +150 oC

Parameter Symbol ConditionsMC7805/LM7805

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 4.8 5.0 5.25.0mA ≤ Io ≤ 1.0A, PO ≤ 15WVI = 7V to 20V 4.75 5.0 5.25 V

Line Regulation (Note1) Regline TJ=+25 oCVO = 7V to 25V - 4.0 100

mVVI = 8V to 12V - 1.6 50

Load Regulation (Note1) Regload TJ=+25 oCIO = 5.0mA to1.5A - 9 100

mVIO =250mA to 750mA - 4 50

Quiescent Current IQ TJ =+25 oC - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.03 0.5

mAVI= 7V to 25V - 0.3 1.3

Output Voltage Drift ∆VO/∆T IO= 5mA - -0.8 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA=+25 oC - 42 - µV/Vo

Ripple Rejection RR f = 120HzVO = 8V to 18V 62 73 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 15 - mΩShort Circuit Current ISC VI = 35V, TA =+25 oC - 230 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 80: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

3

Electrical Characteristics (MC7806)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =11V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7806

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 5.75 6.0 6.255.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 8.0V to 21V 5.7 6.0 6.3 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 8V to 25V - 5 120

mVVI = 9V to 13V - 1.5 60

Load Regulation (Note1) Regload TJ =+25 oCIO =5mA to 1.5A - 9 120

mVIO =250mA to750A - 3 60

Quiescent Current IQ TJ =+25 oC - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1A - - 0.5

mAVI = 8V to 25V - - 1.3

Output Voltage Drift ∆VO/∆T IO = 5mA - -0.8 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 45 - µV/Vo

Ripple Rejection RR f = 120HzVI = 9V to 19V 59 75 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI= 35V, TA=+25 oC - 250 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 81: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

4

Electrical Characteristics (MC7808)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =14V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7808

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 7.7 8.0 8.35.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 10.5V to 23V 7.6 8.0 8.4 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 10.5V to 25V - 5.0 160

mVVI = 11.5V to 17V - 2.0 80

Load Regulation (Note1) Regload TJ =+25 oCIO = 5.0mA to 1.5A - 10 160

mVIO= 250mA to 750mA - 5.0 80

Quiescent Current IQ TJ =+25 oC - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.05 0.5

mAVI = 10.5A to 25V - 0.5 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -0.8 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 52 - µV/VoRipple Rejection RR f = 120Hz, VI= 11.5V to 21.5V 56 73 - dBDropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 230 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 82: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

5

Electrical Characteristics (MC7809)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =15V, CI= 0.33µF, CO= 0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7809

UnitMin. Typ. Max.

Output Voltage VOTJ =+25°C 8.65 9 9.355.0mA≤ IO ≤1.0A, PO ≤15WVI= 11.5V to 24V 8.6 9 9.4 V

Line Regulation (Note1) Regline TJ=+25°CVI = 11.5V to 25V - 6 180

mVVI = 12V to 17V - 2 90

Load Regulation (Note1) Regload TJ=+25°CIO = 5mA to 1.5A - 12 180

mVIO = 250mA to 750mA - 4 90

Quiescent Current IQ TJ=+25°C - 5.0 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 11.5V to 26V - - 1.3

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ °COutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 °C - 58 - µV/VoRipple Rejection RR f = 120Hz

VI = 13V to 23V 56 71 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25°C - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25°C - 250 - mAPeak Current IPK TJ= +25°C - 2.2 - A

Page 83: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

6

Electrical Characteristics (MC7810)(Refer to test circuit ,0°C< TJ < 125°C, IO = 500mA, VI =16V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7810

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 °C 9.6 10 10.45.0mA ≤ IO≤1.0A, PO ≤15WVI = 12.5V to 25V 9.5 10 10.5 V

Line Regulation (Note1) Regline TJ =+25°CVI = 12.5V to 25V - 10 200

mVVI = 13V to 25V - 3 100

Load Regulation (Note1) Regload TJ =+25°CIO = 5mA to 1.5A - 12 200

mVIO = 250mA to 750mA - 4 400

Quiescent Current IQ TJ =+25°C - 5.1 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 12.5V to 29V - - 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/°COutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 °C - 58 - µV/Vo

Ripple Rejection RR f = 120HzVI = 13V to 23V 56 71 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 °C - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI = 35V, TA=+25 °C - 250 - mAPeak Current IPK TJ =+25 °C - 2.2 - A

Page 84: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

7

Electrical Characteristics (MC7812)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =19V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7812

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 11.5 12 12.55.0mA ≤ IO≤1.0A, PO≤15WVI = 14.5V to 27V 11.4 12 12.6 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 14.5V to 30V - 10 240

mVVI = 16V to 22V - 3.0 120

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 11 240

mVIO = 250mA to 750mA - 5.0 120

Quiescent Current IQ TJ =+25 oC - 5.1 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.1 0.5

mAVI = 14.5V to 30V - 0.5 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 76 - µV/Vo

Ripple Rejection RR f = 120HzVI = 15V to 25V 55 71 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 18 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 230 - mAPeak Current IPK TJ = +25 oC - 2.2 - A

Page 85: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

8

Electrical Characteristics (MC7815)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =23V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7815

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 14.4 15 15.65.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 17.5V to 30V 14.25 15 15.75 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 17.5V to 30V - 11 300

mVVI = 20V to 26V - 3 150

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 12 300

mVIO = 250mA to 750mA - 4 150

Quiescent Current IQ TJ =+25 oC - 5.2 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 17.5V to 30V - - 1.0

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 90 - µV/Vo

Ripple Rejection RR f = 120HzVI = 18.5V to 28.5V 54 70 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 250 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 86: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

9

Electrical Characteristics (MC7818)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =27V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7818

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 17.3 18 18.75.0mA ≤ IO ≤1.0A, PO ≤15WVI = 21V to 33V 17.1 18 18.9 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 21V to 33V - 15 360

mVVI = 24V to 30V - 5 180

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 15 360

mVIO = 250mA to 750mA - 5.0 180

Quiescent Current IQ TJ =+25 oC - 5.2 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - - 0.5

mAVI = 21V to 33V - - 1

Output Voltage Drift ∆VO/∆T IO = 5mA - -1 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 110 - µV/Vo

Ripple Rejection RR f = 120HzVI = 22V to 32V 53 69 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 22 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 250 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 87: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

10

Electrical Characteristics (MC7824)(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =33V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol ConditionsMC7824

UnitMin. Typ. Max.

Output Voltage VOTJ =+25 oC 23 24 255.0mA ≤ IO ≤ 1.0A, PO ≤ 15WVI = 27V to 38V 22.8 24 25.25 V

Line Regulation (Note1) Regline TJ =+25 oCVI = 27V to 38V - 17 480

mVVI = 30V to 36V - 6 240

Load Regulation (Note1) Regload TJ =+25 oCIO = 5mA to 1.5A - 15 480

mVIO = 250mA to 750mA - 5.0 240

Quiescent Current IQ TJ =+25 oC - 5.2 8.0 mA

Quiescent Current Change ∆IQIO = 5mA to 1.0A - 0.1 0.5

mAVI = 27V to 38V - 0.5 1

Output Voltage Drift ∆VO/∆T IO = 5mA - -1.5 - mV/ oCOutput Noise Voltage VN f = 10Hz to 100KHz, TA =+25 oC - 60 - µV/Vo

Ripple Rejection RR f = 120HzVI = 28V to 38V 50 67 - dB

Dropout Voltage VDrop IO = 1A, TJ=+25 oC - 2 - VOutput Resistance rO f = 1KHz - 28 - mΩShort Circuit Current ISC VI = 35V, TA=+25 oC - 230 - mAPeak Current IPK TJ =+25 oC - 2.2 - A

Page 88: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

11

Electrical Characteristics (MC7805A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 10V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25 oC 4.9 5 5.1

VIO = 5mA to 1A, PO ≤ 15WVI = 7.5V to 20V 4.8 5 5.2

Line Regulation (Note1) Regline

VI = 7.5V to 25VIO = 500mA - 5 50

mVVI = 8V to 12V - 3 50

TJ =+25 oCVI= 7.3V to 20V - 5 50VI= 8V to 12V - 1.5 25

Load Regulation (Note1) Regload

TJ =+25 oCIO = 5mA to 1.5A - 9 100

mVIO = 5mA to 1A - 9 100IO = 250mA to 750mA - 4 50

Quiescent Current IQ TJ =+25 oC - 5.0 6 mA

Quiescent Current Change ∆IQ

IO = 5mA to 1A - - 0.5mAVI = 8 V to 25V, IO = 500mA - - 0.8

VI = 7.5V to 20V, TJ =+25 oC - - 0.8Output Voltage Drift ∆V/∆T Io = 5mA - -0.8 - mV/ oC

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 oC - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 8V to 18V - 68 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 250 - mAPeak Current IPK TJ= +25 oC - 2.2 - A

Page 89: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

12

Electrical Characteristics (MC7806A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =11V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25 oC 5.58 6 6.12

VIO = 5mA to 1A, PO ≤ 15WVI = 8.6V to 21V 5.76 6 6.24

Line Regulation (Note1) Regline

VI= 8.6V to 25VIO = 500mA - 5 60

mVVI= 9V to 13V - 3 60

TJ =+25 oCVI= 8.3V to 21V - 5 60VI= 9V to 13V - 1.5 30

Load Regulation (Note1) Regload

TJ =+25 oCIO = 5mA to 1.5A - 9 100

mVIO = 5mA to 1A - 4 100IO = 250mA to 750mA - 5.0 50

Quiescent Current IQ TJ =+25 oC - 4.3 6 mA

Quiescent Current Change ∆IQ

IO = 5mA to 1A - - 0.5mAVI = 9V to 25V, IO = 500mA - - 0.8

VI= 8.5V to 21V, TJ =+25 oC - - 0.8Output Voltage Drift ∆V/∆T IO = 5mA - -0.8 - mV/ oC

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 oC - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 9V to 19V - 65 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 250 - mAPeak Current IPK TJ=+25 oC - 2.2 - A

Page 90: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

13

Electrical Characteristics (MC7808A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 14V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25 oC 7.84 8 8.16

VIO = 5mA to 1A, PO ≤15WVI = 10.6V to 23V 7.7 8 8.3

Line Regulation (Note1) Regline

VI= 10.6V to 25VIO = 500mA - 6 80

mVVI= 11V to 17V - 3 80

TJ =+25 oCVI= 10.4V to 23V - 6 80VI= 11V to 17V - 2 40

Load Regulation (Note1) Regload

TJ =+25 oCIO = 5mA to 1.5A - 12 100

mVIO = 5mA to 1A - 12 100IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 oC - 5.0 6 mA

Quiescent Current Change ∆IQIO = 5mA to 1A - - 0.5

mAVI = 11V to 25V, IO = 500mA - - 0.8VI= 10.6V to 23V, TJ =+25 oC - - 0.8

Output Voltage Drift ∆V/∆T IO = 5mA - -0.8 - mV/ oC

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 oC - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 11.5V to 21.5V - 62 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 oC - 2 - VOutput Resistance rO f = 1KHz - 18 - mΩShort Circuit Current ISC VI= 35V, TA =+25 oC - 250 - mAPeak Current IPK TJ=+25 oC - 2.2 - A

Page 91: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

14

Electrical Characteristics (MC7809A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 15V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant, junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VOTJ =+25°C 8.82 9.0 9.18

VIO = 5mA to 1A, PO≤15WVI = 11.2V to 24V 8.65 9.0 9.35

Line Regulation (Note1) Regline

VI= 11.7V to 25VIO = 500mA - 6 90

mVVI= 12.5V to 19V - 4 45

TJ =+25°C VI= 11.5V to 24V - 6 90 VI= 12.5V to 19V - 2 45

Load Regulation (Note1) Regload

TJ =+25°CIO = 5mA to 1.0A - 12 100

mVIO = 5mA to 1.0A - 12 100IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 °C - 5.0 6.0 mA

Quiescent Current Change ∆IQ

VI = 11.7V to 25V, TJ=+25 °C - - 0.8mAVI = 12V to 25V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/ °C

Output Noise Voltage VNf = 10Hz to 100KHzTA =+25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mAVI = 12V to 22V - 62 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 °C - 2.0 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25°C - 2.2 - A

Page 92: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

15

Electrical Characteristics (MC7810A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 16V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25°C 9.8 10 10.2

V IO = 5mA to 1A, PO ≤ 15W VI =12.8V to 25V 9.6 10 10.4

Line Regulation (Note1) Regline

VI= 12.8V to 26V IO = 500mA - 8 100

mV VI= 13V to 20V - 4 50

TJ =+25 °C VI= 12.5V to 25V - 8 100 VI= 13V to 20V - 3 50

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 12 100

mV IO = 5mA to 1.0A - 12 100 IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 °C - 5.0 6.0 mA

Quiescent Current Change ∆IQ

VI = 13V to 26V, TJ=+25 °C - - 0.5mA VI = 12.8V to 25V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/ °C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 14V to 24V - 62 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25°C - 2.0 - VOutput Resistance rO f = 1KHz - 17 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 93: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

16

Electrical Characteristics (MC7812A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 19V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 11.75 12 12.25

V IO = 5mA to 1A, PO ≤15W VI = 14.8V to 27V 11.5 12 12.5

Line Regulation (Note1) Regline

VI= 14.8V to 30V IO = 500mA - 10 120

mV VI= 16V to 22V - 4 120

TJ =+25 °C VI= 14.5V to 27V - 10 120 VI= 16V to 22V - 3 60

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 12 100

mV IO = 5mA to 1.0A - 12 100 IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25°C - 5.1 6.0 mA

Quiescent Current Change ∆IQ

VI = 15V to 30V, TJ=+25 °C - 0.8mA VI = 14V to 27V, IO = 500mA - 0.8

IO = 5mA to 1.0A - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/°C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25°C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 14V to 24V - 60 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25°C - 2.0 - VOutput Resistance rO f = 1KHz - 18 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 94: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

17

Electrical Characteristics (MC7815A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I =23V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 14.7 15 15.3

V IO = 5mA to 1A, PO ≤15W VI = 17.7V to 30V 14.4 15 15.6

Line Regulation (Note1) Regline

VI= 17.9V to 30V IO = 500mA - 10 150

mV VI= 20V to 26V - 5 150

TJ =+25°C VI= 17.5V to 30V - 11 150 VI= 20V to 26V - 3 75

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 12 100

mV IO = 5mA to 1.0A - 12 100 IO = 250mA to 750mA - 5 50

Quiescent Current IQ TJ =+25 °C - 5.2 6.0 mA

Quiescent Current Change ∆IQ

VI = 17.5V to 30V, TJ =+25 °C - - 0.8mA VI = 17.5V to 30V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/°C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 18.5V to 28.5V - 58 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 °C - 2.0 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25°C - 2.2 - A

Page 95: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

18

Electrical Characteristics (MC7818A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 27V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 17.64 18 18.36

V IO = 5mA to 1A, PO ≤15W VI = 21V to 33V 17.3 18 18.7

Line Regulation (Note1) Regline

VI= 21V to 33V IO = 500mA - 15 180

mV VI= 21V to 33V - 5 180

TJ =+25 °C VI= 20.6V to 33V - 15 180 VI= 24V to 30V - 5 90

Load Regulation (Note1) Regload

TJ =+25°C IO = 5mA to 1.5A - 15 100

mV IO = 5mA to 1.0A - 15 100 IO = 250mA to 750mA - 7 50

Quiescent Current IQ TJ =+25 °C - 5.2 6.0 mA

Quiescent Current Change ∆IQ

VI = 21V to 33V, TJ=+25 °C - - 0.8mA VI = 21V to 33V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.0 - mV/ °C

Output Noise Voltage VN f = 10Hz to 100KHz TA =+25°C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 22V to 32V - 57 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25°C - 2.0 - VOutput Resistance rO f = 1KHz - 19 - mΩShort Circuit Current ISC VI= 35V, TA =+25°C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 96: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

19

Electrical Characteristics (MC7824A)(Refer to the test circuits. 0°C < TJ < 125°C, Io =1A, V I = 33V, C I=0.33µF, C O=0.1µF, unless otherwise specified)

Note:1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

into account separately. Pulse testing with low duty is used.

Parameter Symbol Conditions Min. Typ. Max. Unit

Output Voltage VO TJ =+25 °C 23.5 24 24.5

V IO = 5mA to 1A, PO ≤15W VI = 27.3V to 38V 23 24 25

Line Regulation (Note1) Regline

VI= 27V to 38V IO = 500mA - 18 240

mV VI= 21V to 33V - 6 240

TJ =+25 °C VI= 26.7V to 38V - 18 240 VI= 30V to 36V - 6 120

Load Regulation (Note1) Regload

TJ =+25 °C IO = 5mA to 1.5A - 15 100

mV IO = 5mA to 1.0A - 15 100 IO = 250mA to 750mA - 7 50

Quiescent Current IQ TJ =+25 °C - 5.2 6.0 mA

Quiescent Current Change ∆IQ

VI = 27.3V to 38V, TJ =+25 °C - - 0.8mA VI = 27.3V to 38V, IO = 500mA - - 0.8

IO = 5mA to 1.0A - - 0.5Output Voltage Drift ∆V/∆T IO = 5mA - -1.5 - mV/ °C

Output Noise Voltage VN f = 10Hz to 100KHz TA = 25 °C - 10 - µV/Vo

Ripple Rejection RR f = 120Hz, IO = 500mA VI = 28V to 38V - 54 - dB

Dropout Voltage VDrop IO = 1A, TJ =+25 °C - 2.0 - VOutput Resistance rO f = 1KHz - 20 - mΩShort Circuit Current ISC VI= 35V, TA =+25 °C - 250 - mAPeak Current IPK TJ=+25 °C - 2.2 - A

Page 97: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

20

Typical Perfomance Characteristics

Figure 1. Quiescent Current

Figure 3. Output Voltage

Figure 2. Peak Output Current

Figure 4. Quiescent Current

I

Page 98: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

21

Typical Applications

Figure 5. DC Parameters

Figure 6. Load Regulation

Figure 7. Ripple Rejection

Figure 8. Fixed Output Regulator

Input OutputMC78XX/LM78XX

Input OutputMC78XX/LM78XX

Input OutputMC78XX/LM78XX

Input OutputMC78XX/LM78XX

Page 99: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

22

Figure 9. Constant Current Regulator

Notes:(1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the

Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the inputripple voltage.

(2) CI is required if regulator is located an appreciable distance from power Supply filter.(3) CO improves stability and transient response.

VO = VXX(1+R2/R1)+IQR2Figure 10. Circuit for Increasing Output Voltage

IRI ≥5 IQVO = VXX(1+R2/R1)+IQR2

Figure 11. Adjustable Output Regulator (7 to 30V)

Input OutputMC78XX/LM78XX

CI

Co

Input OutputMC78XX/LM78XX

CICo

IRI 5IQ≥

Input OutputMC7805LM7805

LM741Co

CI

Page 100: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

23

Figure 12. High Current Voltage Regulator

Figure 13. High Output Current with Short Circuit Protection

Figure 14. Tracking Voltage Regulator

Input

OutputMC78XX/LM78XX

Input

OutputMC78XX/LM78XX

MC78XX/LM78XX

LM741

Page 101: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

24

Figure 15. Split Power Supply ( ±15V-1A)

Figure 16. Negative Output Voltage Circuit

Figure 17. Switching Regulator

MC7815

MC7915

Input

Output

MC78XX/LM78XX

Input Output

MC78XX/LM78XX

Page 102: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

25

Mechanical DimensionsPackage

4.50 ±0.209.90 ±0.20

1.52 ±0.10

0.80 ±0.102.40 ±0.20

10.00 ±0.20

1.27 ±0.10

ø3.60 ±0.10

(8.70)

2.80

±0.

1015

.90

±0.2

0

10.0

8 ±0

.30

18.9

5MA

X.

(1.7

0)

(3.7

0)(3

.00)

(1.4

6)

(1.0

0)

(45°)

9.20

±0.

2013

.08

±0.2

0

1.30

±0.

10

1.30+0.10–0.05

0.50+0.10–0.05

2.54TYP[2.54 ±0.20]

2.54TYP[2.54 ±0.20]

TO-220

Page 103: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

26

Mechancal Dimensions (Continued)

Package

6.60 ±0.20

2.30 ±0.10

0.50 ±0.10

5.34 ±0.30

0.70

±0.

20

0.60

±0.

200.

80 ±

0.20

9.50

±0.

30

6.10

±0.

20

2.70

±0.

209.

50 ±

0.30

6.10

±0.

20

2.70

±0.

20

MIN

0.55

0.76 ±0.10 0.50 ±0.10

1.02 ±0.20

2.30 ±0.20

6.60 ±0.20

0.76 ±0.10

(5.34)

(1.50)

(2XR0.25)

(5.04)

0.89

±0.

10

(0.1

0)(3

.05)

(1.0

0)

(0.9

0)

(0.7

0)

0.91

±0.

10

2.30TYP[2.30±0.20]

2.30TYP[2.30±0.20]

MAX0.96

(4.34)(0.50) (0.50)

D-PAK

Page 104: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

27

Ordering InformationProduct Number Output Voltage Tolerance Package Operating Temperature

LM7805CT ±4% TO-220 0 ~ + 125°C

Product Number Output Voltage Tolerance Package Operating TemperatureMC7805CT

±4%

TO-220

0 ~ + 125°C

MC7806CTMC7808CTMC7809CTMC7810CTMC7812CTMC7815CTMC7818CTMC7824CT

MC7805CDT

D-PAK

MC7806CDTMC7808CDTMC7809CDTMC7810CDTMC7812CDTMC7805ACT

±2% TO-220

MC7806ACTMC7808ACTMC7809ACTMC7810ACTMC7812ACTMC7815ACTMC7818ACTMC7824ACT

Page 105: POWER ELECTRONIC CIRCUITS FALL 2008, CRN: · PDF filePOWER ELECTRONIC CIRCUITS FALL 2008, CRN: 11473 ASST. PROF. DENİZ YILDIRIM PROJECT REPORT MINIPROJECT IV ... Triangular wave in

MC78XX/LM78XX/MC78XXA

7/2/01 0.0m 001Stock#DSxxxxxxxx

2001 Fairchild Semiconductor Corporation

LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.