1
EMAILS: JUNSHAN WANG: [email protected] AJAY JASRA: [email protected] MARIA DE IORIO: [email protected] In the following article we provide an exposition of exact computational methods to perform parameter inference from partially observed network models. In particular, we consider the duplication attachment (DA) model which has a likelihood function that typically cannot be evaluated in any reasonable computational time. We consider a number of importance sampling (IS) and sequential Monte Carlo (SMC) methods for approximating the likelihood of the network model for a fixed parameter value. It is well-known that for IS, the relative variance of the likelihood estimate typically grows at an exponential rate in the time parameter (here this is associated to the size of the network): we prove that, under assumptions, the SMC method will have relative variance which can grow only polynomially. In order to perform parameter estimation, we develop particle Markov chain Monte Carlo (PMCMC) algorithms to perform Bayesian inference. Such algorithms use the afore- mentioned SMC algorithms within the transition dynamics. The approaches are illustrated numerically. ABSTRACT OBJECTIVES NUMERICAL ILLUSTRATION (CONTINUED) DPF (N=100) DPF (N=1000) DPF (N=10000) Relative variance CPU time 2. Parameter estimation Auto-correlation plots Marginal MCMC PMCMC with SMC PMCMC with DPF Density plots IID sampling Marginal MCMC PMCMC with SMC PMCMC with DPF CONCLUSION ACKNOWLEGEMENTS 1 Department of Sta.s.cs & Applied Probability, Na.onal University of Singapore, Singapore, 117546, SG. 2 Department of Sta.s.cal Science, University College, London, WC1E 6BT, UK. JUNSHAN WANG 1 & AJAY JASRA 1 & MARIA DE IORIO 2 Computa.onal Methods for a Class of Network Models COMPUTATIONAL METHODS NUMERICAL ILLUSTRATIONS 1. Likelihood approximation comparison. IS (N=1000) IS (N=10000) ESS of IS (N=100,1000,10000) SMC (N=1000) SMC (N=10000) ESS of SMC (N=100,1000,10000) 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 0 10 20 30 Parameter p, N=100 ESS 0.05 0.25 0.45 0.65 0.85 0 20 40 60 80 Parameter p, N=1000 ESS 0.05 0.25 0.45 0.65 0.85 0 200 400 600 Parameter p, N=10000 ESS 1 2 3 4 5 6 7 8 9 0 50 100 Time, N=100 ESS&UN ESS UN 1 2 3 4 5 6 7 8 9 0 500 1000 Time, N=1000 ESS&UN 1 2 3 4 5 6 7 8 9 0 5000 10000 Time, N=10000 ESS&UN 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True Estimate Upper&Lower 0.05 0.25 0.45 0.65 0.85 1 0 1 2 3 4 5 6 7 x 10 11 Parameter p Likelihood True SMC IS DPF Upper of SMC Lower of SMC Upper of IS Lower of IS Upper of DPF Lower of DPF size IS STRA DPF 5 0.0003 0.0002 0.0000 6 0.0027 0.0030 0.0000 7 0.0043 0.0064 0.0000 8 0.0158 0.0142 0.0000 9 0.0149 0.0136 0.0010 10 0.0419 0.0128 0.0036 11 0.1512 0.0364 0.0084 12 0.5659 0.1115 0.0079 13 1.4224 0.3022 0.0657 0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency 0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency 0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency 0.2 0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100 120 140 160 Parameter p Frequency 0 2100 4200 6300 0.05 0 0.05 Lag k Autocorrelation 0 2100 4200 6300 0.05 0 0.05 Lag k Autocorrelation 0 2100 4200 6300 0.05 0 0.05 Lag k Autocorrelation CONTACT 1. Approximate the likelihood of the network model. Given a reducible graph G ! and a fixed parameter value θ, the recursive manner of the likelihood is: L ! G ! = 1 t ω ! (v, G ! ) L ! δ(G ! , v) !!(! ! ) with L ! G ! ! = 1, ω ! v, G ! = Ρ ! (G ! |δ(G ! , v)) is the transition probability and R(G ! ) is the collection of removable vertices of G ! . 2. Perform parameter estimation. We will follow a Bayesian procedure and place a prior probability distribution !(! ) on the parameter; we will then seek to sample from the associated posterior distribution !(! ) L ! G ! !(! ) using MCMC. 1. Likelihood approximation. Importance Sampling (IS) Advantage: run-time savings. Disadvantage: the relative variance is !(ϰ ! !! ! ) for some ϰ > 1. Sequential Monte Carlo (SMC) Advantage: the relative variance is no worse than !((! ! ! ) ! ). Disadvantage: evolve on a finite state-space. Discrete Particle Filter (DPF) Advantage: explore the whole state-space. Disadvantage: only excellent for small to medium size networks. 2. Parameter estimation. Particle Markov Chain Monte Carlo (PMCMC) Advantage: applicable when the exact likelihood is unknown. Disadvantage: scalability restriction due to both memory and computational demands. 1. The relative variance of the SMC method will only grow at a polynomial rate in the number removable nodes. Whilst the relative variance of the IS estimate of the likelihood typically grows at an exponential rate in the number of removable nodes. 2. For small to medium sized networks, the DPF and DPF inside MCMC seemed to perform better versus the SMC based versions. In general, however, the computational time was much higher and this value was quite high for each of our algorithms. 3. The two PMCMC algorithms perform similarly to the marginal MCMC. In addition, they produce solutions consistent with i.i.d. sampling, which means such methodology can be useful for network models. The second author was supported by an MOE Singapore grant. Special thanks to Prof. Ajay Jasra for his assistance and cooperation in accomplishing this paper. This paper is about to appear on the Journal of Computational Biology and able to be downloaded at http://www.stat.nus.edu.sg/~staja/smc_network2.pdf.

poster_Wang Junshan

Embed Size (px)

Citation preview

Page 1: poster_Wang Junshan

EMAILS: • JUNSHAN WANG: [email protected] • AJAY JASRA: [email protected] • MARIA DE IORIO: [email protected]

In the following article we provide an exposition of exact computational methods to

perform parameter inference from partially observed network models. In particular,

we consider the duplication attachment (DA) model which has a likelihood function

that typically cannot be evaluated in any reasonable computational time. We

consider a number of importance sampling (IS) and sequential Monte Carlo (SMC)

methods for approximating the likelihood of the network model for a fixed

parameter value. It is well-known that for IS, the relative variance of the likelihood

estimate typically grows at an exponential rate in the time parameter (here this is

associated to the size of the network): we prove that, under assumptions, the SMC

method will have relative variance which can grow only polynomially. In order to

perform parameter estimation, we develop particle Markov chain Monte Carlo

(PMCMC) algorithms to perform Bayesian inference. Such algorithms use the afore-

mentioned SMC algorithms within the transition dynamics. The approaches are

illustrated numerically.

!

ABSTRACT  

OBJECTIVES  

NUMERICAL  ILLUSTRATION  (CONTINUED)   DPF (N=100) DPF (N=1000) DPF (N=10000) Relative variance CPU time

2.  Parameter estimation •  Auto-correlation plots Marginal MCMC PMCMC with SMC PMCMC with DPF •  Density plots IID sampling Marginal MCMC PMCMC with SMC PMCMC with DPF

CONCLUSION  

ACKNOWLEGEMENTS  

1  Department  of  Sta.s.cs  &  Applied  Probability,  Na.onal  University  of  Singapore,  Singapore,  117546,  SG.  2  Department  of  Sta.s.cal  Science,  University  College,  London,  WC1E  6BT,  UK.  

   

JUNSHAN  WANG1  &  AJAY  JASRA1  &  MARIA  DE  IORIO2    

Computa.onal  Methods  for  a  Class  of  Network  Models    

COMPUTATIONAL  METHODS  

NUMERICAL  ILLUSTRATIONS  

1.  Likelihood approximation comparison. IS (N=1000) IS (N=10000) ESS of IS (N=100,1000,10000)

SMC (N=1000) SMC (N=10000) ESS of SMC (N=100,1000,10000)

0.05 0.25 0.45 0.65 0.85−1

01234567

x 10−11

Parameter p

Lik

elih

oo

d

True Estimate Upper&Lower

0.05 0.25 0.45 0.65 0.85−1

01234567

x 10−11

Parameter p

Lik

elih

oo

d

True Estimate Upper&Lower

0.05 0.25 0.45 0.65 0.850

102030

Parameter p, N=100

ES

S

0.05 0.25 0.45 0.65 0.850

20406080

Parameter p, N=1000

ES

S

0.05 0.25 0.45 0.65 0.850

200400600

Parameter p, N=10000

ES

S

1 2 3 4 5 6 7 8 90

50

100

Time, N=100

ES

S&

UN

ESS UN

1 2 3 4 5 6 7 8 90

500

1000

Time, N=1000

ES

S&

UN

1 2 3 4 5 6 7 8 90

5000

10000

Time, N=10000

ES

S&

UN

0.05 0.25 0.45 0.65 0.85−1

01234567

x 10−11

Parameter p

Lik

elih

oo

d

True Estimate Upper&Lower

0.05 0.25 0.45 0.65 0.85−1

01234567

x 10−11

Parameter p

Lik

elih

oo

d

True Estimate Upper&Lower

0.05 0.25 0.45 0.65 0.85−1

01234567

x 10−11

Parameter p

Lik

elih

oo

d

True Estimate Upper&Lower

0.05 0.25 0.45 0.65 0.85−1

01234567

x 10−11

Parameter p

Lik

elih

oo

d

True Estimate Upper&Lower

0.05 0.25 0.45 0.65 0.85−1

01234567

x 10−11

Parameter p

Lik

elih

ood

True Estimate Upper&Lower

0.05 0.25 0.45 0.65 0.85−1

0

1

2

3

4

5

6

7x 10

−11

Parameter p

Lik

elih

ood

True

SMC

IS

DPF

Upper of SMC

Lower of SMC

Upper of IS

Lower of IS

Upper of DPF

Lower of DPF

size IS STRA DPF

5 0.0003 0.0002 0.0000

6 0.0027 0.0030 0.0000

7 0.0043 0.0064 0.0000

8 0.0158 0.0142 0.0000

9 0.0149 0.0136 0.0010

10 0.0419 0.0128 0.0036

11 0.1512 0.0364 0.0084

12 0.5659 0.1115 0.0079

13 1.4224 0.3022 0.0657

−0.2 0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

140

160

Parameter p

Fre

quen

cy

−0.2 0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

140

160

Parameter p

Fre

qu

ency

−0.2 0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

140

160

Parameter p

Fre

quen

cy

−0.2 0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

140

160

Parameter p

Fre

quen

cy

0 2100 4200 6300−0.05

0

0.05

Lag k

Au

to−

corr

elat

ion

0 2100 4200 6300−0.05

0

0.05

Lag k

Au

to−

corr

elat

ion

0 2100 4200 6300−0.05

0

0.05

Lag k

Au

to−

corr

elat

ion

CONTACT  

1. Approximate the likelihood of the network model.

• Given a reducible graph G! and a fixed parameter value θ, the recursive manner

of the likelihood is:

L! G! = 1t ω!(v,G!)!L! δ(G!, v)!∈!(!!)

with L! G!! = 1, ω! v,G! = Ρ!(G!|δ(G!, v)) is the transition probability and

R(G!) is the collection of removable vertices of G!.

2. Perform parameter estimation.

• We will follow a Bayesian procedure and place a prior probability distribution !(!)

on the parameter; we will then seek to sample from the associated posterior

distribution !(!) ∝ L! G! !!(!) using MCMC.

1. Likelihood approximation.#• Importance Sampling (IS)!

Advantage: run-time savings.

Disadvantage: the relative variance is !(ϰ!!!!) for some ϰ > 1.

• Sequential Monte Carlo (SMC)! Advantage: the relative variance is no worse than !((! − !!)!).

Disadvantage: evolve on a finite state-space.

• Discrete Particle Filter (DPF)! Advantage: explore the whole state-space.

Disadvantage: only excellent for small to medium size networks.

2. Parameter estimation.#• Particle Markov Chain Monte Carlo (PMCMC)!

Advantage: applicable when the exact likelihood is unknown.

Disadvantage: scalability restriction due to both memory and computational demands.

!

!

1. The relative variance of the SMC method will only grow at a polynomial

rate in the number removable nodes. Whilst the relative variance of the

IS estimate of the likelihood typically grows at an exponential rate in the

number of removable nodes. 2. For small to medium sized networks, the DPF and DPF inside MCMC

seemed to perform better versus the SMC based versions. In general,

however, the computational time was much higher and this value was

quite high for each of our algorithms. 3. The two PMCMC algorithms perform similarly to the marginal MCMC. In

addition, they produce solutions consistent with i.i.d. sampling, which

means such methodology can be useful for network models. !

• The second author was supported by an MOE Singapore grant. • Special thanks to Prof. Ajay Jasra for his assistance and cooperation in

accomplishing this paper. • This paper is about to appear on the Journal of Computational Biology and

able to be downloaded at http://www.stat.nus.edu.sg/~staja/smc_network2.pdf.

!