42
Postav si sám Sluneční poskakovač Jednoduchý a rychlý návod na složení Slunečního poskakovače

Postav si sám Sluneční poskakovač

  • Upload
    raiden

  • View
    59

  • Download
    9

Embed Size (px)

DESCRIPTION

Postav si sám Sluneční poskakovač. Jednoduchý a rychlý návod na složení Slunečního poskakovače. Obsah. Informace o soutěži Napájení Sluncem Pravidla závodu Kontaktní údaje. Princip Slunečního poskakovače Výroba nosné konstrukce Postup vytvoření nosné konstrukce Spojení konstrukce - PowerPoint PPT Presentation

Citation preview

Page 1: Postav si sám Sluneční  poskakovač

Postav si sámSluneční poskakovač

Jednoduchý a rychlý návod na složení Slunečního poskakovače

Page 2: Postav si sám Sluneční  poskakovač

Obsah• Princip Slunečního poskakovače

• Výroba nosné konstrukce

• Postup vytvoření nosné konstrukce

• Spojení konstrukce

• Elektronika Slunečního poskakovače

• Popis funkčnosti řídící elektroniky

• Elektronické schéma

• Seznam použitých součástek

• Pravidla osazování DPS

• Postup při pájení

• Osazovací výkres řídící elektroniky

• Oživení řídící elektroniky

• Výroba solárního panelu

• Pohon slunečního poskakovače

• Stejnosměrný motor

• Využití energie

• PWM

• Informace o soutěži Napájení Sluncem

• Pravidla závodu

• Kontaktní údaje

Page 3: Postav si sám Sluneční  poskakovač

Princip Slunečního poskakovače

Princip slunečního vozítka je velmi jednoduchý. K vhodně propojeným (sériově, paralelně či sérioparalelně) solárním fotovoltaickým článkům stačí připojit elektromotorek.

Při dostatečné intenzitě osvětlení se kotva elektromotorku roztočí. Ale pro pohon vozítka je třeba poměrně vysoké intenzity osvětlení, jinak se s mechanickými odpory působícími proti pohybu nerozjede. Jelikož použité solární články nedokáží při nižší intenzitě světelného záření vyrobit dostatek energie pro trvalý chod motorku, je nutno energii nejdříve akumulovat (v kondenzátoru). Elektromotorek je spínán při nashromáždění dostatečného náboje. Vozítko se sice pohybuje „přískokem vpřed“, ale ožívá již při nižších intenzitách osvětlení a odtud je jeho název – Solární poskakovač.

Mimo dostatečné kapacity pro akumulaci energie je nutná i řídící elektronika přepínající tok energie pro nabíjení kondenzátoru z fotovoltaického solárního panelu a jeho vybíjení do elektormotorku. Kromě jednoduchého spínání (kdy je motor zapnut při určité úrovni napětí a opět vypnut při poklesu na hodnotu, kdy se už zastavuje) je možno použít pulzního napájení motorku.

Celé zapojení musí pracovat i při nízkém napájecím napětí a musí vykazovat minimální vlastní spotřebu. Následující zapojení je ukázkou poměrně jednoduché a názorné konstrukce.

Page 4: Postav si sám Sluneční  poskakovač

Mechanická konstrukce Slunečního poskakovače se skládá ze 3 ocelových strun, které jsou různě dlouhé.

Nejdelší struna slouží jako tělo poskakovače, nejmenší struna jako nosič kol a prostřední struna jako nárazník. Možností jak konstrukčně uspořádat vozítko je velmi mnoho. Sluneční poskakovač má tříkolé uspořádání se zadním hnaným kolem.

Výroba nosné konstrukce

Page 5: Postav si sám Sluneční  poskakovač

Postup vytvoření nosné konstrukce

Kola jsou identicky uložena na osách z ocelové struny. Vysoustružením obvodové drážky do jednoho ze tří kol vzniklo zadní hnané kolo, které je poháněno elektromotorkem pomocí řemínku či gumičky. Boční vymezení je realizováno skleněnými korálky, ale při zalepování vnějšího opěrného ložiska je nutné dávat pozor na zatékání lepidla do dírky kola (místo korálků je možné použít narážečky). Po sestavení a upevnění by se kola měla protáčet na osách zcela volně.

Přední kolo bez drážkyPCB

control

Kolo sdrážkou

Přední kolo bez drážky

Solární panel

motor

Page 6: Postav si sám Sluneční  poskakovač

Spojení konstrukce

Spojení konstrukce je možno provést několika způsoby:-Pájením-Bodovým svařováním

Page 7: Postav si sám Sluneční  poskakovač

Pájení konstrukce

Zapájení konstrukce je možné provést trafo pájkou, čí pájkou pro plošné pájení.

– Nejprve je nutno očistit místa, která mají být spájená,– následně na tyto místa je možno nanést kapalinu

usnadňující pájení,– pro usnadnění pevnosti konstrukce je ji možno zajistit

pomocí kouskem drátku, kterým je místo styku dvou strun obmotáno. Na tento spoje je následně nanesen rozehřátý cín,

– Cínem musí být pokryt celý spoj a po zatuhnutí by spoj měl být lesklý a hladký.

Pozor na spálení, ocelové struny přenášejí energii.Ukázka zde:

Page 8: Postav si sám Sluneční  poskakovač

Ukázka pájení

Page 9: Postav si sám Sluneční  poskakovač

Bodové svařování konstrukce

K bodovému svařování se používá bodová svářečka, teplotu svaru by měla být nastavena úměrně k použitému materiálu. Není-li tato teplota známa, je možno ji nastavit tak, že jednotlivé stupně jsou vyzkoušena na testovacím materiálu.

Svařování se provádí položením materiálu na dotykové plochy svářečky a stisknutím páky, aby se druhá pohybová hlavice spojila se spodní nosnou hlavicí.Ukázka zde:

Page 10: Postav si sám Sluneční  poskakovač

Bodové svařování

Page 11: Postav si sám Sluneční  poskakovač

Celé srdce elektroniky tvoří řídící obvod 74HC00, což je obvod složený ze 4 negovaných hradel NAND.

Pro správnou funkci Slunečního poskakovače je potřeba správně nastavit tyto parametry:• nastavení horní úrovně napětí kondenzátoru, kdy

se má kondenzátor ještě nabíjet,• nastavení vybíjecího proudu do motoru,• nastavení spodní úrovně napětí kondenzátoru (do

kdy se má kondenzátor ještě vybíjet),• pro správnou funkci robota je nutné nastavit

všechny tyto parametry.

Elektronika slunečního poskakovače

Page 12: Postav si sám Sluneční  poskakovač

Popis funkčnosti řídící elektroniky

Kondenzátor C3 akumuluje energii vyrobenou solárními články. O dostatečné úrovni napětí rozhoduje Schmittův klopný obvod tvořený hradly V1/1 a V1/2.

Úroveň překlopení se nastavuje trimrem R5 a hystereze (rozdíl mezi zapnutím a opětovným vypnutím) trimrem R6.

Výstupem klopného obvodu je buď přímo řízen koncový stupeň (propojen jumper JP1), nebo klíčován oscilátor (propojeny jumpery JP3 a JP2).

Střídu oscilátoru sestaveného z hradel V1/3 a V1/4 je možné nastavit trimrem R7, kmitočet pak vhodnou volbou kondenzátoru C2.

Koncový stupeň z tranzistorů Q1 a Q2 zajišťuje vlastní spínání motorku. Podle použitého motorku a koncového tranzistoru Q2 je vhodné upravit hodnotu R4, tak aby při minimální spotřebě na buzení Q2 bylo dosaženo jeho dobrého sepnutí.

Dioda D5 slouží jako ochrana tranzistoru Q2 proti napěťovým špičkám způsobených indukčností motorku.

Page 13: Postav si sám Sluneční  poskakovač

Elektronické schéma

Page 14: Postav si sám Sluneční  poskakovač

Seznam použitých součástek

Page 15: Postav si sám Sluneční  poskakovač

Diody jsou polarizované součástky, je třeba dbát na správné uložení na DPS dle schématu a osazovací předlohy. Dioda se skládá z anody a katody.Schematická značka Reálná součástka

Anoda musí být připojena na napájecí ( + ) část a Katoda musí být připojena na zem ( - ).

Dioda

Page 16: Postav si sám Sluneční  poskakovač

Odpor 1/2Odpory nemají polaritu avšak liší se svou hodnotou. Hodnot a je

snadno zjistitelná z barevného kódu, který má každý odpor na sobě nebo změřením hodnoty odporu přístrojem (ohmetrem, multimetrem).

Multimetr má několik rozsahů (napěťový, proudový, odporový, diodový test a jiné..). Pro měření odporu se používá odporový rozsah který je na přístroji zobrazen značkou ohmy (Ω). Tato část má několik velikostí, většinou se uvádí jednotky ohmů (xΩ), kilo ohmy (kΩ) a mega ohmy (MΩ).

Page 17: Postav si sám Sluneční  poskakovač

Odpor 2/2

Hodnota odporu je zjištěna tak, že vývody z multimetru položíme na vývody z odporu položeného na stole. Změna rozsahu se provádí dle potřeby dokud se na přístroji nezobrazí hodnota součástky.Schematická značka Reálná součástka

Page 18: Postav si sám Sluneční  poskakovač

Trimr

Trimry mají již na sobě napsanou hodnotou odporu od výrobce. Tyto součástky nejsou polarizovány.Schematická značka Reálná součástka

Page 19: Postav si sám Sluneční  poskakovač

Rozlišujeme dva typy tranzistorů:• Unipolární tranzistor• Bipolární tranzistor

Tranzistory

Page 20: Postav si sám Sluneční  poskakovač

Unipolární tranzistor je polovodičový prvek, jehož označení unipolární vyjadřuje, že přenos náboje je v tomto tranzistoru uskutečňován pouze majoritními nositeli (na rozdíl od bipolárního tranzistoru). Skládá se z polovodičů typu N a P.

Pro velký vstupní odpor se těmto tranzistorům také říká tranzistory řízené elektrickým polem (FET, Field-Effect Transistors). Velký vstupní odpor je velkou výhodou unipolárních tranzistorů oproti bipolárním, jejichž malý vstupní odpor se nepříznivě projevuje při zesilování signálů ze zdrojů s velkým vnitřním odporem. Vstupním obvodem unipolárního tranzistoru tak neteče proud a je, podobně jako elektronka, řízen napětím. Řídící elektrodou teče buď jen malý proud ekvivalentní proudu diody v závěrném směru nebo jí neteče prakticky žádný proud.

Tyto výhody umožňují unipolární tranzistor využívat v obvodech s vysokou hustotou integrace. Z principu funkce bipolárního tranzistoru totiž vzniká Jouleovo teplo, které není schopný miniaturní čip odvést.

Nevýhodou (danou právě vysokou vstupní impedancí) je možnost snadného poškození těchto tranzistorů statickým nábojem, zvláště při manipulaci před zapojením do obvodů.

Další výhodou tohoto tranzistoru je že v I. kvadrantu je VA charakteristika silně (né ideálně) lineární, proto jej často používáme v analogovém režimu(nejčastěji jako zesilovač)minimální zkreslení.

Unipolární tranzistor

Page 21: Postav si sám Sluneční  poskakovač

Existují dva druhy unipolárních tranzistorů:• JFET (unipolární tranzistor s přechodovým hradlem)• MOSFET (unipolární tranzistor s izolovaným hradlem)

Unipolární tranzistor

Page 22: Postav si sám Sluneční  poskakovač

Bipolární tranzistor je třívrstvá součástka složená z různě dotovaných oblastí. Uvažujme tranzistor typu NPN v zapojení se společným emitorem. Zvyšováním kladného napětí mezi bází a emitorem se ztenčuje oblast bez volných nosičů na rozhraní báze a emitoru. Okolo napětí 0,6 V až 0,7 V pro křemík (Si) a 0,2 V až 0,3 V pro germanium (Ge) začíná PN přechod báze-emitor vést elektrický proud. Tato část tranzistoru se chová jako klasická polovodičová dioda.

Emitor je na rozdíl od báze o několik řádů více dotován, má mnohem více volných nosičů náboje. V případě NPN tranzistoru elektronů, a ty zaplaví tenkou oblast báze.

Přivedením kladného napětí mezi kolektor a emitor, začnou být přebytečné elektrony odsávány z báze směrem ke kolektoru. Přechod Báze kolektor je polarizován v závěrném směru. Přebytek elektronů je následně posbírán ve vyprázdněné oblasti přechodu kolektor-báze.

Podmínky pro správnou funkci tranzistoru jsou:

• Tenká vrstva báze – Podstata tranzistorového jevu.

• Emitor dotovaný více než báze – Způsobuje převahu volných nosičů náboje z emitoru. Při otevření přechodu báze–emitor se tak zachovává délka báze a elektrony vstříknuté do báze z emitoru nestíhají rekombinovat.

• Báze dotovaná více než kolektor – Čím větší je rozdíl dotací, tím větší napětí může tranzistor spínat, ale má také větší sériový odpor.

V bipolárním tranzistoru vedou proud také díry. Ty se zákonitě pohybují opačným směrem, ale plní stejnou úlohu jako elektrony. Proto se tomuto typu tranzistoru říká „bipolární“.

Bipolární tranzistor

Page 23: Postav si sám Sluneční  poskakovač

Rozlišujeme dva typy bipolárních tranzistorů. Oby tyto tranzistory se skládají z kolektoru C(K), emitoru (E) a báze (B). NPN PNP

NPN a PNP tranzistory

Page 24: Postav si sám Sluneční  poskakovač

KondenzátorKondenzátory jsou rozděleny na dva základní druhy dle polarity na:

polarizované a nepolarizované. Oba tyto druhy mají na sobě napsány své hodnoty od výrobce.

U polarizovaného kondenzátoru je nutno dbát na správné připojení do obvodu. Většinou je na samotné součástce vyobrazena minusová strana. Pakliže tomu tak není, je možno se řídit podle vývodu dané součástky neboť kladná hodnota má vždy delší vývod.

Schematická značka Reálná součástkaNepolarizovaný Polarizovaný Nepolarizovaný Polarizovaný

Page 25: Postav si sám Sluneční  poskakovač

Pravidlo osazování je velmi jednoduché, osazuje se od nejmenších součástek po největší. Je-li v obvodu umístěn IO je vhodné začít od něj a následně postupovat od nejmenších součástek k největším, čili:

– Diody– Odpory– Patice– Trimry– Kondenzátory– Tranzistory– Piny– Propojky– Polarizovaný kondenzátor– Připojení – motorek, solární panel

Pravidla osazování DPS

Page 26: Postav si sám Sluneční  poskakovač

Postup při pájením mikropájkou

– Zapnutí pájku na 350°C– Houbička musí být vlhká, hrot pájky musí být vždy čistý a lesklý– Ploška hrotu pájky je přiložena na měděnou cestu a vývod součástky.

Cín je jemně vtlačen do zahřátého místa tak, aby vznikl kolem vývodu součástky a měděné cesty kužel.

– Celý proces trvá několik sekund, hrot pájky nesmí na měděné cestě zůstat příliš dlouho aby nedošlo ke zničení měděné plošky. Zároveň hrot pájky na spoji musí zůstat tak dlouho dokud se cín nerozlije na prohřáté místo.

Page 27: Postav si sám Sluneční  poskakovač

Osazovací výkres řídící elektroniky

Page 28: Postav si sám Sluneční  poskakovač

Osazená řídící DPS

Page 29: Postav si sám Sluneční  poskakovač

Oživení řídící elektroniky 1/2

K oživení modelu je nejlépe použít regulovatelný zdroj napětí s proudovým omezením. Místo solárního panelu připojíme zdroj napětí nastavený na cca 2.5V .

Pozor na správné připojení polarit!!!

Page 30: Postav si sám Sluneční  poskakovač

Oživení řídící elektroniky 2/2

Trimr R6 nastavíme na maximální odpor, propojíme zatím pouze jumper JP1. Při protáčení trimru R5 mezi krajními polohami musíme docílit zapínání a vypínání motorku. Proudový odběr při vypnutém motorku by neměl přesáhnout 1mA. Případnou chybu hledáme buď v zapojení hradel V1/1 aV1/2, nebo v koncovém stupni z tranzistorů Q1 a Q2. Rozpojením jumperu JP3 a propojením JP3 a JP2 zapojíme i oscilátor z hradel V1/3 a V1/4 a ověříme, že lze nastavit střídu pomocí R7, nejlépe sledováním napětí elektromotorku osciloskopem.

Po ověření funkčnosti přistoupíme k nastavování. Podle použitého motorku a solárních článků nastavíme vhodné úrovně spínání a rozpínání Schmittova klopného obvodu. Trimrem R5 nastavujeme úroveň spínacího napětí a trimrem R6 rozdíl napětí mezi zapnutím a vypnutím motorku. Nastavení R5 a R6 se navzájem ovlivňuje a je třeba chvíli experimentovat. Nastavením R7 je nutno nalézt vhodnou střídu oscilátoru z hradel V1/3 a V1/4, která je kompromisem mezi točivým momentem motorku a spotřebou pohonu. Pro pokusnou konstrukci se osvědčilo spínání při úrovni 3V, vypínání při 1V a střída asi 0.65. Přesné nastavení je vhodné upravit podle uvažovaných světelných podmínek.

Page 31: Postav si sám Sluneční  poskakovač

Články jsou připevněny (lepidlem) k příhradové konstrukci ze smrkových latěk. A mezi sebou jsou fotovoltaické články propojeny měděnými pásky nebo pocínovaným drátkem či páskem do série aby výsledné napětí bylo 4v a 0,35mA.

Elektrické propojení je ukončeno na vlepených konektorech FASTON, kterými se solární panel připojuje k desce plošného spoje s elektronikou dle správné polarity.

Výroba solárního panelu

Page 32: Postav si sám Sluneční  poskakovač

• Fotovoltaický článek je velkoplošná polovodičová součástka schopná přeměňovat světlo na elektrickou energii. Využívá při tom fotovoltaický jev. Na rozdíl od fotočlánků může dodávat elektrický proud.

• Sério-paralelním propojováním solárních článků mezi sebou můžeme dimenzovat výsledný proud a napětí.

Solární článek Varianty propojení solárních článků

Fotovoltaický článek

Page 33: Postav si sám Sluneční  poskakovač

Na volnou plochu desky plošného spoje nebo na drát ocelové konstrukce je elektromotorek připevněn pomocí vhodně natvarovaného plíšku, zapájením či svařením.

Vzdálenost motorku od poháněného zadního kola je volena s ohledem na délku převodového řemínku (gumičky). Je nutné, aby osa hnaného kola nebyla příliš namáhána tahem řemínku.

Pro fungování elektromotorku musí být správně sestavena deska plošného spoje, kterou lze uspořádat pomocí osazovacího výkresu.

Pohon Slunečního poskakovače

Umístění motoru

Page 34: Postav si sám Sluneční  poskakovač

Stejnosměrný motorStejnosměrný motor je točivý elektromotor, napájený stejnosměrným

proudem.Motor využívá principu minimální energie. Ve vnitřním magnetickém

poli se nachází smyčka, kterou protéká proud. Ten indukuje magnetické pole, které je vždy orientováno stejně jako vnější magnetické pole; toho je dosaženo díky komutátoru, který změní směr proudu smyčkou pokaždé, kdy dojde k překlopení. Energie této soustavy bude nižší, pokud budou magnetická pole orientována proti sobě. Proto působí na smyčku moment, který se ji snaží překlopit. Protože po překlopení se změní směr proudu protékajícího smyčkou, pokračuje toto pak dále.

Page 35: Postav si sám Sluneční  poskakovač

Princip stejnosměrného motoru

Page 36: Postav si sám Sluneční  poskakovač

Využití energie

Různé metody využití energie• PWM řízení

– Nutno nastavit pro konkrétní osvětlení

• Pulzní řízení v závislosti na napětí hlavního kondenzátoru

• Kombinace obou principů

Page 37: Postav si sám Sluneční  poskakovač

PWM

0

1

0 0,5 1 1,5 2 2,5 3

U = 0,6.Umax

Umax

T1 T2

max21

1 .UTT

TU

Princip spočívá v rychlém spínání a vypínaní napájení. Díky setrvačnosti motoru a dostatečně vysoké frekvenci spínání, rotor nestačí tyto změny sledovat. Motor se chová, jako kdyby byl napájen napětím o velikosti střední (průměrné) hodnoty, která je dána poměrem doby zapnutí a vypnutí

Page 38: Postav si sám Sluneční  poskakovač

Pulzní řízení v závislosti na napětí hlavního kondenzátoru

Page 39: Postav si sám Sluneční  poskakovač

Pulzní řízení v závislosti na napětí hlavního kondenzátoru s PWM

Page 40: Postav si sám Sluneční  poskakovač

Informace o soutěži

Program Napájení Sluncem již existuje osmým rokem a klade si za cíl seznámit studenty zábavnou formou s problematikou mechanické konstrukce, elektrotechniky, řízení, obnovitelných zdrojů a dalších.

Page 41: Postav si sám Sluneční  poskakovač

Pravidla závodu• Trať má délku cca 2m• Čas projetí vozidel je měřen pomocí PC• Nad dráhou jsou umístěny 4 halogenové

reflektory o výkonu 500W • Vozidlo musí odstartovat do 15-ti sekund po

položení na startovací oblast• Výška robotu nesmí přesáhnout 10cm

2m

Halogenlamp

Halogenlamp

Page 42: Postav si sám Sluneční  poskakovač

Kontaktní údajeVYSOKÁ ŠKOLA BÁŇSKÁ

TECHNICKÁ UNIVERZITA OSTRAVAFakulta elektrotechniky a informatiky

17. listopadu 15 708 33 Ostrava Poruba

Katedra měřicí a řídicí techniky

garant soutěže administrace soutěžeRealizace Slunečního

poskakovače, semináře

Bohumil Horák Jarmila Smějová Kristýna Friedrischková

tel.: +420 597 323 138 tel.: +420 597 323 124tel.: +420 597 329 339, +420

597 325 204

email: [email protected]: jarmila.smejova@

vsb.cz

email: kristyna.friedrischkova@

vsb.cz

Více informací na: http://napajenisluncem.vsb.cz