28
Home Print PDF SteelConstruction.info The free encyclopedia for UK steel construction information BCSA TATA Steel SCI Steel Knowledge Log in / create account Search Views Portal frames From Steelconstruction.info Portal frames are generally lowrise structures, comprising columns and horizontal or pitched rafters, connected by momentresisting connections. Resistance to lateral and vertical actions is provided by the rigidity of the connections and the bending stiffness of the members, which is increased by a suitable haunch or deepening of the rafter sections. This form of continuous frame structure is stable in its plane and provides a clear span that is unobstructed by bracing. Portal frames are very common, in fact 50% of constructional steel used in the UK is in portal frame construction. They are very efficient for enclosing large volumes, therefore they are often used for industrial, storage, retail and commercial applications as well as for agricultural purposes. This article describes the anatomy and various types of portal frame and key design considerations.

Portal Frames - Steelconstruction

Embed Size (px)

DESCRIPTION

information on steel portal frames. this was a printed page from the net. might be helpful in the design of steel frames, especially warehouses

Citation preview

  • HomePrintPDF

    SteelConstruction.infoThefreeencyclopediaforUKsteelconstructioninformation

    BCSATATASteelSCISteelKnowledge

    Login/createaccount

    Search

    Views

    PortalframesFromSteelconstruction.info

    Portalframesaregenerallylowrisestructures,comprisingcolumnsandhorizontalorpitchedrafters,connectedbymomentresistingconnections.Resistancetolateralandverticalactionsisprovidedbytherigidityoftheconnectionsandthebendingstiffnessofthemembers,whichisincreasedbyasuitablehaunchordeepeningoftheraftersections.Thisformofcontinuousframestructureisstableinitsplaneandprovidesaclearspanthatisunobstructedbybracing.Portalframesareverycommon,infact50%ofconstructionalsteelusedintheUKisinportalframeconstruction.Theyareveryefficientforenclosinglargevolumes,thereforetheyareoftenusedforindustrial,storage,retailandcommercialapplicationsaswellasforagriculturalpurposes.Thisarticledescribestheanatomyandvarioustypesofportalframeandkeydesignconsiderations.

  • Multibayportalframeduringconstruction

    Contents

    1Anatomyofatypicalportalframe2Typesofportalframes3Designconsiderations

    3.1Choiceofmaterialandsection3.2Framedimensions

    3.2.1Clearspanandheight3.2.2Mainframe3.2.3Haunchdimensions3.2.4Positionsofrestraints

    4Actions4.1Permanentactions

    4.1.1Serviceloads4.2Variableactions

    4.2.1Imposedroofloads4.2.2Snowloads4.2.3Windactions4.2.4Craneactions4.2.5Accidentalactions4.2.6Robustness4.2.7Fire

    4.3Combinationsofactions5FrameanalysisatULS

    5.1Plasticanalysis5.2Elasticanalysis

    6Inplaneframestability6.1Secondordereffects6.2Firstorderandsecondorderanalysis

  • Principalcomponentsofaportalframedbuilding

    6.3Calculationofcr6.4Sensitivitytoeffectsofthedeformedgeometry

    7Design7.1Crosssectionresistance7.2Memberstability7.3Rafterdesignandstability

    7.3.1Outofplanestability7.3.2Gravitycombinationofactions7.3.3Theupliftcondition7.3.4Inplanestability

    7.4Columndesignandstability7.4.1Outofplanestability7.4.2Inplanestability

    8Bracing8.1Verticalbracing

    8.1.1Portalisedbays8.1.2Bracingtorestrainlongitudinalloadsfromcranes

    8.2Planbracing8.2.1Restrainttoinnerflanges

    9Connections9.1Columnbases

    10References11Furtherreading12Resources13Seealso14Externallinks15CPD

    Anatomyofatypicalportalframe

    Aportalframebuildingcomprisesaseriesoftransverseframesbracedlongitudinally.Theprimarysteelworkconsistsofcolumnsandrafters,whichformportalframes,andbracing.Theendframe(gableframe)canbeeitheraportalframeorabracedarrangementofcolumnsandrafters.

    Thelightgaugesecondarysteelworkconsistsofsiderailsforwallsandpurlinsfortheroof.Thesecondarysteelworksupportsthebuildingenvelope,butalsoplaysanimportantroleinrestrainingtheprimarysteelwork.

    Theroofandwallcladdingseparatetheenclosedspacefromtheexternalenvironmentaswellasprovidingthermalandacousticinsulation.Thestructuralroleofthecladdingistotransferloadstosecondarysteelworkandalsotorestraintheflangeofthepurlinorrail

  • Crosssectionshowingaportalframeanditsrestraints

    towhichitisattached.

    Portalframedstructuresoverview

    Typesofportalframes

    Manydifferentformsofportalframesmaybeconstructed.Frametypesdescribedbelowgiveanoverviewoftypesofportalconstructionwithtypicalfeaturesillustrated.Thisinformationonlyprovidestypicaldetailsandisnotmeanttodictateanylimitsontheuseofanyparticularstructuralform.

    Pitchedroofsymmetricportalframe

    GenerallyfabricatedfromUKBsectionswithasubstantialeaveshaunchsection,whichmaybecutfromarolledsectionorfabricatedfromplate.25to35marethemostefficient

    PitchedroofsymmetricportalframeLancashireWasteDevelopment

  • spans.

    Portalframewithinternalmezzaninefloor

    Officeaccommodationisoftenprovidedwithinaportalframestructureusingapartialwidthmezzaninefloor.TheassessmentofframestabilitymustincludetheeffectofthemezzanineguidanceisgiveninSCIP292.

    PortalframewithinternalmezzaninefloorWatersMeetingHealthCentre,Bolton(ImagecourtesyBDStructuresLtd.andASDWestokLtd.)

    Craneportalframewithcolumnbrackets

    Whereatravellingcraneofrelativelylowcapacity(uptosay20tonnes)isrequired,bracketscanbefixedtothecolumnstosupportthecranerails.Useofatiememberorrigidcolumnbasesmaybenecessarytoreducetheeavesdeflection.Thespreadoftheframeatcraneraillevelmaybeofcriticalimportancetothefunctioningofthecranerequirementsshouldbeagreedwiththeclientandwiththecranemanufacturer.

    Tiedportalframe

    Inatiedportalframethehorizontalmovementofthe

  • eavesandthebendingmomentsinthecolumnsandraftersarereduced.Atiemaybeusefultolimitspreadinacranesupportingstructure.Thehighaxialforcesintroducedintheframewhenatieisusednecessitatetheuseofsecondordersoftwarewhenanalysingthisformofframe.

    Monopitchportalframe

    Amonopitchportalframeisusuallychosenforsmallspansorbecauseofitsproximitytootherbuildings.Itisasimplevariationofthepitchedroofportalframe,andtendstobeusedforsmallerbuildings(upto15mspan).

    Proppedportalframe

    Wherethespanofaportalframeislargeandthereisnorequirementtoprovideaclearspan,aproppedportalframecanbeusedtoreducetheraftersizeandalsothehorizontalshearatthefoundations.

    ProppedportalframeRebottlingPlant,Hemswell(ImagecourtesyofMetsecplc)

    Mansardportalframe

    Amansardportal

  • framemaybeusedwherealargeclearheightatmidspanisrequiredbuttheeavesheightofthebuildinghastobeminimised.

    Curvedrafterportalframe

    Portalframesmaybeconstructedusingcurvedrafters,mainlyforarchitecturalreasons.Becauseoftransportlimitationsrafterslongerthan20mmayrequiresplices,whichshouldbecarefullydetailedforarchitecturalreasons.Thecurvedmemberisoftenmodelledforanalysisasaseriesofstraightelements.GuidanceonthestabilityofcurvedraftersinportalframesisgiveninSCIP281.Alternatively,theraftercanbefabricatedasaseriesofstraightelements.Itwillbenecessarytoprovidepurlincleatsofvaryingheighttoachievethecurvedexternalprofile.

    Cellularbeamportalframe

    Raftersmaybefabricatedfromcellularbeamsforaestheticreasonsorwhenprovidinglongspans.Where

  • transportlimitationsimposerequirementforsplices,theyshouldbecarefullydetailed,topreservethearchitecturalfeatures.Thesectionsusedcannotdevelopplastichingesatacrosssection,soonlyelasticdesignisused.

    CellularbeamportalframeHayesgardencentre(ImagecourtesyofASDWestokLtd.)

    Designconsiderations

    Inthedesignandconstructionofanystructure,alargenumberofinterrelateddesignrequirementsshouldbeconsideredateachstageinthedesignprocess.Thefollowingdiscussionofthedesignprocessanditsconstituentpartsisintendedtogivethedesigneranunderstandingoftheinterrelationshipofthevariouselementsofthestructurewithitsfinalconstruction,sothatthedecisionsrequiredateachstagecanbemadewithanunderstandingoftheirimplications.

    Choiceofmaterialandsection

    SteelsectionsusedinportalframestructuresareusuallyspecifiedingradeS275orS355steel.

    Inplasticallydesignedportalframes,Class1plasticsectionsmustbeusedathingepositionsthatrotate,Class2compactsectionscanbeusedelsewhere.

    Framedimensions

    Acriticaldecisionattheconceptualdesignstageistheoverallheightandwidthoftheframe,togiveadequateclearinternaldimensionsandadequateclearancefortheinternalfunctionsofthebuilding.

    Clearspanandheight

    Theclearspanandheightrequiredbytheclientarekeytodeterminingthedimensionstobeusedinthedesign,andshouldbeestablishedearlyinthedesignprocess.Theclientrequirementislikelytobethecleardistancebetweentheflangesofthetwocolumnsthespanwillthereforebelarger,bythesectiondepth.Anyrequirementforbrickworkorblockworkaroundthecolumnsshouldbeestablishedasthismayaffectthedesignspan.

    Whereaclearinternalheightisspecified,thiswillusuallybemeasuredfromthefinishedfloorleveltotheundersideofthehaunchorsuspendedceilingifpresent.

    Mainframe

    Themain(portal)framesaregenerallyfabricatedfromUKBsectionswithasubstantialeaveshaunchsection,

  • Dimensionsusedforanalysisandclearinternaldimensions

    Typicalhaunchwithrestraints

    whichmaybecutfromarolledsectionorfabricatedfromplate.Atypicalframeischaracterisedby:

    Aspanbetween15and50mAnclearheight(fromthetopofthefloortotheundersideofthehaunch)between5and12mAroofpitchbetween5and10(6iscommonlyadopted)Aframespacingbetween6and8mHaunchesintheraftersattheeavesandapexAstiffnessratiobetweenthecolumnandraftersectionofapproximately1.5LightgaugepurlinsandsiderailsLightgaugediagonaltiesfromsomepurlinsandsiderailstorestraintheinsideflangeoftheframeatcertainlocations.

    Haunchdimensions

    Theuseofahaunchattheeavesreducestherequireddepthofrafterbyincreasingthemomentresistanceofthememberwheretheappliedmomentsarehighest.Thehaunchalsoaddsstiffnesstotheframe,reducingdeflections,andfacilitatesanefficientboltedmomentconnection.

    Theeaveshaunchistypicallycutfromthesamesizerolledsectionastherafter,oroneslightlylarger,andisweldedtotheundersideoftherafter.Thelengthoftheeaveshaunchisgenerally10%oftheframespan.Thehaunchlengthgenerallymeansthatthehoggingmomentattheendofthehaunchisapproximatelyequaltothelargestsaggingmomentclosetotheapex.Thedepthfromtherafteraxistotheundersideofthehaunchisapproximately2%ofthespan.

    Theapexhaunchmaybecutfromarolledsectionoftenfromthesamesizeastherafter,orfabricatedfromplate.Theapexhaunchis

    notusuallymodelledintheframeanalysisandisonlyusedtofacilitateaboltedconnection.

    Positionsofrestraints

  • Generalarrangementofrestraintstotheinsideflange

    Duringinitialdesigntheraftermembersarenormallyselectedaccordingtotheircrosssectionalresistancetobendingmomentandaxialforce.Inlaterdesignstagesstabilityagainstbucklingneedstobeverifiedandrestraintspositionedjudiciously.

    Thebucklingresistanceislikelytobemoresignificantintheselectionofacolumnsize,asthereisusuallylessfreedomtopositionrailstosuitthedesignrequirementsrailpositionmaybedictatedbydoorsorwindowsintheelevation.

    Ifintroducingintermediatelateralrestraintstothecolumnisnotpossible,thebucklingresistancewilldeterminetheinitialsectionsizeselection.Itisthereforeessentialtorecogniseatthisearlystageifthesiderailsmaybeusedtoproviderestrainttothecolumns.Onlycontinuoussiderailsareeffectiveinprovidingrestraint.Siderailsinterruptedby(forexample)rollershutterdoors,cannotbereliedonasprovidingadequaterestraint.

    Wherethecompressionflangeoftherafterorcolumnisnotrestrainedbypurlinsandsiderails,restraintcanbeprovidedatspecifiedlocationsbycolumnandrafterstays.

    Actions

    AdviceonactionscanbefoundinBSEN1991[1],andonthecombinationsofactionsinBSEN1990[2].ItisimportanttorefertotheUKNationalAnnexfortherelevantEurocodepartforthestructurestobeconstructedintheUK.

    Permanentactions

    Permanentactionsaretheselfweightofthestructure,secondarysteelworkandcladding.Wherepossible,unitweightsofmaterialsshouldbeobtainedfrommanufacturersdata.Whereinformationisnotavailable,thesemaybedeterminedfromthedatainBSEN199111[3].

    Serviceloads

    Serviceloadswillvarygreatlydependingontheuseofthebuilding.Inportalframesheavypointloadsmayoccurfromsuspendedwalkways,airhandlingunitsetc.Itisnecessarytoconsidercarefullywhereadditionalprovisionisneeded,asparticularitemsofplantmustbetreatedindividually.

    Dependingontheuseofthebuildingandwhethersprinklersarerequired,itisnormaltoassumeaserviceloadingof0.10.25kN/m2onplanoverthewholeroofarea.

    Variableactions

  • ImposedloadsonroofsRoofslope, qk(kN/m)

  • Gantrygirderscarryinganoverheadtravellingcrane

    Collapsemechanismofaportalwithaleantounderfire,boundaryconditionongridlines2and3.

    Driftedsnow,determinedusingAnnexBofBSEN199113[5]TheopeningofadominantopeningwhichwasassumedtobeshutatULS

    Eachprojectshouldbeindividuallyassessedwhetheranyotheraccidentalactionsarelikelytoactonthestructure.

    Robustness

    Robustnessrequirementsaredesignedtoensurethatanystructuralcollapseisnotdisproportionatetothecause.BSEN1990[2]setstherequirementtodesignandconstructrobustbuildingsinordertoavoiddisproportionatecollapseunderaccidentaldesignsituations.BSEN199117[9]givesdetailsofhowthisrequirementshouldbemet.

    FormanyportalframestructuresnospecialprovisionsareneededtosatisfyrobustnessrequirementssetbytheEurocode.

    FormoreinformationonrobustnessrefertoSCIP391.

    Fire

    IntheUnitedKingdom,structuralsteelinsinglestoreybuildingsdoesnotnormallyrequirefireresistance.Themostcommonsituationinwhichitisrequiredtofireprotectthestructuralsteelworkiswherepreventionoffirespreadtoadjacentbuildings,aboundarycondition,isrequired.Thereareasmallnumberofother,rare,instances,forexamplewhendemandedbyaninsuranceprovider,wherestructuralfireprotectionmayberequired.

    Whenaportalframeisclosetotheboundary,thereareseveralrequirementsaimedatstoppingfirespreadbykeepingtheboundaryintact:

    TheuseoffireresistantcladdingApplicationoffireprotectionofthesteeluptotheundersideofthehaunchTheprovisionofamomentresistingbase(asitisassumedthatinthefireconditionraftersgointocatenary)

    ComprehensiveadviceisavailableinSCIP313.

  • Bendingmomentdiagramresultingfromtheplasticanalysisofasymmetricalportalframeundersymmetricalloading

    Combinationsofactions

    BSEN1990[2]givesrulesforestablishingcombinationsofactions,withthevaluesofrelevantfactorsgivenintheUKNationalAnnex[10].BSEN1990[2]coversbothultimatelimitstate(ULS)andserviceabilitylimitstate(SLS),althoughfortheSLS,onwardreferenceismadetothematerialcodes(forexampleBSEN199311[11]forsteelwork)toidentifywhichexpressionshouldbeusedandwhatSLSlimitsshouldbeobserved.

    Allcombinationsofactionsthatcanoccurtogethershouldbeconsidered,howeverifcertainactionscannotbeappliedsimultaneously,theyshouldnotbecombined.

    GuidanceontheapplicationofEurocoderulesoncombinationsofactionscanbefoundinSCIP362and,specificallyforportalframes,inSCIP400.

    FrameanalysisatULS

    Attheultimatelimitstate(ULS),themethodsofframeanalysisfallbroadlyintotwotypes:elasticanalysisandplasticanalysis.

    Plasticanalysis

    Thetermplasticanalysisisusedtocoverbothrigidplasticandelasticplasticanalysis.Plasticanalysiscommonlyresultsinamoreeconomicalframebecauseitallowsrelativelylargeredistributionofbendingmomentsthroughouttheframe,duetoplastichingerotations.TheseplastichingerotationsoccuratsectionswherethebendingmomentreachestheplasticmomentorresistanceofthecrosssectionatloadsbelowthefullULSloading.

    Therotationsarenormallyconsideredtobelocalisedatplastichingesandallowthecapacityofunderutilisedpartsoftheframetobemobilised.ForthisreasonmemberswhereplastichingesmayoccurneedtobeClass1sections,whicharecapableofaccommodatingrotations.

    Thefigureshowstypicalpositionswhereplastichingesforminaportalframe.Twohingesleadtoacollapse,butintheillustratedexample,duetosymmetry,designersneedtoconsiderallpossiblehingelocations.

    Elasticanalysis

    Atypicalbendingmomentdiagramresultingfromanelasticanalysisofaframewithpinnedbasesisshownthefigurebelow.Inthiscase,themaximummoment(attheeaves)ishigherthanthatcalculatedfromaplasticanalysis.Boththecolumnandhaunchhavetobedesignedfortheselargebendingmoments.

    Wheredeflections(SLS)governdesign,theremaybenoadvantageinusingplasticanalysisfortheULS.Ifstiffersectionsareselectedinordertocontroldeflections,itisquitepossiblethatnoplastichingesformandthe

  • frameremainselasticatULS.

    Bendingmomentdiagramresultingfromtheelasticanalysisofasymmetricalportalframeundersymmetricalloading

    Portalframeanalysissoftware(FastrakmodelcourtesyofCSC)

    Inplaneframestability

    Whenanyframeisloaded,itdeflectsanditsshapeunderloadisdifferentfromtheundeformedshape.Thedeflectionhasanumberofeffects:

    Theverticalloadsareeccentrictothebases,whichleadstofurtherdeflectionTheapexdrops,reducingthearchingactionAppliedmomentscurvemembersAxialcompressionincurvedmemberscausesincreasedcurvature(whichmaybeperceivedasareducedstiffness.)

    Takentogether,theseeffectsmeanthataframeislessstable(nearercollapse)thanafirstorderanalysissuggests.Theobjectiveofassessingframestabilityistodetermineifthedifferenceissignificant.

    Secondordereffects

    Thegeometricaleffectsdescribedabovearesecondordereffectsandshouldnotbeconfusedwithnonlinearbehaviourofmaterials.Asshowninthefiguretherearetwocategoriesofsecondordereffects:

    Effectsofdisplacementsoftheintersectionsofmembers,usuallycalledPeffects.BSEN199311[11]describesthisastheeffectofdeformedgeometry.Effectsofdeflectionswithinthelengthofmembers,usuallycalledPeffects.

    Secondorderanalysisisthetermusedtodescribeanalysismethodsinwhichtheeffectsofincreasingdeflectionunderincreasingloadisconsideredexplicitlyinthesolution,sothattheresultsincludethePandPeffects.

  • PandPeffectsinaportalframe

    Firstorderandsecondorderanalysis

    Foreitherplasticanalysisofframes,orelasticanalysisofframes,thechoiceoffirstorderanalysisorsecondorderanalysisdependsontheinplaneflexibilityoftheframe,characterisedbythecalculationofthecrfactor.

    Calculationofcr

    Theeffectsofthedeformedgeometry(Peffects)areassessedinBSEN199311[11]bycalculatingthefactorcr,definedas:

    where:

    Fcristheelasticcriticalbucklingloadforglobalinstabilitymode,basedoninitialelasticstiffnesses

    FEdisthedesignloadonthestructure.

    crmaybefoundusingsoftwareorusinganapproximation(expression5.2fromBSEN199311[11])aslongastheframemeetscertaingeometriclimitsandtheaxialforceintherafterisnotsignificant.RulesaregivenintheEurocodetoidentifywhentheaxialforceissignificant.Whentheframefallsoutsidethespecifiedlimits,asisthecaseforverymanyorthodoxframes,thesimplifiedexpressioncannotbeused.Inthesecircumstances,analternativeexpressionmaybeusedtocalculateanapproximatevalueofcr,referredtoascr,est.FurtherdetailsaregiveninSCIP397.

    Sensitivitytoeffectsofthedeformedgeometry

    ThelimitationstotheuseoffirstorderanalysisaredefinedinBSEN199311[11],Section5.2.1(3)andtheUK

  • NationalAnnex[12]SectionNA.2.9as:

    Forelasticanalysis:cr10

    Forplasticanalysis:

    cr5forcombinationswithgravityloadingwithframeimperfections,

    providedthat:a)thespan,L,doesnotexceed5timesthemeanheightofthecolumns

    b)hrsatisfiesthecriterion:(hr/sa)2+(hr/sb)20.5inwhichsaandsbarethehorizontaldistancesfromtheapextothecolumns.Forasymmetricalframethisexpressionsimplifiestohr0.25L.

    cr10forcombinationswithgravityloadingwithframeimperfectionsforcladstructuresprovidedthatthestiffeningeffectsofmasonryinfillwallpanelsordiaphragmsofprofiledsteelsheetingarenottakenintoaccount

    Design

    Oncetheanalysishasbeencompleted,allowingforsecondordereffectsifnecessary,theframemembersmustbeverified.

    Boththecrosssectionalresistanceandthebucklingresistanceofthemembersmustbeverified.Inplanebucklingofmembers(usingexpression6.61ofBSEN199311[11])neednotbeverifiedastheglobalanalysisisconsideredtoaccountforallsignificantinplaneeffects.SCIP400identifiesthelikelycriticalzonesformemberverification.SCIP397containsnumericalexamplesofmemberverifications.

    Crosssectionresistance

    Memberbending,axialandshearresistancesmustbeverified.Iftheshearoraxialforceishigh,thebendingresistanceisreducedsocombinedshearforceandbendingandaxialforceandbendingresistancesneedtobeverified.Intypicalportalframesneithertheshearforcenortheaxialloadissufficientlyhightoreducethebendingresistance.Whentheportalframeformsthechordofthebracingsystem,theaxialloadintheraftermaybesignificant,andthiscombinationofactionsshouldbeverified.

    Althoughallcrosssectionsneedtobeverified,thelikelykeypointsareatthepositionsofmaximumbendingmoment:

    InthecolumnattheundersideofthehaunchIntherafteratthesharpendofthehaunchIntherafteratthemaximumsagginglocationadjacenttotheapex.

    Memberstability

    Thefigureshowsadiagrammaticrepresentationoftheissuesthatneedtobeaddressedwhenconsideringthe

  • Diagrammaticrepresentationofaportalframerafter

    stabilityofamemberwithinaportalframe,inthisexamplearafterbetweentheeavesandapex.Thefollowingpointsshouldbenoted:

    Purlinsprovideintermediatelateralrestrainttooneflange.DependingonthebendingmomentdiagramthismaybeeitherthetensionorcompressionflangeRestraintstotheinsideflangecanbeprovidedatpurlinpositions,producingatorsionalrestraintatthatlocation.

    Inplane,nomemberbucklingchecksarerequired,astheglobalanalysishasaccountedforallsignificantinplaneeffects.Theanalysishasaccountedforanysignificantsecondordereffects,andframeimperfectionsareusuallyaccountedforbyincludingtheequivalenthorizontalforceintheanalysis.Theeffectsofinplanememberimperfectionsaresmallenoughtobeignored.

    Becausetherearenominoraxismomentsinaportalframerafter,Expression6.62simplifiesto:

    Rafterdesignandstability

    Intheplaneoftheframeraftersaresubjecttohighbendingmoments,whichvaryfromamaximumhoggingmomentatthejunctionwiththecolumntoaminimumsaggingmomentclosetotheapex.Compressionisintroducedintheraftersduetoactionsappliedtotheframe.Theraftersarenotsubjecttoanyminoraxismoments.Optimumdesignofportalframeraftersisgenerallyachievedbyuseof:

    AcrosssectionwithahighratioofIyytoIzzthatcomplieswiththerequirementsofClass1or2under

  • Typicalpurlinandrafterstayarrangementforthegravitycombinationofactions

    combinedmajoraxisbendingandaxialcompression.Ahaunchthatextendsfromthecolumnforapproximately10%oftheframespan.Thiswillgenerallymeanthatthemaximumhoggingandsaggingmomentsintheplainrafterlengthareofsimilarmagnitude.

    Outofplanestability

    Purlinsattachedtothetopflangeoftherafterprovidestabilitytothememberinanumberofways:

    Directlateralrestraint,whentheouterflangeisincompressionIntermediatelateralrestrainttothetensionflangebetweentorsionalrestraints,whentheouterflangeisintensionTorsionalandlateralrestrainttotherafterwhenthepurlinisattachedtothetensionflangeandusedinconjunctionwithrafterstaystothecompressionflange.

    Initially,theoutofplanechecksarecompletedtoensurethattherestraintsarelocatedatappropriatepositionsandspacing.

    Gravitycombinationofactions

    Thefigureshowsatypicalmomentdistributionforthegravitycombinationofactions,typicalpurlinandrestraintpositionsaswellasstabilityzones,whicharereferredtofurther.

    Purlinsaregenerallyplacedatupto1.8mspacingbutthisspacingmayneedtobereducedinthehighmomentregionsneartheeaves.

    InZoneA,thebottomflangeofthehaunchisincompression.Thestabilitychecksarecomplicatedbythevariationingeometryalongthehaunch.ThebottomflangeispartiallyorwhollyincompressionoverthelengthofZoneB.InZoneC,thepurlinsprovidelateralrestrainttothetop(compression)flange.

    Theselectionoftheappropriatecheckdependsonthepresenceofaplastichinge,theshapeofthebendingmomentdiagramandthegeometryofthesection(threeflangesortwoflanges).Theobjectiveofthechecksistoprovidesufficientrestraintstoensuretherafterisstableoutofplane.

  • Typicalpurlinandrafterstayarrangementfortheupliftcondition

    GuidanceondetailsoftheoutofplanestabilityverificationcanbefoundinSCIP397.

    Theupliftcondition

    Intheupliftconditionthetopflangeofthehaunchwillbeincompressionandwillberestrainedbythepurlins.Themomentsandaxialforcesaresmallerthanthoseinthegravityloadcombination.Asthehaunchisstableinthegravitycombinationofactions,itwillcertainlybesointheupliftcondition,beingrestrainedatleastaswell,andunderreducedloads

    InZoneF,thepurlinswillnotrestrainthebottomflange,whichisincompression.

    Theraftermustbeverifiedbetweentorsionalrestraints.Atorsionalrestraintwillgenerallybeprovidedadjacenttotheapex.Theraftermaybestablebetween

    thispointandthevirtualrestraintatthepointofcontraflexure,asthemomentsaregenerallymodestintheupliftcombination.Iftherafterisnotstableoverthislength,additionaltorsionalrestraintsshouldbeintroduced,andeachlengthoftherafterverified.

    Inplanestability

    Noinplanechecksofraftersarerequired,asallsignificantinplaneeffectshavebeenaccountedforintheglobalanalysis.

    Columndesignandstability

    Themostheavilyloadedregionoftherafterisreinforcedbythehaunch.Bycontrast,thecolumnissubjecttoasimilarbendingmomentattheundersideofthehaunch,butwithoutanyadditionalstrengthening.

    Theoptimumdesignformostcolumnsisusuallyachievedbytheuseof:

    AcrosssectionwithahighratioofIyytoIzzthatcomplieswithClass1orClass2undercombinedmajoraxisbendingandaxialcompressionAplasticsectionmodulusthatisapproximately50%greaterthanthatoftherafter.

  • Typicalportalframecolumnwithplastichingeatundersideofhaunch

    Thecolumnsizewillgenerallybedeterminedatthepreliminarydesignstageonthebasisoftherequiredbendingandcompressionresistances.

    Whethertheframeisdesignedplasticallyorelastically,atorsionalrestraintshouldalwaysbeprovidedattheundersideofthehaunch.Thismaybefromasiderailpositionedatthatlevel,orbysomeothermeans.Additionaltorsionalrestraintsmayberequiredbetweentheundersideofthehaunchandthecolumnbasebecausethesiderailsareattachedtothe(outer)tensionflangeunlessrestraintsareprovidedtheinnercompressionflangeisunrestrained.Asiderailthatisnotcontinuous(forexample,interruptedbyindustrialdoors)cannotbereliedupontoprovideadequaterestraint.Thecolumnsectionmayneedtobeincreasedifintermediaterestraintstothecompressionflangecannotbeprovided.

    Thepresenceofaplastichingewilldependonloading,geometryandchoiceofcolumnandraftersections.Inasimilarwaytotherafter,outofplanestabilitymustbeverified.

    Outofplanestability

    Ifthereisaplastichingeattheundersideofthehaunch,thedistancetotheadjacenttorsionalrestraintmustbelessthanthelimitingdistanceLmasgivenbyBSEN199311[11]ClauseBB.3.1.1.

    Itmaybepossibletodemonstratethatatorsionalrestraintisnotrequiredatthesiderailimmediatelyadjacenttothehinge,butmaybeprovidedatsomegreaterdistance.Inthiscasetherewillbeintermediatelateralrestraintsbetweenthetorsionalrestraints

    Ifthestabilitybetweentorsionalrestraintscannotbeverified,itmaybenecessarytointroduceadditionaltorsionalrestraints.Ifitisnotpossibletoprovideadditionalintermediaterestraints,thesizeofthemembermustbeincreased.

    Inallcases,alateralrestraintmustbeprovidedwithinLmofaplastichinge.

    Whentheframeissubjecttouplift,thecolumnmomentwillreverse.Thebendingmomentswillgenerallybesignificantlysmallerthanthoseundergravityloadingcombinations,andthecolumnislikelytoremainelastic

    Inplanestability

    Noinplanechecksofcolumnsarerequired,asallsignificantinplaneeffectshavebeenaccountedforintheglobalanalysis.

    Bracing

  • Bracinginaportalframe(ImagecourtesyofWilliamHaleyEngineeringLtd.)

    Bracingisrequiredtoresistlongitudinalactionsduetowindandcranes,andtoproviderestrainttomembers.

    Itiscommontousehollowsectionsasbracingmembers.

    Bracingarrangementinatypicalportalframe

    Verticalbracing

  • Commonbracingsystems

    Theprimaryfunctionsofverticalbracinginthesidewallsoftheframeare:

    Totransmitthehorizontalloadstotheground.ThehorizontalforcesincludeforcesfromwindandcranesToprovidearigidframeworktowhichsiderailsandcladdingmaybeattachedsothattherailscaninturnprovidestabilitytothecolumnsToprovidetemporarystabilityduringerection.

    Thebracingmaybelocated:

    AtoneorbothendsofthebuildingWithinthelengthofthebuildingIneachportionbetweenexpansionjoints(wheretheseoccur).

    Wherethesidewallbracingisnotinthesamebayastheplanbracingintheroof,aneavesstrutisessentialtotransmittheforcesfromtheroofbracingintothewallbracing.Aneavesstrutisalsorequired:

  • Longitudinalstabilityusingportalisedbays

    Additionalbracingintheplaneofthecranegirder

    ToensurethetopsofthecolumnsareadequatelyrestrainedinpositionToassistinduringtheconstructionofthestructureTostabilisethetopsofthecolumnsifafireboundaryconditionexists

    Portalisedbays

    Whereitisdifficultorimpossibletobracetheframeverticallybyconventionalbracing,itisnecessarytointroducemomentresistingframesintheelevationsinoneormorebays.

    Inadditiontothegeneralserviceabilitylimitondeflectionofh/300,wherehistheheightoftheportalisedbayitissuggestedthat:

    Thebendingresistanceoftheportalisedbay(notthemainportalframe)ischeckedusinganelasticframeanalysisDeflectionundertheequivalenthorizontalforcesisrestrictedtoh/1000,wheretheequivalenthorizontalforcesarecalculatedbasedonthewholeoftheroofarea.

    Bracingtorestrainlongitudinalloadsfromcranes

    Ifacraneisdirectlysupportedbytheframe,thelongitudinalsurgeforcewillbeeccentrictothecolumnandwilltendtocausethecolumntotwist,unlessadditionalrestraintisprovided.Ahorizontaltrussatthelevelofthecranegirdertopflangeor,forlightercranes,ahorizontalmemberontheinsidefaceofthecolumnflangetiedintotheverticalbracingmaybeadequatetoprovidethenecessaryrestraint.

    Forlargehorizontalforces,additionalbracingshouldbeprovidedintheplaneofthecranegirder.

    Planbracing

    Planbracingislocatedintheplaneoftheroof.Theprimaryfunctionsoftheplanbracingare:

  • Planviewshowingbothendbaysbraced

    TotransmitwindforcesfromthegablepoststotheverticalbracinginthewallsTotransmitanyfrictionaldragforcesfromwindontherooftotheverticalbracingToprovidestabilityduringerectionToprovideastiffanchorageforthepurlinswhichareusedtorestraintherafters.

    Inordertotransmitthewindforcesefficiently,theplanbracingshouldconnecttothetopofthegableposts.

    Restrainttoinnerflanges

    Restrainttotheinnerflangesofraftersorcolumnsisoftenmostconvenientlyformedbydiagonalstrutsfromthepurlinsorsheetingrailstosmallplatesweldedtotheinnerflangeandweb.Pressedsteelflattiesarecommonlyused.Whererestraintisonlypossiblefromoneside,therestraintmustbeabletocarrycompression.Intheselocationsanglesectionsofminimumsize4040mmmustbeused.Thestayanditsconnectionsshouldbedesignedtoresistaforceequalto2.5%ofthemaximumforceinthecolumnorraftercompressionflangebetweenadjacentrestraints.

    Connections

    Themajorconnectionsinaportalframearetheeavesandapexconnections,whicharebothmomentresisting.Theeavesconnectioninparticularmustgenerallycarryaverylargebendingmoment.Boththeeavesandapexconnectionsarelikelytoexperiencereversalincertaincombinationsofactionsandthiscanbeanimportantdesigncase.Foreconomy,connectionsshouldbearrangedtominimiseanyrequirementforadditionalreinforcement(commonlycalledstiffeners).Thisisgenerallyachievedby:

    Makingthehaunchdeeper(increasingtheleverarms)Extendingtheeavesconnectionabovethetopflangeoftherafter(anadditionalboltrow)AddingboltrowsSelectingastrongercolumnsection.

    ThedesignofmomentresistingconnectionsiscoveredindetailinSCIP398.

    Typicalportalframeconnections

  • EavesconnectionApexconnection

    Haunchedconnections

    Columnbases

    Inthemajorityofcases,anominallypinnedbaseisprovided,becauseofthedifficultyandexpenseofprovidingarigidbase.Arigidbasewillinvolveamoreexpensivebasedetail,butmoresignificantly,thefoundationmustalsoresistthemoment,whichincreasescostssignificantlycomparedtoanominallypinnedbase.

    Ifacolumnbaseisnominallypinned,itisrecommendedthatthebasebemodelledasperfectlypinnedwhenusingelasticglobalanalysistocalculatethemomentsandforcesintheframeunderULSloading.

    Thestiffnessofthebasemaybeassumedtobeequaltothefollowingproportionofthecolumnstiffness:

    10%whenassessingframestability20%whencalculatingdeflectionsunderserviceabilityloads.

  • Typicalnominallypinnedbase

    References

    1. ^BSEN1991,Eurocode1:Actionsonstructures,BSI2. ^2.02.12.22.3BSEN1990:2002,EurocodeBasisofstructuraldesign,BSI3. ^BSEN199111:2002Eurocode1:Actionsonstructures.Generalactions.Densities,selfweight,

    imposedloadsforbuildings,BSI4. ^NAtoBSEN199111:2002,UKNationalAnnextoEurocode1.Actionsonstructures.General

    actions.Densities,selfweight,imposedloadsforbuildings,BSI5. ^5.05.1BSEN199113:2003Eurocode1.Actionsonstructures.Generalactions.Snowloads,BSI6. ^NAtoBSEN199113:2003,UKNationalAnnextoEurocode1.Actionsonstructures.General

    actions.Snowloads,BSI7. ^BSEN199114:2005+A1:2010Eurocode1.Actionsonstructures.Generalactions.Windactions,BSI8. ^NAtoBSEN199114:2005+A1:2010UKNationalAnnextoEurocode1.Actionsonstructures.

    Generalactions.Windactions,BSI9. ^BSEN199117:2006Eurocode1.Actionsonstructures.Generalactions.Accidentalactions,BSI

    10. ^NAtoBSEN1990:2002+A1:2005UKNationalAnnexforEurocode.Basisofstructuraldesign,BSI11. ^11.011.111.211.311.411.511.6BSEN199311:2005,Eurocode3:Designofsteelstructures.General

    rulesandrulesforbuildings,BSI12. ^NAtoBSEN199311:2005,UKNationalAnnextoEurocode3:Designofsteelstructures.General

    rulesandrulesforbuildings,BSI

    Furtherreading

  • SteelDesigners'Manual7thEdition.(http://shop.steelsci.com/products/231steeldesignersmanual7thedition.aspx)EditorsBDavison&GWOwens.TheSteelConstructionInstitute2012,Chapters3and4

    Resources

    SCIP292InplaneStabilityofPortalFramestoBS59501:2000,2001SCIP281DesignofCurvedSteel,2001SCIP391StructuralRobustnessofSteelFramedBuildings,SCI,2001SCIP362SteelBuildingDesign:ConciseEurocodes,2009SCIP394WindActionstoBSEN199114,SCI,2013SCIP397ElasticDesignofSinglespanSteelPortalFrameBuildingstoEurocode3,2013SCIP398JointsinSteelConstruction:MomentresistingJointstoEurocode3,2013SCIP313SingleStoreySteelFramedBuildingsinFireBoundaryConditions,2002SCIP400Interimreport:DesignofportalframestoEurocode3:AnoverviewforUKdesigners,2013

    Seealso

    ThermalperformanceIntroductiontoacousticsSteelworkspecificationSteelconstructionproductsDesigncodesandstandardsMemberdesignConceptdesignFabricationBracedframesAllowingfortheeffectsofdeformedframegeometryModellingandanalysisStructuralrobustnessStructuralfireresistancerequirementsSinglestoreybuildingsinfireboundaryconditionsMomentresistingconnectionsContinuousframesSinglestoreyindustrialbuildingsRetailbuildingsBuildingenvelopesDesignsoftwareandtools

    ExternallinksCSC(http://www.cscworld.com/Regional/UK.aspx)

    CPD

    Analysisanddesignofportalframes

    Retrievedfrom"http://www.steelconstruction.info/Portal_frames"Category:Design

    Sitemap

  • ContactCookies