31
RST Digital Controls RST Digital Controls POPCA3 POPCA3 Desy Desy Hamburg 20 Hamburg 20 to 23 to 23 rd rd may 2012 may 2012 POPCA3 POPCA3 Desy Desy Hamburg 20 Hamburg 20 to 23 to 23 may 2012 may 2012 Fulvio Boattini CERN TE\EPC

POPCA3_RSTControlTutorial

Embed Size (px)

DESCRIPTION

presentation about Digital control

Citation preview

RST Digital Controls RST Digital ControlsPOPCA3 POPCA3 Desy Desy Hamburg 20 Hamburg 20 to 23 to 23rd rdmay 2012 may 2012RST Digital Controls RST Digital ControlsPOPCA3 POPCA3 Desy Desy Hamburg 20 Hamburg 20 to 23 to 23rd rdmay 2012 may 2012Fulvio BoattiniCERN TE\EPCBibliography Digital Control Systems: Ioan D. Landau; Gianluca Zito Computer Controlled Systems. Theory and Design: Karl J . Astrom; BjornWittenmark Advanced PID Control: Karl J . Astrom; Tore Hagglund; Elementi di automatica:Paolo BolzernPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012 Digital Control Systems: Ioan D. Landau; Gianluca Zito Computer Controlled Systems. Theory and Design: Karl J . Astrom; BjornWittenmark Advanced PID Control: Karl J . Astrom; Tore Hagglund; Elementi di automatica:Paolo BolzernSUMMARYRST Digital control: structure and calculationRST equivalent for PID controllersRS for regulation, T for trackingSystems with delaysRST at work with POPSVout ControllerImag ControllerBfield ControllerConclusionsSUMMARYPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012SUMMARYRST Digital control: structure and calculationRST equivalent for PID controllersRS for regulation, T for trackingSystems with delaysRST at work with POPSVout ControllerImag ControllerBfield ControllerConclusionsRST Digital control: structure and calculationPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012RST Digital control: structure and calculationRST calculation: control structurennnnnnz t z t z t t Tz s z s z s s Sz r z r z r r R + + + = + + + = + + + =.........2211 02211 02211 0SRHfbSTHffy R r T u S== = A combination of FFW and FBK actionsthat can be tuned separatelyREGULATIONR B S AS Ady + =POPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012SRHfbSTHffy R r T u S== = ) ( ) ( ) ( ) ( ) (1 1 1 1 1 = + z P z R z B z S z AdesREGULATIONR B S AS Ady + =R B S AT Bry + = TRACKING) 1 () 1 () 1 () (1BPBz PTdesdes=RST calculation: Diophantine Equation3 . 0100 222 22= =+ + s sSample Ts=100us2 - 1 --2 -1z 0.963 + z 1.959 - 1z 0.001924 + z 0.001949-2 -1z 0.963 + z 1.959 - 1 =desPGetting the desired polynomialp x M z P z R z B z S z Ades= = + ) ( ) ( ) ( ) ( ) (1 1 1 1 1Calculating R and S: Diophantine EquationMatrix form:POPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012p x M z P z R z B z S z Ades= = + ) ( ) ( ) ( ) ( ) (1 1 1 1 1((((((((((

=nB nAnB nAb ab b a ab ab ab aM0 0 0 0 ... 00 00 10 00 ... ... 0 0 ... 0 12 21 12 21 1nB+d nAnA+nB+dMatrix form:j j 0 ,..., 0 , ,..., , 1,..., , , ,..., , 111 0 1nPTnR nSTp p pr r r s s x==RST calculation: fixed polynomialsController TF is:) () (11=z Sz RHfbj ) ( 1) (1 * 11 z S zz RR B S AS Ady + =Add integratorAdd 2 zeros more on S j j R B S AS z z z A + + + * 221111 1 POPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012R of part fixed ) (S of part fixed ) () ( ) ( ) ( ) ( ) ( ) ( ) (111 1 1 1 1 1 1=== + z Hrz Hsz P z R z Hr z B z S z Hs z AdesCalculating R and S: Diophantine EquationIntegrator active on step reference and step disturbance.Attenuation of a 300Hz disturbanceRST equivalent for PID controllersPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012RST equivalent for PID controllersRST equivalent of PID controller: continuous PID design3 . 0100 222 22= =+ += s s ABConsider a II order system:, , , , 20 0 020 02 2 2 2 2 32 21 .111 + + + = + + + + += + = = += ==||

\| ++ =s s s Ki s Kp s Kd sHsy PID Den HclPIDcHsy PIDHsy PIDHclPIDcTd Kp KdTiKpKiTd sTi sKp PIDPole Placement forcontinuous PIDPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012, , , , 20 0 020 02 2 2 2 2 32 21 .111 + + + = + + + + += + = = += ==||

\| ++ =s s s Ki s Kp s Kd sHsy PID Den HclPIDcHsy PIDHsy PIDHclPIDcTd Kp KdTiKpKiTd sTi sKp PIDRST equivalent of PID controller: continuous PID design3 . 0100 222 22= =+ += s s ABConsider a II order system:Td Kp KdTiKpKiNTdsTd sTi sKp PIDf ==|||

\| + ++ =111, , 20 0 023002200 02 21 2 1 += = + =KdKiKpPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012, , 20 0 023002200 02 21 2 1 += = + =KdKiKpRST equivalent of PID: s to z substitution) ( ) (1 1 = z R z T) 1 ( ) (1R z T =All control actions on errorProportional on error;Int+deriv on outputPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Choose R and S coeffs such that the 2 TFare equal) () () (12211 02211 011 = + + + += z PIDdz s z s sz r z r rz Sz R, , , , , 2 12 111112 1 02 1 011111 + + + += =((

+ + + + + =z s z s sz r z r rSRz Td Ts N Ts N Tdz Td NzzTiTsKp PIDd o = 0 forward Euler o = 1 backward Euler o = 0.5 TustinRST equivalent of PID: pole placement in zChoose desired poles8 . 0150 222 22= =+ + s sSample Ts=100us2 - 1 --2 -1z 0.963 + z 1.959 - 1z 0.001924 + z 0.001949-2 -1z 0.963 + z 1.959 - 1 =desPChoose fixed parts for R and SPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 20121 11= =Hr z HsChoose fixed parts for R and S) ( ) ( ) ( ) ( ) ( ) ( ) (1 1 * 1 1 1 * 1 1 = + z P z R z Hr z B z S z Hs z AdesCalculating R and S: Diophantine EquationRST equivalent of PID: pole placement in zThe 3 regulators behave verysimilarlyPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Increasing KdManual Tuning with Ki, Kd andKp is still possibleRS for regulation, T for TrackingPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012RS for regulation, T for TrackingRS for regulation, T for tracking, , 9 . 0 / 940 5 . 1 20 0 020 0 020 0= = = + + + = s r s s s PdesPaux Pdes R B S Hs AHs = + =*: Equation e Diophantinintegrator ] 1 1 [0.963z^-2) + 1.959z^-1 - (1 ) 0.6494z^-1 - (1 z^-1) - (1) 0.9322z^-2 + 1.929z^-1 - (1 ) 0.9875z^-1 + (1 z^-1 0.022626==S AR BHolAfter the D. Eq solved we get the following open loop TF:e=942r/s,=0.9e=1410r/s,=1Pure delaye=31400r/s,=0.004Closed Loop TF without T0.844z^-2) + 1.836z^-1 - (1 ) 0.8682z^-1 - (1 ) 0.8819z^-1 - (1) 0.9875z^-1 + (1 z^-1 0.0019487= + =R B S ABHclREGULATIONPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012e=1410r/s,=1e=1260r/s,=1) 1 ( BPaux PdesT= TRACKING1) 0.9875z^-1 + (1 z^-1 0.50314= + =R B S AB THclT polynomial compensate most ofthe system dynamicSystems with delaysPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Systems with delaysSystems with delaysII order system with pure delaymss rs seABs33 . 0/ 100 222 22== =+ += Sample Ts=1ms2 - 1 --5 -4z 0.6859 + z 1.368 - 1z 0.149 + z 0.1692Continuous timePID is muchslower than beforePOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Continuous timePID is muchslower than beforeSystems with delaysPredictive controlsPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Diophantine Equation) ( ) ( ) ( ) ( ) ( ) (1 1 1 101 1 = + z P z A z R z B z z S z Aauxd1 11= =Hr z HsChoose fixed parts for R and SRST at work with POPSPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012RST at work with POPSRST at work with POPSVout Controller Imag or Bfield controlPpk=60MWIpk=6kAVpk=10kVPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012RST at work with POPS: Vout ControlLfiltCfCdmpRdmpVinVoutIind ImagIcfIcdmpIII order output filter2 - 1 -2 - 1 --2 -11ms Ts 22 22z 0.3897 + z 1.142 - 1z 0.3897 + z 1.142 - 1z 0.1043 + z 0.143185 . 0150 22 = = =+ +=desd cPs s Decide desired dynamicsPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012HF zeroresponsible foroscillations2 - 1 -2 - 1 --2 -11ms Ts 22 22z 0.3897 + z 1.142 - 1z 0.3897 + z 1.142 - 1z 0.1043 + z 0.143185 . 0150 22 = = =+ +=desd cPs s ) ( ) ( ) ( ) ( ) ( ) (1 1 1 1 1 1 = + z P z P z R z B z S z Azeros desSolve Diophantine EquationCalculate T to eliminate all dynamics) 1 () () (11Bz Pz Tdes=R B S AT Bry + =Eliminate process well dumped zeros0.8053 - z =zerosPRST at work with POPS: Vout ControlPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Identification of output filter with a stepWell not very nice performance.There must be something odd !!!Put this back in the RSTcalculation sheetRST at work with POPS: Vout ControlIn reality the response is a bit less nice but still very good.POPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Ref following ------Dist rejection ------Performance to date (identified with initial stepresponse):Ref following: 130HzDisturbance rejection: 110HzRST at work with POPS: Imag ControlMagnet transfer function for Imag:O ==+ =32 . 096 . 01magmagmag mag magmagRH LR L s VIPS magnets deeply saturate:The RST controller was badly oscillating at the flattop because the gain of the system was changedPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 201226Gev without Sat compensationThe RST controller was badly oscillating at the flattop because the gain of the system was changedRST at work with POPS: Imag ControlPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 201226Gev with Sat compensationRST at work with POPS: Bfield ControlMagnet transfer function for Bfield:5 . 232 . 096 . 01=O == + =magmagmagmagmagmagmagmagmagKRH LKLRK sVBTsampl=3ms.Ref following: 48HzDisturbance rejection: 27HzPOPCA3 POPCA3 Desy Desy Hamburg 20 to 23 Hamburg 20 to 23rd rdmay 2012 may 2012Error