12

POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

  • Upload
    others

  • View
    39

  • Download
    0

Embed Size (px)

Citation preview

Page 1: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes
Page 2: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

POLYNOMIAL RINGS AND AFFINE SPACES

by

MASAYOSHI NAGATA

Page 3: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

This page intentionally left blank

Page 4: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

Conference Boar d o f th e Mathematica l Science s

REGIONAL CONFERENCE SERIES IN MA THEMA TICS

supported b y th e

National Scienc e Foundatio n

Number 3 7

POLYNOMIAL RINGS AND AFFINE SPACE S

by

MASAYOSHI NAGAT A

Published fo r

Conference Boar d o f th e Mathematica l Science s

by th e

American Mathematica l Societ y

Providence, Rhod e Islan d

http://dx.doi.org/10.1090/cbms/037

Page 5: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

Expository Lecture s

from th e CBM S Regional Conferenc e

held a t Norther n Illinoi s Universit y

July 25-29 , 197 7

AMS (MOS) subjec t classification s (1970) . Primar y 14-02 ; Secondary 13-02 .

Library of Congres s Cataloging in Publication Data

Nagata, Masayoshi , 1927— Polynomial ring s and affln e spaces .

(Regional conferenc e serie s in mathematics ; no. 37 ) "Expository lecture s fro m th e CBM S Regional Conferenc e hel d a t Norther n

Illinois University , Jul y 25-29 , 1977. " Includes bibliographica l references . 1. Polynomia l rings—Addresses , essays, lectures. 2 . Geometry , Affine —

Addresses, essays, lectures. I. Title . II . Series . QA1.R33 no . 37 [QA251.3 ] 510'.8 s [512'.4 ] 78-826 4 ISBN 0-8218-1687- X

AMS On Demand ISBN 0-8218-3882- 2

Copyright © 197 8 b y th e America n Mathematica l Societ y

Printed i n th e Unite d State s o f Americ a

All rights reserved except those granted to the United States Government

This boo k ma y no t b e reproduce d i n an y for m withou t permissio n o f th e publishers .

Page 6: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

CONTENTS

Introduction 1

1. Elementar y propertie s o f polynomia l ring s 2

2. Affin e space s and projective space s 5

3. Rule d surface s an d rationa l surface s 1 1

4. Automorphis m group s o f polynomia l ring s 1 5

5. Cremon a group s 1 7

6. Grou p action s o n affin e ring s 2 1

7. Complet e reducibilit y o f rationa l representation s 2 3

8. Ring s o f invariant s 2 5

9. Som e remark s o n orbit s 3 0

References 3 2

Page 7: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

This page intentionally left blank

Page 8: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

POLYNOMIAL RING S AN D AFFIN E SPACE S 31

Thus if G is geometrically reductive , then RG define s a n affin e variet y whic h param -eterizes closed orbits , o r equivalently , th e equivalenc e classe s under ~ . But , in general , im-portant par t o f orbit s ar e usually orbit s o f bigges t dimension . I n tha t respect , Theore m 9. 4 below may have som e interest :

THEOREM 9.4 . Under the circumstances as above, assume furthermore that V is non-

singular. Then for each point p of V, (Rp)G is a ring of quotients of a finitely generated

ring over K.

PROOF. W e admit th e fac t tha t i f D i s a divisoria l close d subse t o f a nonsingular

affine variet y V, then V - D i s an affin e variet y (see , for instance , Nagata [10]) . I f (R p)G =

(RG) ̂ n><7 > then th e assertio n i s obvious. Assum e th e othe r case . The n ther e i s a G-in-

variant rationa l functio n / i n R whic h i s not i n (RG)m nR G- Le t D b e th e pol e o f / an d

we reduce V to V - D. Thi s may b e repeated , but , sinc e F(p) contain s onl y on e close d

orbit an d sinc e dim F(p) i s finite , th e reductio n terminate s a t a finite step . Thu s we obtai n

the conclusion . Q . E. D.

When we observ e a rational actio n o f a n algebrai c grou p G on a n affine , o r projective,

or more generally , abstrac t variet y o r scheme , we ofte n pa y attentio n t o som e "goo d part "

U. B y some reasons , an ope n se t U satisfying th e followin g conditio n (** ) ma y b e regarde d

as a kind o f good par t (cf . Mumfor d [9]) :

(**) {(p, op) \p G U, o E G} i s a closed subse t i n U x U.

Another remar k w e want t o giv e here i s that ther e i s an example i n cas e G is SL(3, K)

and V is the affin e spac e o f dimensio n 2 1 suc h tha t U satisfies (** ) bu t U is not ver y nice .

For th e detai l o f th e example , the reader s ar e advise d t o se e Nagata [16] .

In connectio n wit h thi s Theorem 9.4 , w e note her e tha t i f w e dro p th e conditio n tha t

V i s nonsingular an d assum e onl y tha t V is normal, then th e conclusio n become s false ; an

example wa s given b y Nagat a [16] .

http://dx.doi.org/10.1090/cbms/037/10

Page 9: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

REFERENCES

1. J . W. Alexander, On the factorization of Cremona plane transformations, Trans . Amer. Math. , Soc. 1 7 (1916), 295-300 .

2. G . Castelnuovo, Recerche generali sopra i systemi lineari di curve piani, Mem. Accad. Sci . Torino CI . Sci. Fis. Mat. Natur. ser . 2 , 42 (1892), 3-43 .

3. , La trasformazioni generatrici del gruppo Cremoniano nel piano, Att i Accad. Sci . Torino CI . Sci. Fis . Mat. Natur. 3 6 (1901) 861-874 .

4. W . Haboush, Reductive groups are geometrically reductive, Ann . o f Math . (2) 10 2 (1975), 67-83 .

5. H . P. Hudson, Cremona transformations, Cambridge Univ . Press, 1927 .

6. H . W. E. Jung, Zusammensetzung von Cremonatransformationen der Ebene aus

quadratischen Transformationen, Crelle J . 18 0 (1939), 97-109 .

7. , Uber ganze birationale Transformationen der Ebene, Crell e J . 18 4 (1942), 161-174.

8. W . van de r Kulk , On polynomial rings in two variables, Nieu w Arch. Wisk. (3) 1 (1953), 33-41 .

9. D . Mumford, Geometric invariant theory, Springer , Berlin , 1965 . 10. M . Nagata, A treatise on the \4th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto ,

A-Math. 30 (1956-57), 57-70 ; addition an d correction , ibid. , 197-200 .

11. , On the \4th problem of Hilbert, Amer. J . Math . 8 1 (1959) , 766-772 . 12. , On the \4th problem of Hilbert, Sugak u 12(1960) , 203-209. (Japanese)

13. , On rational surfaces. I, Mem. Coll. Sci. Univ. Kyoto, A-Math. 3 2 (1959 -

60), 351-370 . 14. , On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto, A-Math. 3 3 (1960 -

61), 271-293 . 15. > Complete reducibility of rational representations of a matric group, J .

Math. Kyoto Univ . 1 (1961-62), 87-99 . 16. , Note on orbit spaces, Osaka Math. J. 1 4 (1962), 21-31 . 17. , Invariants of a group in an affine ring, J. Math . Kyoto Univ . 3 (1963—64),

369-377. 18. , Lectures on the fourteenth problem of Hilbert, Tata Inst . F . R. , 1965 . 19. , On automorphisms group of k[x, y] , Lecture s Math. Kyoto Univ. , Kon-

okuniya, Tokyo, 1972 . 20. D . Rees, On a problem of Zariski, Illinois J . Math . 2 (1958), 145-149 . 21. B . L. van de r Waerden, Einfurung in die algebraische Geometrie, Springer , Berlin ,

1939.

32

http://dx.doi.org/10.1090/cbms/037/10

Page 10: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

POLYNOMIAL RING S AN D AFFIN E SPACE S 33

22. R . Weitzenbock, Uber die Invarianten von linear Gruppen, Acta Math . 5 8 (1932), 231-293.

23. H . Weyl, The classical groups, Princeton Univ . Press, Princeton, N . J., 1939 . 24. 0 . Zariski , Foundations of general theory ofbirational correspondences, Trans.

Amer. Math. Soc . 53 (1943), 490-542.

25. , Interpretations algebrico-geometriques du quatorzieme probleme de Hu-

bert, Bull . Sci. Math. 7 8 (1954), 155-168 .

26. , Introduction to the problem of minimal models in the theory of alge-

braic surfaces, Publ. Math. Soc. Japan 4 (1958).

http://dx.doi.org/10.1090/cbms/037/10

Page 11: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

Other Monographs in this Series

No. 1 . Irvin g Kaplansky: Algebraic and analytic aspects of operator algebras

2. Gilber t Baumslag : Lecture notes on nilpotent groups

3. Lawrenc e Markus : Lectures in differentiate dynamics

4. H . S. M. Coxeter: Twisted honeycombs

5. Georg e W. Whitehead: Recent advances in homotopy theory

6. Walte r Rudin : Lectures on the edge-ofthe-wedge theorem

7. Yoz o Matsushima: Holomorphic vector fields on compact Kahler manifolds

8. Pete r Hilton : Lectures in homological algebra

9. I . N. Herstein: Notes from a ring theory conference

10. Brank o Griinbaum : Arrangements and spreads

11. Irvin g Glicksberg : Recent results on function algebras

12. Barbar a L . Osofsky: Homological dimensions of modules

13. Michae l Rabin : Automata on infinite objects and Church's problem

14. Sigurdu r Helgason : Analysis on Lie groups and homogeneous spaces

15. R . G . Douglas: Banach algebra techniques in the theory of Toeplitz operators

16. Josep h L . Taylor: Measure algebras

17. Loui s Nirenberg: Lectures on linear partial differential equations

18. Avne r Friedman : Differential games

19. B& a Sz.-Nagy: Unitary dilations of Hilbert space operators and related topics

20. Hyma n Bass : Introduction to some methods of algebraic K-theory

21. Wilhel m Stoll : Holomorphic functions of finite order in several complex variables

22. O . T. O'Meara : Lectures on linear groups

23. Mar y Elle n Rudin : Lectures on set theoretic topology

24. Melvi n Hochster : Topics in the homological theory of modules over commutative rings

25. Kar l W. Gruenberg: Relation modules of finite groups

26. Irvin g Reiner : Class groups and Picard groups of group rings and orders

27. H . Blaine Lawson , Jr. : The quantitative theory of foliations

28. T . A . Chapman: Lectures on Hilbert cube manifolds

29. Ala n Weinstein : Lectures on symplectic manifolds

30. Aleksande r Pelczynski : Banach spaces of analytic functions and absolutely summing

operators

31. Ronal d R . Coifman an d Guid o Weiss: Transference methods in analysis

32. Wolfgan g M . Schmidt: Small fractional parts of polynomials 33. Georg e Glauberman : Factorizations in local subgroups of finite groups

34. Loui s Auslander : Lecture notes on nil-theta functions 35. Rufu s B o wen: On axiom A diffeomorphisms

36. Car l M. Pearcy: Some recent developments in operator theory 37. Masayosh i Nagata : Polynomial rings and affine spaces

http://dx.doi.org/10.1090/cbms/037/10

Page 12: POLYNOMIAL RINGS AND AFFINE SPACES by MASAYOSHI … · POLYNOMIAL RINGS AND AFFINE SPACES 31 Thus if G is geometrically reductive, then RG defines an affine variety which param- eterizes

http://dx.doi.org/10.1090/cbms/037/10