64
Polarimetry of the Sun, stars and exoplanets Svetlana Berdyugina Kiepenheuer Institute for Solar Physics, Freiburg, Germany

Polarimetry of the Sun, stars and exoplanets

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Polarimetry of the Sun, stars and exoplanets

Polarimetry of the Sun, stars and exoplanets

Svetlana Berdyugina

Kiepenheuer Institute for Solar Physics, Freiburg, Germany

Page 2: Polarimetry of the Sun, stars and exoplanets

Outline

• Polarimetry Magnetic fields

Zeeman, Paschen-Back, Hanle effects in atomic and molecular lines

Atmosphere and surface inhomogeneities Scattering by gas, liquid and solid particles, surface reflection, indirect imaging

• Sun Sunspots, quiet photosphere, Corona

• Stars Starspots, imaging of unresolved magnetic structures

• Exoplanets Atmospheres, clouds, biosignatures, surface imaging

Page 3: Polarimetry of the Sun, stars and exoplanets

Magnetic fields across the HRD

Ae-Be102 (103)G 1-10%?

T Tau 103

100%?

BpAp103-104G 5%

Solar 1-103 G 100%

reddwarfs 10-103 G 100%

WD106-109 G: 10% 1-106 G: ?%

RGB 1-103 G

AGB 10-3-10 G

WR ? G

O-B 102 G <30%

O B A F G K M Spectral class

Lum

inos

ity (

L )

106

104

102

1

102

104

40,000 20,000 10,000 7500 5500 4500 3000 (K)

NS109-1015G 100%?

Pre

-MS

MS

Pos

t-M

S

(Berdyugina 2009+)

Page 4: Polarimetry of the Sun, stars and exoplanets

Magnetic phenomena on the Sun

• Sunspots• Network• Flares• Prominences• Coronal loops• CME

Page 5: Polarimetry of the Sun, stars and exoplanets

Zeeman Effect

• Sunspots (1908)• Line splitting (broadening)

Stokes I <|B|>• Polarization

Stokes V <Bz>

Stokes QUV B Muller matrix, Polarized RT

• Atomic & Molecular diagnostics ZE & PBE

I/Ic

Q/I

U/I

V/I

(ZIMPOL, J. Stenflo)

Page 6: Polarimetry of the Sun, stars and exoplanets

Molecular Polarization• Full theory for arbitrary molecular electronic states

Zeeman and Paschen-Back effects Scattering & Hanle effect

• Peculiarities due to the PBE New diagnostics and higher sensitivity! Stokes profile asymmetries Net polarization across line profiles Wavelength shifts and polarization sign changes depending on B Weakening of main branch and strengthening of satellite and forbidden lines

(Berdyugina et al. 2000-2013)

Page 7: Polarimetry of the Sun, stars and exoplanets

• Active Sun: sunspot B~3-4 kG

Sunspots: Zeeman effect

• Magnetic field from Stokes IQUV

Hinode

GREGOR (Franz et al. 2014)

Page 8: Polarimetry of the Sun, stars and exoplanets

8

Sunspots: 3D structure

• Simultaneous inversion of atomic and molecular lines Fe I & OH at 1.56 um

Tem

pera

ture

, K2

00

0

40

00

6

00

01

00

0

20

00

30

00

Mag

. Fie

ld, G

Bottom of photosphere log 0.5= 0

Middle photosphere log 0.5=2

Mathew et al. (2003) Mathew et al. (2004)

Wilson depressionat 1.6=1

Page 9: Polarimetry of the Sun, stars and exoplanets

Quiet Sun Magnetic Field: Hanle effect• Network: 1kG, Internetwork: 200G,

Quiet Sun: 1-10G

Zeeman effectStokes V: 0.2%Bl <<100 G

Hanle effectStokes Q: 0.1%Bt ~ 8 G

Berdyugina & Fluri 2004, Kleint et al. 2010, 2011)

Fractal-likedistribution

Page 10: Polarimetry of the Sun, stars and exoplanets

Solar Corona

• In optical and X-ray • Magnetic Field Measurements [Fe XIII] Zeeman Stokes V -> BLOS

(Lin et al. 2004)

[Fe XIII] saturated Hanle -> angles (Bommier 2012, Tomczyk et al.)

[Fe XIII], [SiX] saturated Hanle + He I unsaturated Hanle -> vector B (Dima, Kuhn, Berdyugina 2016)

Page 11: Polarimetry of the Sun, stars and exoplanets

Sun as a star• Dec 2002 • Stokes V: 510–4 (0.05%)

• Inferred Bl : 0.8 G

Stokes V

comes mainly from spots!

(Demidov, priv. comm.)

4

B* B

phot

40% 1% 0.2 0.5 0.04%

TV V f C

T

Page 12: Polarimetry of the Sun, stars and exoplanets

Indirect Imaging of stars• Spatial resolution

Espadons:

~0.1Å

Cool stars:

~ 0.1Å

Hot stars:

~ (0.5-1)Å

Lack of spatial resolutionAssumption on multi-pole distribution

(Piskunov & Kochukhov 2002; Donati et al. 2006)

(Semel 1989, Donati et al. 1997)

• Zeeman-Doppler Imaging (ZDI)

*bin

loc instr

2 sin

( ) /

v iN

c

instr

loc *bin

2 sin~

5km/s

v iN

loc *bin

2 sin~

(25 50)km/s

v iN

Page 13: Polarimetry of the Sun, stars and exoplanets

T Tau stars with disks (CTTS)Lower mass CTTS: Dipole topology (Donati et al. 2008, LSD, MPE)

Higher mass CTTS: Complex topology (Hussain et al. 2009, LSD, MPE)

BP Tau

vsini = 9 km/smax(B)~2.5 kG

vsini = 35 km/smax(B)=400G

Underestimated

complexity and flux?

Page 14: Polarimetry of the Sun, stars and exoplanets

T Tau stars with disks (CTTS)

(Johns-Krull 2007)

Fields are not dipolarAverage flux Bf=2.5kG

Page 15: Polarimetry of the Sun, stars and exoplanets

Solar-type stars

(Petit et al. 2008)

Poloidal (P~20d) Toroidal (P~10d)

vsini = 1.2 km/smax(B)=10G

vsini = 4.3 km/smax(B)=10G

Page 16: Polarimetry of the Sun, stars and exoplanets

Solar-type stars• Magnetic cycle with reversal?

(Fares et al. 2009)

Boo June 2007 January 2008 June 2008 July 2008

vsini = 16 km/smax(B)=10G

Page 17: Polarimetry of the Sun, stars and exoplanets

M dwarfs

M4: axisymmetric poloidal (EV Lac, Morin et al. 2008 )

M1: toroidal +NAS-poloidal (OT Ser, Donati et al. 2008)

vsini = 6 km/smax(B)=400G

vsini = 4 km/smax(B)=2kG

Page 18: Polarimetry of the Sun, stars and exoplanets

M dwarfsJohns-Krull & Valenti (2000)

Average Bf ~ (2–4) kG

Page 19: Polarimetry of the Sun, stars and exoplanets

Stellar Coronae

• Unresolved X-ray observations M dwarfs are brightest X-ray

sources on the night sky

• Reconstructions from ZDI Only Brad is used for potential

field extrapolations Invisible pole is a random choice

of visible pole ZDI Heavily biased by assumptions

Chandra (Currie et al. 2009)

(Jardin et al.+)

Page 20: Polarimetry of the Sun, stars and exoplanets

ZDI with molecular lines• Increase spatial resolution with molecular lines

Atomic lines Molecular lines

Page 21: Polarimetry of the Sun, stars and exoplanets

Starspots: Atomic lines

Fe I Fe I Ti I Ti I Ti I

Page 22: Polarimetry of the Sun, stars and exoplanets

Starspots: Molecular lines

Page 23: Polarimetry of the Sun, stars and exoplanets

3D structure of starspots: T

60 km

130 km

210 km

3650 K3400 K3150 K2900 K2650 K2400 K

T

AU Mic

(Berdyugina 2011)

Page 24: Polarimetry of the Sun, stars and exoplanets

3D structure of starspots: B

longitudelatit

ude

heig

ht, k

m

60 km

130 km

210 km

longitudelatit

ude

heig

ht, k

m

+4000 G

+2000 G

02000 G

4000 G

Br

AU Mic

(Berdyugina 2011)

Page 25: Polarimetry of the Sun, stars and exoplanets

Starspots vs Sunspots• Temperature • Magnetic field strength

sunspot

starspots

starspots

sunspot

sunspot

starspots

Penumbral edgeUmbral dotsDark core

Penumbral edgeUmbral dots

(Berdyugina 2011)

Page 26: Polarimetry of the Sun, stars and exoplanets

• Detection of reflected light direct probe of planetary environment• Physics: scattering polarization

• Polarization is perpendicular to the scattering plane• Max. polarization at 90 scattering angle• Stellar light is unpolarized (or modulated with a different period)• Polarization varies as planet orbits the star

Polarimetry of Exoplanets

pola

rimet

er

Page 27: Polarimetry of the Sun, stars and exoplanets

i=98, =270, e=0

R = 1.2RJ

a = 0.03 AUP = 2.2 d

Page 28: Polarimetry of the Sun, stars and exoplanets

i=98, =270, e=0

R = 1.2RJ

a = 0.03 AUP = 2.2 d

Page 29: Polarimetry of the Sun, stars and exoplanets

i=98, =225, e=0

R = 1.2RJ

a = 0.03 AUP = 2.2 d

Page 30: Polarimetry of the Sun, stars and exoplanets

i=98, =180, e=0

R = 1.2RJ

a = 0.03 AUP = 2.2 d

Page 31: Polarimetry of the Sun, stars and exoplanets

i=135, =270, e=0

R = 1.2RJ

a = 0.03 AUP = 2.2 d

Page 32: Polarimetry of the Sun, stars and exoplanets

i=180, =270, e=0

R = 1.2RJ

a = 0.03 AUP = 2.2 d

Page 33: Polarimetry of the Sun, stars and exoplanets

i=130, =270, e=0.5, =270

R = 1.2RJ

a = 0.03 AUP = 2.2 d

Page 34: Polarimetry of the Sun, stars and exoplanets

Effects of Atmosphere Composition• Particles of 1m

• Molecules (1), tropospheric clouds (2), stratospheric haze (3)

Seager et al. (2000)

Stam et al. (2004)

Incidentlight

Page 35: Polarimetry of the Sun, stars and exoplanets

First Detection: HD189733b

• Transiting hot Jupiter mass 1.15 MJ

period 2.2 d semimajor axis 0.03 AU

• B band (440nm, DiPol, KVA60) (Berdyugina et al. 2008)

93 nightly measurements (3h) Errors ~510–5

• UBV (360,440,550nm, TurPol)(Berdyugina et al. 2011a)

35 nightly meas. (3-4h) 29 standard stars for

calibration: ~(1-2)10–5

Errors ~110–5

• Monte Carlo error analysis• Amplitude (9 1)x10–5

(Berdyugina et al. 2011a)

(Berdyugina et al. 2008)

B

UB

Page 36: Polarimetry of the Sun, stars and exoplanets

HD189733b: Orbit

• Two solutions:(Berdyugina et al. 2008)

Page 37: Polarimetry of the Sun, stars and exoplanets

Model with Condensates: HD189733b

• Polarimetry and transit data fit with one model

• Semi-empirical model Rayleigh/Mie scattering: H, H2,

He, CO, H2O, CH4, e–, MgSiO3

Absorption: H, H–, H2–, H2+,He, He–, metals

Haze: High-altitude condensate layer with 20-30nm particles

R=1/RJ(U)~1.190.24 Scat

R=1/RJ(B)~1.180.10 Scat (in agreement with Sing et al. 2011)

R=1/RJ(V)<0.750.20 Abs

R=1/RJ(RI)<0.43 Abs

(Berdyugina 2011, SPW6,arXiv:1011.0751)

Lucas et al. (2009)

Wiktorovicz (2009)

Berdyugina et al. (2008, 2011)

++ Pont et al. (2007), 550 nm

Page 38: Polarimetry of the Sun, stars and exoplanets

HD189733b: Blue Planet

Geometrical Albedo, Ag:

• Strong function of 0.60.3 at 370 nm

0.610.12 at 450 nm,

0.280.15 at 550 nm,

<0.2 at 600 nm

<0.1 at >800 nm

• Similar to that of Neptune blue: Rayleigh and Raman

scattering on H2

red: absorption by molecules

• Blue Planet

(Berdyugina et al. 2011)

Page 39: Polarimetry of the Sun, stars and exoplanets

HD189733b: Blue Planet

• Primary transit spectroscopy, HST (Sing et al. 2011): Raleigh scattering – opacity increases to the blue Additional opacity (absorption?) at 300-400nm

R(~1)Observations areinconsistentwith cloudlessatmosphere

Page 40: Polarimetry of the Sun, stars and exoplanets

HD189733b: Blue Planet

• Secondary eclipse spectroscopy, HST (Evans et al. 2013): Geometrical albedo: 0.400.12 @300-450nm, <0.1 @450-590nm

Page 41: Polarimetry of the Sun, stars and exoplanets

Polarized Signatures of Bio-Molecules• Photosynthesis is the interaction of life with stellar light

produces conspicuous biosignatures in polarized light (broadly used in botanic and agriculture for remote sensing of crops)

source of energy for nearly all life on Earth (captures 130 TW) very likely to emerge early and last long on another planet

Common photosynthetic bio-molecules (pigments) in plants, algae, bacteria: Chlorophyl (green) Carotenoids (yellow/orange) Anthocyanins (red/purple) Phycobilin (blue)

Page 42: Polarimetry of the Sun, stars and exoplanets

Lab Experiment

• Lab measurements: reflection spectra 400-1000 nm R~100-200 different angles full Stokes vector

• Samples: vegetation bacteria sand/rocks paper

sample iris

/4 LP

fiber

(Berdyugina et al. 2015, IJA)

Page 43: Polarimetry of the Sun, stars and exoplanets

Chlorophyl(Berdyugina et al. 2015, IJA)

Page 44: Polarimetry of the Sun, stars and exoplanets

Carotenoids(Berdyugina et al. 2015, IJA)

Page 45: Polarimetry of the Sun, stars and exoplanets

Anthocyanins(Berdyugina et al. 2015, IJA)

Page 46: Polarimetry of the Sun, stars and exoplanets

Cyanobacterium

Page 47: Polarimetry of the Sun, stars and exoplanets

Microbacterium

Page 48: Polarimetry of the Sun, stars and exoplanets

Sands

Page 49: Polarimetry of the Sun, stars and exoplanets

Green Planets

• Green leaf vs green sand

Page 50: Polarimetry of the Sun, stars and exoplanets

Earths with 100% Vegetation

• Bio-molecules are distinguished best in polarized light!

(Berdyugina et al. 2015, IJA)

Page 51: Polarimetry of the Sun, stars and exoplanets

Earths with 100% Sand & Rocks

• Sandy and Vegi Earths differ in polarized light (exc red?)

Page 52: Polarimetry of the Sun, stars and exoplanets

80% Vegetation + 20% Clouds

• Clouds gradually wash out flux signal need clear days!

clouds100%

Page 53: Polarimetry of the Sun, stars and exoplanets

80% Vegetation + 20% Ocean

• Black ocean with specular reflection preserves bio-signals

clear ocean 100%

Page 54: Polarimetry of the Sun, stars and exoplanets

Chirality?

• Circular polarization of PS microbes: <0.001 in the lab

• Useful for in-situ studies• Unsuitable for remote sensing

• Lab Measurements of bacteria(Sparks et al. 2009)

Page 55: Polarimetry of the Sun, stars and exoplanets

Exoplanet Surface Imaging (EPSI)

• NASA Earth Observations (NEO) database: Albedo maps

Exo-Earth Light Curve

(Berdyugina & Kuhn 2017)

Page 56: Polarimetry of the Sun, stars and exoplanets

Rotational modulation of planet brightness

Exo-Earth Light Curve Simulation

Page 57: Polarimetry of the Sun, stars and exoplanets

Exo-Earth Light Curve Simulation

Orbital modulation of the planet brightness

Page 58: Polarimetry of the Sun, stars and exoplanets

Exo-Earth Light Curve Simulation

Orbital modulation of the planet brightness

Page 59: Polarimetry of the Sun, stars and exoplanets

6x6 North upirot=60, iorb=30, orb=60 (Npix=1800)

Porb = 60Prot (Mdata=3000)

S/N=200

IQ=89%, SD=10%

Exo-Earth Light Curve Inversion

(Berdyugina & Kuhn 2017)

Page 60: Polarimetry of the Sun, stars and exoplanets

Exo-Earth Light Curve Inversion

6x6 South upirot=60, iorb=30, orb=60 (Npix=1800)

Porb = 60Prot (Mdata=3000)

S/N=200

IQ=89%, SD=15%

(Berdyugina & Kuhn 2017)

Page 61: Polarimetry of the Sun, stars and exoplanets

• Surface imaging of Proxima b & exo-Earths:

Resolved Surface Biosignatures

(Berdyugina & Kuhn 2017)

Page 62: Polarimetry of the Sun, stars and exoplanets

• Interferometric Telescope-Coronagraph (Polarimeter) array of 16 off-axis telescopes (5m-8m M1, 30-50cm M2) low scattered light, segment phasing creates movable 10-8 “dark

hole”

Exo-Life Finder (ELF)

SPIE 9145, 91451, 2014

Berdyugina & Kuhn, 2017;Kuhn et al. 2014, 2018; Moretto et al. 2016

Page 63: Polarimetry of the Sun, stars and exoplanets

Conclusions

Solar Polarimetry: Towards smallest magnetic structures -> 30km (DKIST) Vector magnetic fields through the entire atmosphere

Stellar Polarimetry: Tremendous progress in observations (ESPADONS, NARVAL,

HARPSpol, LRISp, PEPSI, SPIROU) Advanced data modeling (full PRT, molecular lines, ZDI) provides

magnetic field topologies From 1D (mean field) to 2D (ZDI) to 3D (starspots)

• Exoplanet Polarimetry: Provides direct probes of atmospheres and surfaces Indirect surface imaging of exoplanets is possible with large

telescopes

Page 64: Polarimetry of the Sun, stars and exoplanets

Thank you!