5
1 POGIL Measurement (short).docx Chemistry 430 POGIL : Measurement & Units Measurements, and subsequently calculations, allow the determination of some of the properties of a substance. E.g. Mass and density. Part 1: SI Base Units and Prefixes Units tell us what scale is being used for measurement. Some common units and prefixes that you will encounter frequently in this course are given below. Units Common Prefixes Dimensional Analysis One unit can be converted to another by using a conversion factor. Some helpful examples are shown below, with conversion factors in parenthesis: Convert 155g/cm 3 to kg/L (1 kg = 1000g and 1000 cm 3 = 1 L) Note that in each case, the correct choice is the one that allows the cancellation of the unwanted units. This method of converting between units is called the factorlabeling method or dimensional analysis. Base Quantity Name of Unit Symbol Mass Kilogram kg Length Meter m Time Second s Amount of Substance Mole mol Temperature Kelvin K Prefix Symbol Meaning Mega M 10 6 Kilo k 10 3 Centi c 10 -2 Milli m 10 -3 Micro μ 10 -6 Nano n 10 -9

POGIL - Measurement (Short)

Embed Size (px)

Citation preview

Page 1: POGIL - Measurement (Short)

1   POGIL  -­‐  Measurement  (short).docx  

 

Chemistry  430  POGIL  :  Measurement  &  Units  

Measurements,   and   subsequently   calculations,   allow   the   determination   of   some  of   the   properties   of   a   substance.   E.g.  Mass   and  density.  

Part  1:  SI  Base  Units  and  Prefixes  

Units tell us what scale is being used for measurement. Some common units and prefixes that you will encounter frequently in this course are given below.

Units Common Prefixes

 

 

 

 

 

 

Dimensional  Analysis  

One unit can be converted to another by using a conversion factor. Some helpful examples are shown below, with conversion factors in parenthesis:

Convert 155g/cm3 to kg/L (1 kg = 1000g and 1000 cm3 = 1 L)

 

Note  that  in  each  case,  the  correct  choice  is  the  one  that  allows  the  cancellation  of  the  unwanted  units.  This  method  of  converting  between  units  is  called  the  factor-­‐labeling  method  or  dimensional  analysis.  

Base Quantity Name of Unit Symbol

Mass Kilogram kg

Length Meter m

Time Second s

Amount of Substance Mole mol

Temperature Kelvin K

Prefix Symbol Meaning

Mega M 106

Kilo k 103

Centi c 10-2

Milli m 10-3

Micro µ 10-6

Nano n   10-9

Page 2: POGIL - Measurement (Short)

2   POGIL  -­‐  Measurement  (short).docx  

 

Conceptual  Task  1a:  

Use  dimensional  analysis  to  convert  between  each  unit.    Unit  conversions  are  shown  in  parenthesis.  

1. How  many  Joules  are  in  125  Calories?  (1  Calorie  =  4184  Joules)  

 

 

 

2. Gold  has  a  density  of  18.0  g/cm3.    What  is  the  density  of  Gold  in  kg/cm3?  

 

 

 

For  each  conversion  below,  first  predict  whether  the  answer  will  be  larger  or  smaller,  including  a  brief  justification.    Then,  solve  the  conversion  problem.  

a. Molybdenite  is  a  breakthrough  material  that  can  be  manufactured  as  thin  as  0.65  nm.    Represent  this  thickness  in  centimeters.  

My  answer  will  be  [larger]  [smaller]  than  0.65  because:  

 

Solution:  

 

 

 

b. Chemists  will  often  use  the  Average  Atomic  Mass,  found  on  the  Periodic  Table  of  the  Elements,  to  determine  the  number  of  atoms  of  a  particular  element  present   in  a  given  mass  of   that  element.    For  example,  Carbon  has  an  AAM  of  12.011  grams.    This  tells  a  chemist  that  it  takes  12.011  grams  of  Carbon  to  equal  6.02  x  1023  atoms  of  that  element.    Chemists  use  a  distinct  unit  to  represent  this  large  number  of  atoms,  the  mole.    1  mole  of  any  element  is  equal  to  6.02  x  1023  atoms  of  that  element.    Imagine  that  a  chemist  has  a  beaker  containing  24  grams  of  Carbon.    How  many  moles  of  Carbon  are  in  the  beaker?    

My  answer  will  be  [larger]  [smaller]  than  12.011  because:  

 

Solution:  

 

 

 

Page 3: POGIL - Measurement (Short)

3   POGIL  -­‐  Measurement  (short).docx  

 

3. Use  the  fictitious  conversion  factors  below  to  perform  the  requested  unit  conversions  using  dimensional  analysis:  1  sack  =  7  bips;    4  tolls  =  3  smacks;  12  tolls  =  1  lardo;    5  smacks  =  1  bip;    8  lardos  =  7  fleas  

a. Calculate  the  number  of  smacks  in  1.00  lardo.    

 

 

b. Calculate  the  number  of  lardos  in  1.00  bip.    

 

 

c. How  many  sacks  are  in  1.00  smack?    

 

 

 

4. Mr.  Cook  is  going  on  a  trip  to  the  Amazon  with  38  lucky  students.    Upon  arrival,  they  find  that  their  guides  have  abandoned  them,  leaving  them  for  dead.    To  survive,  Mr.  Cook  knows  that  he  and  each  of  his  students  need  at  least  1200  calories  a  day.    Having  a  vast  knowledge  of  bugs  (he  did  watch  the  Lion  King  before),  he  knows  that  on  average,  each  5g  bug  that  he  consumes  will  provide  7  calories  of  energy.    How  many  kilograms  of  bugs  must  Mr.  Cook  and  his  students  catch  daily  in  order  to  survive?

 

 

 

 

Part  2:  How  we  deal  with  Quantitative  Measurement  Scientific  Notation  Measurements  and  calculations   in  chemistry  often  require  the  use  of  very   large  or  very  small  numbers.   In  order  to  make  handling  them  easier  such  numbers  can  be  expressed  using  scientific  notation.  All  numbers  expressed   in  this  manner  are  represented  by  a  number  between  1  and  10  multiplied  by  a  power  of  10.  

 The  number  of  places  the  decimal  point  has  moved  determines  the  power  of  10.  If  the  decimal  point  has  moved  to  the  left  then  the  power  is  positive,  to  the  right,  negative.  Conceptual  Task  1b:  

5. Write  each  number  given  below  in  scientific  notation.    

a. 0.0025  meters      

b. 10000.00  cm3      

c. 0.00000000407  mL  

Page 4: POGIL - Measurement (Short)

4   POGIL  -­‐  Measurement  (short).docx  

 

   

6. Write  each  number  below  in  regular  notation.    

a. 1.6  x  10-­‐5      

b. 6.02  x  1023  atoms      

c. 6.5  x  10-­‐8m    

Significant  Figures  

 When  reading   the  scale  on  a  piece  of   laboratory  equipment  such  as  a  measuring  cylinder  or  a  burette,   there   is  always  a  degree  of  uncertainty  in  the  recorded  measurement.  The  reading  will  often  fall  between  two  divisions  on  the  scale  and  an  estimate  must  be  made  in  order  to  record  the  final  digit.  This  estimated  final  digit  is  said  to  be  uncertain  and  is  reflected  in  the  recording  of  the  numbers  by  using  +/-­‐.  All  those  digits  that  can  be  recorded  with  certainty  are  said  to  be  certain.  The  certain  and  the  uncertain  numbers  taken  together  are  called  significant  figures.  

 Determining  the  number  of  significant  figures  present  in  a  number  

 A. Any  non-­‐zero  integers  are  always  counted  as  significant  figures.  B. Leading  zeros  are  those  that  precede  all  of  the  non-­‐zero  digits  and  are  never  counted  as  significant  figures.  C. Captive  zeros  are  those  that  fall  between  non-­‐zero  digits  and  are  always  counted  as  significant  figures.  D. Trailing  zeros  are  those  at  the  end  of  a  number  and  are  only  significant  if  the  number  is  written  with  a  decimal  point.  E. Exact  numbers  have  an  unlimited  number  of  significant  figures.  (Exact  numbers  are  those  which  are  as  a  result  of  counting  

e.g.  3  apples,  or  by  definition  e.g.  1kg  =  2.205lb).  F. In  scientific  notation  the  10x  part  of  the  number  is  never  counted  as  significant.  

 Determining  the  correct  number  of  significant  figures  to  be  shown  as  the  result  of  a  calculation  

 G. When  multiplying  or  dividing.  Limit  the  answer  to  the  same  number  of  significant  figures  that  appear   in  the  original  data  

with  the  fewest  number  of  significant  figures.  H. When  adding  or  subtracting.  Limit  the  answer  to  the  same  number  of  decimal  places  that  appear  in  the  original  data  with  

the  fewest  number  of  decimal  places.    

i.e.  don’t  record  a  greater  degree  of  significant  figures  or  decimal  places  in  the  calculated  answer  than  the  weakest  data  will  allow.  

 Conceptual  Task  1c:    

 7. Determine   the   number   of   significant   figures   in   each   number   shown   below,   and   cite   the   rules   above   that   support   your  

answer.    The  first  problem  has  been  done  for  you  as  an  example.  Answer       Justification  

a. 500.0              4  sig  figs     Rules  A,  D  b. 100  c. 0.00200    d. 1.002  e. 0.00043308  f. 6.02  x  1023  

 

Page 5: POGIL - Measurement (Short)

5   POGIL  -­‐  Measurement  (short).docx  

 

8. In  the  lab,  there  are  three  digital  balances  setup  next  to  one  another.    Choose  a  small  object  (a  pen  or  pencil  will  suffice)  and  record  the  mass  given  by  each  of  the  three  digital  balances  in  the  data  table  below.  

 

a. How  did  the  measurements  of  the  same  object  differ?  

 

 

b. Why  did  the  measurements  of  the  same  object  differ?  

 

 

c. Are  the  three  measurements  above  the  same  measurement?    Justify  your  response.  

 

 

 

 

d. Re-­‐read  the  introductory  paragraph  for  the  section  on  Significant  Figures.    What  role  does  uncertainty  play  in  making  measurements  in  the  laboratory?    

 

 

   

Balance  A   Balance  B   Balance  C