64
Plasmonic Circuitry Plasmonic Circuitry [Circuit] [Circuit] : a twoway communication path between points Alexandre BOUHELIER on behalf of Prof. A. DEREUX Centre National de la Recherche Scientifique (CNRS) Institut Carnot de Bourgogne, UMR 5209 Université de Bourgogne, Dijon France

PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic CircuitryPlasmonic Circuitry

[Circuit][Circuit] : a two‐way communication path between points

Alexandre BOUHELIER on behalf of Prof. A. DEREUX Centre National de la Recherche Scientifique (CNRS)q ( )

Institut Carnot de Bourgogne, UMR 5209

Université de Bourgogne, Dijon

France

Page 2: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

The drive for optical telecommunication

Electric Datacom interconnects & RC Latency

R ~Length / Area=> 1 / RC ~Area / Length2

C ~Length where A << LC Length where A L

J. D. Meindl et al. IBM  J.Res. & Dev. 46, 245 (2002)

Page 3: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Interconnects on boards vs length

Observed distribution of electrical interconnects as a function of their lengths (average over20 commercial microprocessors – adapted from IBM J. Res. & Dev. 46, 245 (2002))

Page 4: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Anticipation of short‐haul optical datacom

(by N. Savage, IEEE-Spectrum, vol. 39, Aug.2002)

Page 5: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Optical interconnects on boards

Advantages of optical IC at the cm length scale and around 10 GHz clock :

Attenuation:

Optical guide‐wave losses <  electrical lines losses.

B t li i / t l !But coupling in/out losses !

Latency:Latency:  

‐RC effects of electrical line => longer delays than time‐of‐flight of signals. 

‐ In optics : electro‐optical conversion ~  time of flight of optical signal (~ 5 ps).

But, if cm‐long scale, the interfacing and packaging issues are critical !

Advantages  plasmon technology vs classical  integrated‐optics technology :

‐ Plasmonic device are very short and present intrinsic large bandwidth;Plasmonic device are very short and present intrinsic large bandwidth;

‐Many plasmonic structures allow an efficient bending of  the light wavevector.

Page 6: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Why plasmon interconnects?

Metal stripes surface plasmon waveguides sustain modes which are strictly confined to the width of the stripes => Advantage to avoid cross‐talk.

Passive components such as surface plasmon beam splitters featuring right‐angle bents have been recently demonstratedbents have been recently demonstrated

In the case of Long‐Range Surface Plasmon Polaritons (LR‐SPP) modes, the typical attenuation lengths are in the mm or cm range which is compatible with the distribution of chip‐to‐chip interconnect lengths.

Compatibility with today silicon electronics technologies 

(oxide and metal deposition, lithographic processes).

Plasmonics is also compatible with current board substrate technology. 

Page 7: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmon propagation length

AIRGlass or polymerLR‐SPPSPP

Glass or polymerAu

AIR

Au

Wavelength Au Index SPP propagation LR-SPP propagation(nm) length (µm) length (µm) (nm) length (µm) length (µm)850 0.196+ i 5.590 Sapphire Index 1,75 7,5 122

Glass index 1,50 7,6 2201310 0.411+i 8.347 Sapphire Index 1,74 24,7 502

Glass index 1,50 25,1 9021550 0.559+i 9.810 Sapphire Index 1,73 40,0 811

Glass index 1,50 40,6 1169

‐ The reference system is a 25 nm thick Au film. ‐ SPP data corresponds to this film deposited on sapphire or glass substrate while the upper interface is exposed to air.‐ LR‐SPP data are related to the same filmcovered by the same material as the substrate.

Page 8: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic circuitry: a recipe

Ingredients:

An excitation scheme (optical or electrical)An excitation scheme (optical or electrical)A waveguideAn active area to encode informationSome routing filteringSome routing, filtering…A detection mechanism

D éte ctio nP lasm onco ntr ôléGu ide à plas mo n

Act ivat ion Ele ctriq ueThe rmi queOp tiqu eMé cani que

Exc itati on

De tec tionM odu lat edpl asm onPla sm onwa veg uid e

Act iva tion E lect rica lT her malO ptic alM eca nic al

E xci tati on Ro utin g

guiding plasmons

Page 9: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Waveguiding strategies

Metal Stripes Th B i i (Ott ) PRB 2000 W b & D (UB) (2001)

Plasmonic Crystals Kitson (Barnes' group) et al, PRL 1996; Bozhevolnyi et al, PRL 2001 Thin films/ TIR coupling

Metal Stripes Theory: Berini (Ottawa), PRB 2000 ;  Weeber & Dereux (UB) (2001)

Thin films /TIR or end‐fire coupling 

Di l WG t l h ( ' ) lDiel. WG on metal Hohenau (Krenn's group) et al, Opt. Lett. 2005

Bozhevolnyi, Zayats & Dereux groups

Thin or thick fims / coupling : TIR, end‐fire 

Crystalline metal nanowires Ditlbacher (Krenn's group) et al, PRL 2005

Very thin nanostructures / coupling : end‐fire

Hole arrays & hole arrays components 

Ebbesen's group et al (UAM,UZ, UB) , APL 2003

Channel SPP WG Theory: Novikov & Maradudin (Irvine), PRB 2002; 

Thick films / coupling : normal incidence

Bozhevolnyi et al (Ebbesen's group), Nature 2006

Thick films / coupling : end‐fire

Page 10: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Stripe waveguides

Charbonneau et al. Opt. Lett. 25, 844 (2000)Charbonneau et al. Opt. Lett. 25, 844 (2000)Lamprecht et al. Appl. Phys. Lett. 79, 51 (2001)Weeber et al. Phys. Rev. B. 68, 115401 (2003)Zia et al. Phys. Rev. B 74, 165415 (2006) 

Page 11: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

V‐groove and wedge

Novikov et al. Phys. Rev. B 66, 035403 (2002).Pile et al. Opt. Lett. 29, 1069 (2004)B h l i t l Ph R L tt 95 046802 (2005)

Moreno et al. Phys. Rev. Lett. 100, 023901 (2005)Boltasseva et al. Opt. Exp., 15 5252 (2006)

Bozhevolnyi et al. Phys. Rev. Lett. 95, 046802 (2005)Bozhevolnyi et al. Nature, 440 508 (2006)

Page 12: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic crystal waveguides

Bozhevolnyi et al. Opt. Lett, 36 734 (2001)Weeber et al Appl Phys Lett 89 211109 (2006)Weeber et al. Appl. Phys. Lett 89, 211109 (2006)

Page 13: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Slot waveguides

Tanaka et al. Appl. Phys. Lett. 82, 1158 (2003)Wang et al Opt Lett 29 1992 (2004)Wang et al. Opt. Lett. 29 1992 (2004)Tanaka et al. Opt. Exp 13, 256 (2005)Dionne et al. Nano. Lett. 6, 1928 (2006)

Page 14: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Waveguiding Surface Plasmons Asymmetric environmentNanowires

2 μm

Weeber et al. Phys. Rev. B 60, 9061 (2000)Dickson et al. J. Phys. Chem. B 104, 6095 (2000)y , ( )Ditlbacher et al. Phys. Rev. Lett. 95, 257403 (2005)Gunn et al. Nano. Lett, 6, 2804 (2006)

Page 15: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Waveguiding in metal stripes

Near‐field intensity mapping:

Need:Good confinement andGood confinement and significant propagation!(issue raised by Kobus!)

• Plasmon is confined and propagates, but the mode has a cut‐off width:

Phys. Rev B 68, 115401 (2003)

Page 16: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Confinement

Stripe SP mode spreading

Strong field confinement => large spreading

Page 17: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Alternative technology: DLSPPW

DLSPPW: dielectric‐loaded surface plasmon waveguide

Polymer guide• High‐density photonic circuitry• Perspective for reduced losses

Metal substrate• Can be doped!

‐ Electro‐optical ‐ Photo‐switchable ‐ Non‐linear

Page 18: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Propagation, bends…Propagation

1

Decay along the waveguide

• Surface plasmon decay length

0.36788

inte

nsity

0 04979

0.13534

Nor

mal

ized

0 10 20 30 40

0.04979N

Length (μm)11

12

7

8

9

10

(mic

rons

)

4

5

6Ls

pp (

185 μm

740 760 780 800 820 840 860 880 900 920

Wavelength (nm)

Page 19: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic circuitry

D éte ctio nP lasm onco ntr ôléGu ide à plas mo n

Act ivat ion Ele ctriq ueThe rmi queOp tiqu eMé cani que

Exc itati on

De tec tionM odu lat edpl asm onPla sm onwa veg uid e

Act iva tion E lect rica lT her malO ptic alM eca nic al

E xci tati on Ro utin g Directing plasmons

Page 20: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Routing with metal stripes

• Routing by bends15° 10° 5°

(b) L b d l(b)I I1 2

• Large bend losses (7db~20%)

N d b iI I3 4

(a)

Need better routing mechanism

Page 21: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Integrated surface plasmon Bragg mirrors

• Bragg mirrorsk k’

θ

Metal filmGrating

G

2'k k G ndπ

− = =r r r

Laue condition

d

Reflectivity=65%Bend loss<2dB for 90° bends

Appl. Phys. Lett. 87, 221101 (2005)

Bend loss<2dB for 90 bends

Page 22: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

SP Goos‐Hänschen effect

10 µm

Page 23: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Integrated SP splitters

• Bragg splitters (reflectivity depends of the number of Bragg lines)

N=3N=5

30

3.50 V

30

3.50 V

R = 50 %

30

4.00 V

30

4.00 V

R = 40 %

10

20

Y (µ

m)

10

20

Y (µ

m)

R = 50 %

10

20

Y (µ

m)10

20

Y (µ

m)

R = 40 %

0 10 20 300

10

-0.00 V

0 10 20 300

10

-0.00 VT = 20 %

0 10 20 300

10

-0.00 V

0 10 20 300

10

-0.00 VT = 40 %

X (µm)X (µm) X (µm)X (µm)

Page 24: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Integrated SP multiplexers

A. Drezet et al.,Nano Lett.,  7, 1697(2007)

Page 25: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Routing with DLSPPW: couplers

Page 26: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Routing with DLSPPW: filters, couplers

Page 27: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Routing with V‐grooves

V Volkov et al Nano Lett asap (2009)

27

V. Volkov et al., Nano Lett,  asap (2009)

Page 28: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Surface plasmon cavity

• Locally enhancing plasmon interactions

“Active” medium loaded on the metal

Output port

Active  medium loaded on the metalCavity size d

Control port

Input port

• Resonant conditions• Resonant conditions• Field enhancement• Quality factor

Page 29: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Resonance condition

• Model (differential method) • ExperimentsCavity

δ=0nm

Cavity

δ=0nm

δ=550nm

δ=150nm

δ=550nmResonance for  

δ=950nmNano Lett. 7, 1352 (2007)

Page 30: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Field enhancement and quality factor

• Predictions • Experiments

Phys. Rev. B 76, 113405 (2007)

Page 31: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic circuitry

D éte ctio nP lasm onco ntr ôléGu ide à plas mo n

Act ivat ion Ele ctriq ueThe rmi queOp tiqu eMé cani que

Exc itati on

De tec tionM odu lat edpl asm onPla sm onwa veg uid e

Act iva tion E lect rica lT her malO ptic alM eca nic al

E xci tati on Ro utin g

Lauching plasmons

Page 32: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Surface plasmon launchers: hole arrays

Page 33: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Surface plasmon launchers: slits/grooves

Nature Physics (2007)

Right column: slit+grating.Left column: isolated slit. 

PSTM images recorded at lambda=800 nmfor two different slit‐grating distances.Slit and groove widths a=160 nm groove depth w 100 nmgroove depth w=100 nmarray period  P=390 nm 

Page 34: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Electrical injection of SPP

Page 35: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic circuitry

D éte ctio nP lasm onco ntr ôléGu ide à plas mo n

Act ivat ion Ele ctriq ueThe rmi queOp tiqu eMé cani que

Exc itati on

De tec tionM odu lat edpl asm onPla sm onwa veg uid e

Act iva tion E lect rica lT her malO ptic alM eca nic al

E xci tati on Ro utin g

Plasmon modulation

Page 36: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Thermo‐optical modulation

Th. Nikolasjen et al., Appl. Phys. Lett. 85, 5833(2007)

Page 37: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

All‐optical modulation

D. Pacifici et al., ac c e a ,Nature Phot. 1, 402 (2007)

37

Page 38: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Field‐effect modulation

A. Dionne et al., Nano ,Lett. asap (2009)

38

Page 39: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Liquid crystal modulation

• Liquid crystal = Mesophase (intermediary between liquid and crystalline states)

Present orientational or / and positional order/ p

Anisotropic behaviour

Modification of their optical properties with the application of 

Nematican electric field

• Nematic LC ~ Uniaxial medium

Δ 0 1e oΔn = n -n > 0.1

(0.2 for E7)

39

( )

Page 40: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Propagation distance

• Possible interactions between a plasmon and a birefringent medium:

(a) (b) (c)

Modification of the SPP propagation constant (real and imaginary parts) when an electric field is applied on the LC.p ) pp

• Relative variations for neff and Lsp for In plane and Out of plane configurations:

40

Page 41: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

In‐plane switching: proof‐of‐principle

• Modulation of the coupling conditions (real part of neff)

• Modification of the propagation lengthlength

Square wave modulation :

200 μm

140

150

160

170

u.a.

)

q

Signal Amplitude: 10 V

Electrode Electrode

100

110

120

130

140

Inte

nsity

(u AC Signal frequency 1 kHz

Modulation Frequency: 0.2 Hz

10 μm

90

100

0 5 10 15 20

Time (s)

41

Page 42: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Possible device based on LR‐SPP

• Long‐range surface plasmon polariton propagation:

• Thin metal film (~15 nm)

• Symmetric configuration

P i l h d• Propagation length expected : ~ cm• Principle of the device:

Insertion of a trench filled with LC in order to:LC in order to:

• break the index matching b h lbetween the two layers surrounding the metal film

42

• bring a polarization rotation of the signal 

Page 43: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Device fabrication

• Fabrication process:

80 μm

Width : 10 μm

43

Width : 10 μmLength : 6 mm

Page 44: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

In‐out coupling

• LRSPP excitation by butt‐coupling technique:

(b) • LRSPP mode characterization:

Mode profileillustration

(a) (c) Intensity at the end of the waveguide

(a) (b) (c)

44

Page 45: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

LR‐SPP modulation

• « Slow » modulation frequency:

Square wave Sine waveBetween crossed polarizers

• Response with different modulation frequencies:

45

0.2 Hz 15 Hz 25 Hz

Page 46: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic circuitry

D éte ctio nP lasm onco ntr ôléGu ide à plas mo n

Act ivat ion Ele ctriq ueThe rmi queOp tiqu eMé cani que

Exc itati on

De tec tionM odu lat edpl asm onPla sm onwa veg uid e

Act iva tion E lect rica lT her malO ptic alM eca nic al

E xci tati on Ro utin g

Plasmon amplification

Page 47: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Gain medium: polymer‐doped with QDs

Optical pumping

λ=532nm

J Grandidier et al Nano Lett 9 2935 (2009)J. Grandidier et al., Nano Lett. 9, 2935 (2009)

Page 48: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Stimulated emission of SPP

IR Plasmon IR Plasmon+ QDs

QDs onlyQDs only

μm

IR Plasmon+ QDs

10μ

1 5

2.0

U.)2.0

2.5

U.)

1.5

U.)

15W/cm²0W/cm²

Lspp=45 96µm Lspp=46 58µm Lspp=51 24µm

30W/cm²

0.5

1.0

1.5

Inte

nsity

(A.U

1.0

1.5

Inte

nsity

(A.U

0.5

1.0

Inte

nsity

(A.ULspp=45.96µm Lspp=46.58µm Lspp=51.24µm

0 20 40 60 80 100Distance along the ridge (µm)

0 20 40 60 80 100

0.5

Distance along the ridge (µm)

0 20 40 60 80 1000.0

Distance along the ridge (µm)

Page 49: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Optical gain

Imaginary part ofdielectric constant

Optical gain coefficient

1 1Intrinsic optical gain coefficient

1 1( )(0) ( )p

sp sp p

g IL L I

= −

Page 50: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic circuitry

D éte ctio nP lasm onco ntr ôléGu ide à plas mo n

Act ivat ion Ele ctriq ueThe rmi queOp tiqu eMé cani que

Exc itati on

De tec tionM odu lat edpl asm onPla sm onwa veg uid e

Act iva tion E lect rica lT her malO ptic alM eca nic al

E xci tati on Ro utin g

Detecting plasmons

Page 51: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmon diode

Ditlbacher, H. et al. Appl. Phys. Lett. 89, 161101 (2006).

51

Page 52: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmon power monitor

Bozhevolnyi (SDU)

Page 53: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmon power monitor

Page 54: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Electrical detection

A F lk t l N t Ph t DOI 10 1038 (2009)A. Falk. et al. Nat. Phot. DOI 10.1038 (2009).

Page 55: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Plasmonic circuitry

D éte ctio nP lasm onco ntr ôléGu ide à plas mo n

Act ivat ion Ele ctriq ueThe rmi queOp tiqu eMé cani que

Exc itati on

De tec tionM odu lat edpl asm onPla sm onwa veg uid e

Act iva tion E lect rica lT her malO ptic alM eca nic al

E xci tati on Ro utin g

So, where are we?

Page 56: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

SPP interconnect demonstrator

VCSEL coupling test using self supported LR‐SPP waveguide2.5 Gbps/channel; 6dB/cm propag. Lossp / ; / p p g

Optics Express, 16 13133 (2008)                   

Page 57: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Interconnects for Tb control boards

Disclaimer: I fully agree with Kobus’ remark

Page 58: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Interconnects for Tb control boards

Page 59: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Interconnects for Tb control boards

Page 60: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Hybrid technology: Silicon (SOI)+DLSPPW

Page 61: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Conclusion

Surface plasmon‐based circuitry is becoming a technological reality!p y g g yThe toolkit is practically complete (inc. SP Lasers)

Page 62: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Bio‐plasmonics, integrated plasmonics& l l l i& molecular plasmonics

62

Contact: alexandre.bouhelier@u‐bourgogne.fr

Page 63: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Microwave attenuation

Page 64: PlasmonicCircuitry - Fresnel on behalf of Dereux... · 2018-02-05 · PlasmonicCircuitry [Circuit] : a two‐way communication path between points Alexandre BOUHELIER on behalf of

Board technology with Au is Si‐compatible

Example of currently available Microwave Au circuit printed on Sapphire.

Both the substrate and the metal stripes are potentially suitable for plasmon propagation if downsizing to micrometre widths and to millimetres lengths is mastered.