56
Plasma Nitriding - especially in the Gear Industry Presentation at MBB, May 20th, 2011 Andreas Gebeshuber Ralph Trigueros Rübig GmbH & Co KG - Austria

Plasma Nitriding -especiallyin theGearIndustry

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Plasma Nitriding -especiallyin theGearIndustry
Page 2: Plasma Nitriding -especiallyin theGearIndustry

CONTENT

� Overview Ruebig Company

� Short Introduction into Plasma Nitriding Technology

� Gear Production

� Trends in Gear Production

� Process Chain in Gear Production

� Development of Process Chains in Gear Manufacturing

� Potential of Plasma Nitriding at Gear Manufacturing

� Load and Stress Profiles on a Gear

� Optimized local Properties due to Plasma Nitriding

� Economic and Ecologic Aspects

� Examples: especially Ring Gear (Co. Oberaigner)

Page 3: Plasma Nitriding -especiallyin theGearIndustry

The Rubig group has been engaged in steel technolog y for more than 60 years

Knowledge and experience are the basis for our succ ess

The synergetic cooperation of the three different d ivisions results in newest technologies

• RUBIG – Die Forge

• RUBIG – Heat Treatment

• RUBIG – Engineering

RUBIG GROUP OF COMPANIES

Page 4: Plasma Nitriding -especiallyin theGearIndustry

RUBIG – Die forgeYour partner to develop forge parts also for smalle r series, up to 4 Kg part weight

High quality management standards, we are working a ccording to TS 16949

Mechanical machining, welding technology and heat t reatment

RUBIG – Heat TreatmentHeat Treatment certified according to ISO 9001:2000 and VDA 6.1

Cooperation with academic institutes and steel prod ucers are the basis for our status as technology leader

Expertise in material science drives the developmen t for newest heat treat technologies

RUBIG – EngineeringIndividual solutions for Plasma assisted nitriding and coating units

Vacuum furnaces and cleaning machines distinguish u s from the competition

Fundamental research ensures application based solu tions

E

RUBIG GROUP OF COMPANIES

Page 5: Plasma Nitriding -especiallyin theGearIndustry

PRODUCT PORTFOLIO

PLASNIT ®plasma nitriding

system

GASNIT ®gas nitriding system

Page 6: Plasma Nitriding -especiallyin theGearIndustry

PLASTIT ®Plasma assisted CVD coating system

PRODUCT PORTFOLIO

PLASNIT ® / GASNIT ® :combined plasma and gas

nitriding system

Page 7: Plasma Nitriding -especiallyin theGearIndustry

PRODUCT PORTFOLIO

MICROPULS ®plasma generators

HPG line

MAP line

Page 8: Plasma Nitriding -especiallyin theGearIndustry

PRODUCT PORTFOLIO

RUEBIG ®vacuum hardening furnace

HELIVAC ®helium - high pressure gas quenchingsystem with integrated recycling unit

Page 9: Plasma Nitriding -especiallyin theGearIndustry

PRODUCT PORTFOLIO

HYDROVAC ®metal parts cleaning unit

Page 10: Plasma Nitriding -especiallyin theGearIndustry

ArgentinaAustraliaBrazilHong KongIndiaIndonesiaIranJapanCanadaKoreaMexicoSingaporeSouth AfricaTaiwanThailandTurkeyUSAUnited Arab. Emirates

OVERSEAS EUROPE

BelgiumDenmarkGermanyFinlandFranceGreat BritainItalyLiechtensteinNetherlandAustriaPolandRomaniaSwedenSwitzerlandSlovakiaSloveniaCzech RepublicHungary

EXPORT COUNTRIES RUBIG ENGINEERING

Page 11: Plasma Nitriding -especiallyin theGearIndustry

REFERENCES

Page 12: Plasma Nitriding -especiallyin theGearIndustry

a

Nitriding Methods and basics of

Plasma Nitriding Technology

Page 13: Plasma Nitriding -especiallyin theGearIndustry

NITRIDING

Definition:

The surface layer of the work piece is enriched with nitrogen by thermo chemical treatment.

Process routes:

� salt bath nitriding

� gas nitriding

� plasma nitriding

Page 14: Plasma Nitriding -especiallyin theGearIndustry

OXIDE LAYER, WHITE LAYER AND DIFFUSION ZONE

oxide layer, 1-2 µm:

� Running-in layer� Low friction coefficient� Corrosion resistance

white layer, 5-20 µm:

� Ceramic layer� Protection against abrasive and

adhesive wear� High hardness

diffusion zone, 10-1000 µm:� High compressive stress� High fatigue strength� Hardness higher than substrate

oxide layer, Fe3O4

white layer, Fe2-3N, Fe4N

diffusion zone

Page 15: Plasma Nitriding -especiallyin theGearIndustry

COMMON NITRIDING AND NITROCARBURIZING METHODS

salt bath nitridingno g

o!!! gasnitiding

plasma nitriding

Page 16: Plasma Nitriding -especiallyin theGearIndustry

DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

SYSTEM

inner fan

pump stand

ARCdetection

PC - datarecording

CPU

gas supplysystem

measuringelectronic

MICROPULSpower supply

exhaust flap

heating

Inlet flap (cooling)

fan/(cooling)

retort

intermediate ring

multiple cooling system

insulationamplifier

Page 17: Plasma Nitriding -especiallyin theGearIndustry

DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

SYSTEM

process control system

and visualization

� simple operation� control system based on

Siemens S7� viszualization under Windows� process datad logged in real

time� fully automatic and man-free

operation� user surface in different

languages available

Page 18: Plasma Nitriding -especiallyin theGearIndustry

DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

SYSTEM

recipe administration

Page 19: Plasma Nitriding -especiallyin theGearIndustry

DESIGN AND MAIN COMPONENTS OF A RUBIG PLASMA NITRIDING

SYSTEM

trending diagram

Page 20: Plasma Nitriding -especiallyin theGearIndustry

OXIDE LAYER, WHITE LAYER AND DIFFUSION ZONE

salt bath nitriding gas nitriding

...

• high friction due to

rough porous zone

• post polishing necessary

• very good corrosion

resistance

No GO(for comparison purposesonly)

• low friction due to

smooth porous zone

• no post polishing• good corrosion

resistance

plasma nitriding

Page 21: Plasma Nitriding -especiallyin theGearIndustry

GAS vs. PLASMA; HEALTH AND ENVORNMENT RELEVANT ASPECTS

decreased engergy demand

used gases not relevant forthe environment

reduced pollutant emmissions

no greenhouse gas emmissions

reduced cleaning expenses

used gases not relevant forthe health

process temperature 530 –600 °C

process temperature 400 –600 °C

gas nitriding plasma nitriding

process gases for nitriding:NH3, N2

process gases for nitriding: N2, H2

Gas consumption in an averagefurnace size: 4000 l/h

gas consumption in an averagefurnace size: 400 l/h

Carbon precursor fornitrocarburizing: CO2

Carbon precursor fornitrocarburizing: CH4

high influence of cleaning on nitriding result final cleaning by „sputtering“

NH3 as Nitrogen precursor N2 as Nitrogen precursor

Page 22: Plasma Nitriding -especiallyin theGearIndustry

ECOLOGICAL ADVANTAGE: EMISSIONS COMPARISON FOR GAS- AND

PLASMA NITRIDERS

� 5.500 plasma nitriders produce less NOx than one gas nitrider

� 2.700 plasma nitriders produce less CO/CO2 than one gas nitrider

� The gas consumption of a Plasma nitrider is at least 10 times lower than for a gas nitrider

Facts

Source: T. Bell

Page 23: Plasma Nitriding -especiallyin theGearIndustry

650

750

850

950

1050

1150

1250

Witn

ess r

ollers (

1st V

SE / 12

-Dec

-200

8) avg

.

Witn

ess r

ollers (

2nd VS

E / 2

4-Fe

b-20

09) a

vg.

Witn

ess rolle

rs (3

rd V

SE / 02

-Mar-200

9) avg

.

Witn

ess r

oller (r

un-238

850 / 0

6-Mar-200

9) avg

.

Witn

ess r

oller (r

un-247

984 / 2

5-Ju

n-20

09) a

vg.

Witn

ess r

oller (r

un-248

577 / 0

2-Ju

l-200

9) avg

.

Witn

ess r

oller (r

un-249

204 / 0

9-Ju

l-200

9) avg

.

Witn

ess r

oller (r

un-249

768 / 1

6-Ju

l-200

9) avg

.

Witn

ess r

oller (r

un-250

939 / 3

0-Ju

l-200

9) avg

.

Witn

ess r

oller (r

un-251

419 / 0

6-Au

g-20

09) a

vg.

Witn

ess r

oller (r

un-251

845 / 1

3-Au

g-20

09) a

vg.

Witn

ess r

oller (r

un-252

112 / 1

7-Au

g-20

09) a

vg.

Witn

ess r

oller (r

un-252

421 / 2

1-Au

g-20

09) a

vg.

Witn

ess rolle

r (run-25

6818

/ 08

-Oct-200

9) avg

.

Witn

ess rolle

r (run-25

8059

/ 20

-Oct-200

9) avg

.

Witn

ess rolle

r (run-25

8539

/ 24

-Oct-200

9) avg

.

Witn

ess rolle

r (run-25

8917

/ 29

-Oct-200

9) avg

.

Witn

ess rolle

r (run-25

9743

/ 06

-Nov

-200

9) avg

.

Witn

ess rolle

r (run-26

0333

/ 12

-Nov

-200

9) avg

.

Vic

kers

Har

dnes

s [H

V 0

,3]

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

Nitr

idin

g D

epth

[mm

]

SH [HV0,3] at 0,10 mm Spec. SHmin = 810 HV0,3 Spec. SHmax = 1100 HV0,3

CH [HV0,3] at 0,60 mm Spec. CHmin = 700 HV0,3 ND [mm]

Spec. NDmin = 0,17mm

evaluation period 12/2008-12/2009– wittness loads 5 samp les / charging level

Process Reproducibility - Homogeneity

TECHNICAL ADVANTAGE – PLASMA NITRIDING

Page 24: Plasma Nitriding -especiallyin theGearIndustry

aGear Production

Page 25: Plasma Nitriding -especiallyin theGearIndustry

AUTOMOBILE – GEAR MANUFACTURING

Global gear production – regional production in mio.

2007 2013

� Japan / Korea 24 27

� Western Europe 18 21

� North America 10 12

� China 5 9

� South Asia 2 5

� Eastern Europe + South America 4 7

total 63 81

Non automotive gears are not included in the numbers (approx. 11 million gear boxes

additionally)

+ 28%

Page 26: Plasma Nitriding -especiallyin theGearIndustry

PROCESS CHAIN IN GEAR MANUFACTURING

Lecture of Klocke F., Weck M. at WZL Forum 1998 in Aachen: Warum Feinbearbeitung?

Raw material

Turning

Gear cutting (soft machining)

Soft finishing

Carburizing

Fabricated gear

Hard machining

Sorting / Rejecting

Page 27: Plasma Nitriding -especiallyin theGearIndustry

DEVELOPMENT OF GEAR BOX PRODUCTION Factory Kassel – VW Gear Manufacturing-Engineering

D. Knöppel, WZL Forum Aachen 1998: Möglichkeiten /Grenzen der Hartfeinbearbeitung bei PKW-Getrieben – VW

J. Fenstermann, Near-Net-Shape Tagung 2005: Anforderungen, Stand der Technik u. Perspektiven von Verzahnungen

J. Fenstermann, Getpro 2009: Ganzheitliche Prozessoptimierung in der Getriebefertigung bei VW

Percentage of Hard Machined Gears at VW

58%

5%

49%

0%

10%

20%

30%

40%

50%

60%

70%

2000 2008 2011

Year

Per

cen

tag

e

Page 28: Plasma Nitriding -especiallyin theGearIndustry

REASONS FOR HARD MACHINING

Lecture of Klocke F., Weck M. at WZL Forum 1998 in Aachen: Warum Feinbearbeitung?

Noise reduction Maximizing of bearing capacity

Reaching the quality necessary for the application

Reduction of gearing failures

Angle errors

Pitch errors

Rotation errors

Reeling errors

Angle corrections

Convexities

Retractions

Topological corrections

Design optimization

(tooth root)

Impovement of surface qualityand fabrication of advantageous

surface structures

Gear modifications

Page 29: Plasma Nitriding -especiallyin theGearIndustry

DEVELOPMENT OF PROCESS CHAINS IN GEAR MANUFACTURING Factory Kassel – VW Gear Manufacturing-Engineering

Passenger cars – gear box assembling

(aprox. 16.000 gear systems for passenger cars)

D. Knöppel, WZL Forum Aachen 1998: Möglichkeiten /Grenzen der Hartfeinbearbeitung bei PKW-Getrieben – VW

J. Fenstermann, Near-Net-Shape Tagung 2005: Anforderungen, Stand der Technik u. Perspektiven von Verzahnungen – V

J. Fenstermann, Getpro 2009: Ganzheitliche Prozessoptimierung in der Getriebefertigung bei VW

Up to 40% of 40% of productionproduction costscosts are

nowadays necessary to compensate the

distortion due to the heat treatment

and to improve the surface quality.

���� Material

����Soft-

machining

����Hardening

����Hard-

machining

Page 30: Plasma Nitriding -especiallyin theGearIndustry

aPotential of Plasma Nitriding

at Gear Manufacturing

Page 31: Plasma Nitriding -especiallyin theGearIndustry

LOAD AND STRESS PROFILE ON A GEAR

Tooth root Tooth flank

Micro Pitting

Pit Marks

Page 32: Plasma Nitriding -especiallyin theGearIndustry

Case depth and nitriding depth for gears according Linke (Stirnverzahnungen, 1996):

Modulus in mm: 1,0 to 2,4 CD: 0,3 + 0,2 ND: 0,2 + 0,1

2,5 to 3,5 0,5 + 0,3 0,3 + 0,1

3,5 to 4 0,8 + 0,4 0,4 + 0,1

DIFFERENT RECOMMENDATIONS FOR DIFFUSION DEPTH AT ROOT AND

FLANK

Page 33: Plasma Nitriding -especiallyin theGearIndustry

OPTIMIZED LOCAL PROPERTIES

white layer

thin white layer on flank

•reduces wear

•increases sliding behaviour

•increases pitting resistance

no / small white layer on tooth root

•increases tooth root bending strength

properties on the gear tooth

nitriding depth

average nitriding depth on flank

•increases pitting resistance

small nitriding depth at tooth root

•increases tooth bending strength

Plasmanitriding offers an intelligent material / heat treatment design

� required material properties exactly were they are needed

symbolic picture

Page 34: Plasma Nitriding -especiallyin theGearIndustry

MICROGRAPH OF A RING GEAR, MODULUS 0,35

Page 35: Plasma Nitriding -especiallyin theGearIndustry

CORE MESSAGE

Considerably more homogeneous fatigue values compared to carburized gears

The material properties exactly where they are needed and adjustable according to demands

AppropriateMaterial

Adequate MicropulsPlasmanitriding

The same or even better mechanical poperties than carburized gear parts

+offers

Page 36: Plasma Nitriding -especiallyin theGearIndustry

modulus1,25 modulus2,75

tooth root bending strength

until end of 2009

tooth flank pitting strength

until middle 2010

RCF testsuntil end of 2007

rotating bending testsuntil middle 2007

samples

RUBIG PLASMA NITRIDING INITIATIVE

Page 37: Plasma Nitriding -especiallyin theGearIndustry

TOOTH ROOT FATIGUE STRENGTH

Comparison case hardening and gas- / plasma nitridingto

oth

root

fatig

uest

reng

th[N

/mm

2 ]

fatigue strength value DIN 3990-5 Diss. Schlötermann

1988

RÜBIGactual data

100

0

400

300

200

600

500

carb

uriz

edal

loyd

stee

l

310

550

heat

trea

ted

stee

lga

s ni

trid

ed

270

430he

attr

eate

dni

trid

ing

stee

lga

s ni

trid

ed

280

470

plas

man

itrid

edni

trid

ing

stee

l

590

340

deve

lope

men

tR

ÜB

IG

- R935

- 31CrMoV9

tests with shaved and plasma nitrided gears, m=1,25 and 2,75; done at FZG- Institute TU-Munich2007 to 2010

material570

432

modulus1,25 2,75

Data from DIN 3990 – Literature Data – Rübig Tests

Page 38: Plasma Nitriding -especiallyin theGearIndustry

VAR 3VAR 2VAR 1Plasma nitriding - variants

540340390N/mm²tooth root fatigue strengthσσσσFlim (DIN 3990)

100

159

63

100

72

115%percentage

0,40,30,4mmnitriding depth Nd in tooth root

780750750HV 0,5case hardness

363660hoursnitriding time

520520530°Cnitriding temperature

nonewithwithµµµµmwhite layer WS

950950950N/mm²core hardness

source: Schlötermann, K.: Auslegung nitrierter Zahnradgetriebe , Dissertation RWTH Aachen, 1988 (131 Seiten) - Untersuchungen zu den Auswirkungen unterschiedlicher Nitrierparameter auf den Werkstoffzustand und die Tragfähigkeit von Zahnrädern

toot

h ro

ot fa

tigue

str

engt

h σ

Flim

[N/m

m²]

E

0

100

200

300

400

500

600

VAR 1 VAR 2 VAR 3

+59%

+38%

Test results of plasma nitrided gears 31CrMoV9 modulus 5 mm

INFLUENCE OF WHITE LAYER ON TOOTH ROOT FATIGUE STRENGTH

Page 39: Plasma Nitriding -especiallyin theGearIndustry

PITTING RESISTANCE σσσσHlim- SITUATION

Standard- and test values of literature / data Rübig

Values diss. Schlötermann, m= 5

PN: σσσσHlim = 1590 – 1760 N/mm2

Failure not by pitting, only by wear on the driving gear between, pitch circle and tooth root (load = 8,5 * 10 7 )

Standard DIN 3990 values σσσσHlim

(fatigue strength, 1% failure probability)

Carburizing 1300 – 1650 N/mm²

Nitriding 1120 – 1450 N/mm²

fatig

ue s

tren

gth

σσ σσ Hlim

[N/m

m2 ]

fatigue data according DIN 3990-5 DissertationSchlötermann

1988

RÜBIGActual data

1000

0

1600

1400

1200

1800

case

-har

dene

d st

eel

case

-har

dene

d

1300

1650

tem

pere

dst

eel

gas

nitr

ided

780

1220ni

trid

ing

stee

lga

s ni

trid

ed1120

1450

nitr

idin

g st

eel

plas

ma

nitr

ided

1760

1340

deve

lope

men

tR

ÜB

IG

1760

1400

600

400200

800

Page 40: Plasma Nitriding -especiallyin theGearIndustry

APPLICATION – COATING OF GEARS

→→→→ Increase of pitting resistance through coating: 27 %

Page 41: Plasma Nitriding -especiallyin theGearIndustry

COMMERCIAL ADVANTAGE – LESS HARD MACHINING

Raw material / processing (forging)

Turning

Gear cutting (soft machining)

Carburizing Plasmanitriding

Sorting/rejecting

Hard machining

Soft finishing

Fabricated gear

Today Tomorrow

Page 42: Plasma Nitriding -especiallyin theGearIndustry

aExamples

Page 43: Plasma Nitriding -especiallyin theGearIndustry

EXAMPLES OF GEARS AND OTHER PARTS PERFECTLY DEDICATED FOR

PLASMA NITRIDING

Page 44: Plasma Nitriding -especiallyin theGearIndustry

EXAMPLES OF GEARS AND OTHER PARTS PERFECTLY DEDICATED FOR

PLASMA NITRIDING

Page 45: Plasma Nitriding -especiallyin theGearIndustry

EXAMPLES OF GEARS AND OTHER PARTS PERFECTLY

DEDICATED FOR PLASMA NITRIDING

� PN 100/180 DUO

� installation in production area

� process time

20 hours.

� ∆T = ±3°C

Distance from surface [mm]

100

hard

ness

[HV

0,5]

200

300

400

500

600

700

800

flank

root

0,2 0,4 0,6 0,8 1,00,1 0,3 0,5 0,7 0,9 1,10,00

Page 46: Plasma Nitriding -especiallyin theGearIndustry

COMPANY WILHELM OBERAIGNER GMBH

�Founded 1977 – aprox. 80 Employees

�One of the leading specialists in development and

production of automotive system components

�Service offer includes also complete drive axles,

differential locks and gear drives

�Company Wilhelm Oberaigner GmbH is also responsible for the development and supply of components

for the AWD-versions of Mercedes Vito/Viano (NCV2) and Mercedes Sprinter (T1N & NCV3)

�The drive components for these cars are produced at Oberaigner and sent directly to the assembly lines of

the appropriate factories

�Oberaigner invests essential amounts in R&D as well as in the production of new technologies like Hybrid

or Electro drives

�Furthermore Oberaigner Aerospace (aircraft engines and business jets) is in development

Page 47: Plasma Nitriding -especiallyin theGearIndustry

COMPANY WILHELM OBERAIGNER GMBH

Page 48: Plasma Nitriding -especiallyin theGearIndustry

ALL-WHEEL FRONT AXLE: RING GEAR INTEGRATED INTO THE AXLE

HOUSING

� Increase of clearance height due to bevel gear (i ≈≈≈≈ 1,5)

� Planetary gear set in front axle (integrated in axle casing)

� speed reduction due to planetary gear set (i ≈≈≈≈ 2,5)

Page 49: Plasma Nitriding -especiallyin theGearIndustry

GOAL

� since approx. 7 years ring gear is in use as linear/straight ring gear

� Heat treatment

� Carburizing + bolt hardening� reduction of distortion to increase quality concerning

homogenous case depth and to reduce hard machining (grinding,…)

� However very much effort for hard machining

� Goal

� Noise reduction

� Elimination / Reduction of hard machining

� No loss in performance!

Page 50: Plasma Nitriding -especiallyin theGearIndustry

RING GEAR ���� SPECIFICATION

Bolt case hardening Plasma nitriding

Material: 20MnCrS5 (1.7149) Material: 31CrMoV9 (1.8519)

Surface hardness [HRc]: 58 + 4 Surface hardness [HV10]: 750 + 150

Case depth [mm]: 0,65 + 0,2 Nitriding depth [mm]: 0,2 + 0,2

Core hardness [MPa]: > 1000 Core hardness [MPa]: 1000 - 1200

Gear grade: 6-7 (Automotive)

Page 51: Plasma Nitriding -especiallyin theGearIndustry

Paramter Position Measured value

Surface hardnessTarget: 750-900 HV10

Tooth crest 862 HV10

White layerTarget: 4-10µm

Tooth flank 6,7µm

Tooth root 3,0µm

Nitriding depthTarget: 0,2-0,4mm

Tooth flank 0,27mm

Tooth root 0,24mm

RING GEAR ���� RESULTS AFTER PLASMA NITRIDING

Page 52: Plasma Nitriding -especiallyin theGearIndustry

RING GEAR ���� RESULTS AFTER PLASMA NITRIDING

Nitriding depth

300

400

500

600

700

800

900

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70

Distance from surface [mm]

Har

dnes

s [H

V0,

5]Tooth flank 1

Tooth flank 2

Tooth root

Limit hardness

Page 53: Plasma Nitriding -especiallyin theGearIndustry

0

1

2

3

4

5

6

7

8

angle form total angle form total

0

10

20

30

40

50

60

roundnessflange

BCH PN

profile deviation flank deviation

pitch - deviation

µµµµm

µµµµm

single pitch errortotal

Comparison of average difference valuesbefore and after PN and BCH. Maximal difference values are by PN and DEH approximately with factor 2 higher.

Measures at respectively ten gears - left and right flank (PN and BCH). For each gear fourteeth were measured and mean value was created. With these mean values the averagedifference values were calculated and displayed in the charts.

RING GEAR – DISTORTION COMPARISON; m = 1,5, flange ∅∅∅∅ = 125, width = 32

Comparison Plasma Nitriding (PN) with Bolt-Case Hardening (BCH)

Page 54: Plasma Nitriding -especiallyin theGearIndustry

portion of costs in %

-8-

32--

Var. B

31CrMoV9 - PN

--32

997

326154

4

6

17

--

67

16-

Var. A20MnCrS5 –

BCH

RING GEAR – COST COMPARISONPlasma Nitriding (PN) with Bolt-Case Hardening (BCH)

0

20

40

60

80

100 savings

structure honing

hard machining

hardening

soft finishing

stress annealing

pre-machining

material

%

Plasma Nitriding

Route A Route B Bolt-CaseHardening 125 ∅∅∅∅

Page 55: Plasma Nitriding -especiallyin theGearIndustry

SUMMERY & OUTLOOK

Summery

� Distortion

� Distortion after plasma nitriding only a fraction compared to bolt case hardening

� No change of gear grade after plasma nitriding

� Probably no subsequent machining necessary

� Costs

� Reduction of costs: 16 – 17%

� Throughput time

� Reduction: 8 – 14%

Outlook

� First performance check positive

� Currently endurance test in a 6x6 Mercedes Sprinter

Page 56: Plasma Nitriding -especiallyin theGearIndustry

Thank youfor yourattention!

Contact: Ralph Trigueros [email protected]