54
Plücker Coordinate of a Line in 3-Space

Pl ü cker Coordinate of a Line in 3-Space

  • Upload
    samson

  • View
    39

  • Download
    4

Embed Size (px)

DESCRIPTION

Pl ü cker Coordinate of a Line in 3-Space. L. Q. P. O. Motivation. The other way of representing lines in 3-space is parametric equation We are interested in learning the aspects/features of Plucker coordinates that make life easier !. References. - PowerPoint PPT Presentation

Citation preview

Page 1: Pl ü cker Coordinate of a Line in 3-Space

Plücker Coordinate of a Line in 3-Space

Page 2: Pl ü cker Coordinate of a Line in 3-Space

Lines in 3-Space

• You know how to represent a 3-space line in parametric equations

Fall 2015 2

Q

P

L

O

RttQPt ,1

Page 3: Pl ü cker Coordinate of a Line in 3-Space

Motivation

• We are interested in learning the aspects/features of Plucker coordinates that make life easier!

3Fall 2015

Page 4: Pl ü cker Coordinate of a Line in 3-Space

4

References

• Plucker coordinate tutorial, K. Shoemake [rtnews]

• Plucker coordinates for the rest of us, L. Brits [flipcode]

• Plucker line coordinate, J. Erickson [cgafaq]

Fall 2015

Page 5: Pl ü cker Coordinate of a Line in 3-Space

5

Introduction

• A line in 3-space has four degree-of-freedom• Plucker coordinates are concise and efficient for

numerous chores• One special case of Grassmann coordinates

– Uniformly manage points, lines, planes and flats in spaces of any dimension.

– Can generate, intersect, … with simple equations.

Fall 2015

For a similar reason, a line in 2-space has two DOF’s

Page 6: Pl ü cker Coordinate of a Line in 3-Space

6

Mason’s Version

tqptx )(

qpq 0

Line in parametric form

Define

Plucker coordinate of the line (q, q0)

Six coordinate 4 DOFs:

]by [scale ,,

0

00

0

kqqqkqq

qq

p q

q0

•(q, q0): q0, q00: general line

•(q, 0): q0, q0=0: line through origin

•(0, 0): q=0, (q0=0): [not allowed]

O

Fall 2015

Page 7: Pl ü cker Coordinate of a Line in 3-Space

The following are from Shoemake’s note…

Page 8: Pl ü cker Coordinate of a Line in 3-Space

8

Summary 1/3

Fall 2015

Page 9: Pl ü cker Coordinate of a Line in 3-Space

9

Summary 2/3

Fall 2015

Page 10: Pl ü cker Coordinate of a Line in 3-Space

10

Summary 3/3

Fall 2015

Page 11: Pl ü cker Coordinate of a Line in 3-Space

11

Notations

• Upper case letter: a 3-vector U = (ux,uy,uz) • Vector U; homogeneous version (U:0)• Point P; homo version (P:1), (P:w)• Cross and dot product: PQ, U.V• Plane equation: ax+by+cz+dw=0

– [a:b:c:d] or [D:d] with D=(a,b,c)– [D:0] origin plane: plane containing origin

• Plucker coordinate: {U:V}• Colon “:” proclaims homogeneity

Fall 2015

Page 12: Pl ü cker Coordinate of a Line in 3-Space

12

Determinant DefinitionQ

P

L

O

1z

y

x

p

p

p

1z

y

x

q

q

q … row x

… row y

… row z

… row w

Make all possible determinants of pairs of rows

11xx qp

11yy qp

11zz qp

yy

xx

qp

qp

zz

yy

qp

qp

xx

zz

qp

qp

P–Q PQ

L={P-Q:PQ}L={P-Q:PQ}

Fall 2015

Page 13: Pl ü cker Coordinate of a Line in 3-Space

13

ExampleQ

P

L

O

P=(2,3,7), Q=(2,1,0). L = {U:V} = {0:2:7:-7:14:-4}.

Order does not matter

Q=(2,3,7), P=(2,1,0). L = {U:V} = {0:-2:-7:7:-14:4}

Identical lines: two lines are distinct (不同 ) IFF their Plucker coordinates are linearly independent(獨

立 )

identical

Fall 2015

Page 14: Pl ü cker Coordinate of a Line in 3-Space

14

Tangent-Normal Definition

PQ: {U:V} U = P–Q V = P×Q = (U+Q)×Q = U×Q

(U:0) direction of line[V:0] origin plane through L

Question: any pair of points P,Q gives the same {U:V}? Yes

{p.16}

L={U:UQ}L={U:UQ}

PQ

U

L

O

U×Q

Fall 2015

Page 15: Pl ü cker Coordinate of a Line in 3-Space

15

Example

x

y

z y

U=(1,0,-1)Q=(0,0,1)UQ = (0,-1,0)L={1:0:-1:0:-1:0}

If we reverse the tangent:U=(-1,0,1)Q=(0,0,1)UQ = (0,1,0)L={-1:0:1:0:1:0}… still get the same line(but different orientation)Fall 2015

Page 16: Pl ü cker Coordinate of a Line in 3-Space

16

Remark

P’=Q+kU

U’ = P’– Q = kUV’ = P’×Q = (Q+kU) ×Q = kU×Q

P’Q {kU:kV}

Q

P

P’

U

L

O

Moving P and/or Q scales U & V together!Similar to homogeneous coordinates

Moving P and/or Q scales U & V together!Similar to homogeneous coordinates

Fall 2015

Page 17: Pl ü cker Coordinate of a Line in 3-Space

17

Remarks• Six numbers in Plucker coordinate {U:V} are not

independent.– Line in R3 has 4 dof. : six variables, two equations: one from

homogeneity; one from U.V = 0

• Geometric interpretation {U:V}– U: line tangent (U0, by definition)– V: the normal of origin plane containing L (V=0 L

through origin)

• Identical lines: two lines are distinct IFF their Plucker coordinates are linearly independent

Ex: {0:-2:-7:7:-14:4} and {0:4:14:-14:28:-8} are the same (but different orientation); {2:1:0:0:0:0} is differentFall 2015

Page 18: Pl ü cker Coordinate of a Line in 3-Space

18

Exercise

x

y

zP

Q P=(1,0,0)Q=(0,1,0)

P=(0,1,0)Q=(1,0,0)

L={P-Q:PQ}L={U:UQ}

L={P-Q:PQ}L={U:UQ}

U=(1,-1,0)Q=(0,1,0)

U=(2,-2,0)Q=(0,1,0)

U=(-1,1,0)Q=(0,1,0)

Fall 2015

Page 19: Pl ü cker Coordinate of a Line in 3-Space

19

Distance to Origin

T: closest to origin (to be determined) Any Q on L: Q = T + sU

V = U×Q = U×(T+sU) =U×T||V|| = ||U|| ||T|| sin90 = ||U|| ||T||

T.T = (V.V) / (U.U)

V×U=(U×T)×U = (U.U)T

T=(V×U:U.U)

Q

T

U

L

O Squared distance:

Closest point:

Vector triple product

L={U:V}

Fall 2015

L={U:V}

Page 20: Pl ü cker Coordinate of a Line in 3-Space

20

Example

x

y

z y

U=(1,0,-1)Q=(0,0,1)UQ = (0,-1,0)L={1:0:-1:0:-1:0}

T=(V×U:U.U) = (1:0:1:2)= (1/2,0,1/2)Squared distance = (V.V)/(U.U) = 1/2

Fall 2015

Q (0,0,1)

z

x

Page 21: Pl ü cker Coordinate of a Line in 3-Space

21

Line as Intersection of Two Planes1

L

[E:e] [F:f]

P

Plane equation: ax + by + cz + d = 0 P = (x,y,z), point on L [E:e] E.P + e = 0 … (1) [F:f] F.P + f = 0 …. (2)

(1)f – (2)e = 0: f(E.P+e) – e(F.P+f) = 0 (fE – eF).P = 0fE-eF defines the normal of an origin plane through L

direction U = EF L = {EF: fE – eF}Fall 2015

O

Page 22: Pl ü cker Coordinate of a Line in 3-Space

22

Example

x

z

y

z = 0[0:0:1:0]

x = 1[1:0:0:-1]

E = [1:0:0:-1]F = [0:0:1:0]L = {EF:fE-eF} = {0:-1:0:0:0:1}

CheckP = (1,1,0), Q = (1,0,0)L = {P-Q:PQ} = {0:1:0:0:0:-1}

Q

P

Fall 2015

Page 23: Pl ü cker Coordinate of a Line in 3-Space

23

Line as Intersection of Two Planes2

• If both planes do not pass through origin, e0 and f0, we can normalize both planes to [E:1] and [F:1].

• The intersecting line then becomes {EF:E-F}

L

[E:1] [F:1]Q

P

L

O

{P-Q:PQ}

{EF:E-F}

Duality!Fall 2015

Page 24: Pl ü cker Coordinate of a Line in 3-Space

• [V:0] origin plane thru L

(V0)

• [UV:V.V] plane thru L [V:0]

24

Other Duality

• (U:0) direction of L• T=(VU:U.U)

point of L (U:0)

Q

T

U

L

O

O[V:0]

[UV:V.V]

Verify!(next page)P.18

L={U:V}

Fall 2015

Page 25: Pl ü cker Coordinate of a Line in 3-Space

25

Verify P.24R

O[V:0]

[UV:V.V]

L

Find intersection of [UV:V.V] & [V:0]

L={E F:fE-eF}= {(U V) V: -(V.V)V}

(U V) V = -U(V.V)+V(U.V) = -U(V.V)

L = {-U(V.V):-V(V.V)} = {U:V}

Fall 2015

Page 26: Pl ü cker Coordinate of a Line in 3-Space

26

Line-Plane Intersection1

• L{U:V} and plane [N:0]Points on {VN:0} = (VN:w)Intersection: the point on [UV:V.V]!

{U:V} [N:0] = (VN:U.N)

(U V).(V N)+w(V.V) = 0w(V.V) = (V U).(V N) = N.((V U) V)=N.(-(U.V)V+(V.V)U)=(V.V)(U.N)w = U.N

Triple product

Fall 2015

O[V:0]

[N:0]

L

[UV:V.V]

{VN:0} (p.24)

Page 27: Pl ü cker Coordinate of a Line in 3-Space

27

Line-Plane Intersection2

• L and plane [N:n]

O

[V:0]

[N:0]

L

{U:V} [N:n] = (VN–nU:U.N)

O

[V:0]

[N:0]

L

Derivation pending

[N:n]

Fall 2015

Page 28: Pl ü cker Coordinate of a Line in 3-Space

28

Example

x

y

z y

U=(1,0,-1)Q=(0,0,1)UQ = (0,-1,0)L={1:0:-1:0:-1:0}

Intersect with Z=2, [0:0:1:-2]VN–nU = (-1,0,0) – (-2)(1,0,-1) = (1,0,-2)U.N = (1,0,-1).(-1,0,0) = -1Intersection at (-1,0,2)!

Z = 2[0:0:1:-2]

Intersect with y = 0, [0:1:0:0](VN:U.N) = (0:0:0:0), overlapIntersect with y = 1, [0:1:0:-1](VN–nU:U.N) = (1:0:-1:0)Intersect at infinity

{U:V} [N:n] = (VN–nU:U.N)

Fall 2015

Page 29: Pl ü cker Coordinate of a Line in 3-Space

{U:V} and (P:w) [UP – wV:V.P]

29

Common Plane1

U = (0,0,1)V = UQ = (0,0,1) (0,1,0) = (-1,0,0)

(P:w) = (1:1:0:1)

[UP–wV:V.P] = [0:1:0:-1]

Derivation pending

x

y

z

Fall 2015

L={U

:V}

P

Page 30: Pl ü cker Coordinate of a Line in 3-Space

30

Common Plane2

{U:V} and (N:0) [UN:V.N]

U = (0,0,1)V = UQ = (-1,0,0)

N = (1,0,0) …(-1,0,0) get the same … (1,0,1) also get the same (N need not U)⊥

[UN:V.N] = [0:1:0:-1]

Derivation pending

x

y

z

Fall 2015

L={U

:V}

N

Page 31: Pl ü cker Coordinate of a Line in 3-Space

31

Generate Points on Line1

Useful for:

• Computing transformed Plucker coordinate (p.50)

• Line-in-plane testO

[V:0]

[N:0]

LUse {U:V} [N:0] = (VN:U.N)

U

NAny N will do, as long as U.N0{Take non-zero component of U}N

O

Also related: p. 18, 35L

Does not work for line with V=0(line through origin)Fall 2015

Page 32: Pl ü cker Coordinate of a Line in 3-Space

32

Example

As before: L = {U:V} = {0:0:1:-1:0:0}

Take N = (0,1,1)

{U:V} [N:0] = (VN:U.N) = (0:1:-1:1)x

y

z

Fall 2015

Page 33: Pl ü cker Coordinate of a Line in 3-Space

33

Line-in-Plane Test

Point-on-Plane Test [N:n] contain (P:w) IFF N.P+nw = 0

Is L in [1:1:0:0]? No

(1,1,0).(0,1,-1) + 0 0

Is L in [1:0:0:0]? Yes

(1,0,0).(0,1,-1) + 0 = 0

x

y

z

1. Generate two points on the line 2. Do the Point-on-Plane test

Fall 2015

Page 34: Pl ü cker Coordinate of a Line in 3-Space

34

Point-on-Line Test

x

y

z

N

N1

N2

N,N1,N2: three base vectorsChoose N according to nonzero component of UN1 and N2 are the other two axes

Check point-in-plane with [UN1:V.N1] and [UN2:V.N2](common plane, p.29)

U

1. Generate two independent planes

containing the line.

2. Perform point-on-plane tests twice

Fall 2015

Page 35: Pl ü cker Coordinate of a Line in 3-Space

35

Example

x

y

z

N

N1

N2

U

L = {0:0:1:-1:0:0}, P = (0:1:-2:1)N = (0,0,1), N1 = (0,1,0), N2 = (1,0,0)Plane1 [-1:0:0:0] (-1,0,0).(0,1,-2)+0 = 0Plane2 [0:1:0:-1] (0,1,0).(0,1,-2) - 1 = 0

P

Fall 2015

Page 36: Pl ü cker Coordinate of a Line in 3-Space

• Parametric equation of L• Weighted sum of (U:0)

and T=(VU:U.U)

Pnt(t) = (VU+tU:U.U)

36

Duality

• [Parametric form of planes through L]– Generate two planes as

page 33…

L = {0:0:1:-1:0:0}Pnt(t) = (0:-1:t:1)

x

y

z Fall 2015

Page 37: Pl ü cker Coordinate of a Line in 3-Space

37

Two Lines Can Be …

• Identical– Linearly dependent Plucker coordinates

• Coplanar: find the common plane– Intersecting: find intersection– Parallel: find distance

• Skewed: find distance, closest points

Fall 2015

Page 38: Pl ü cker Coordinate of a Line in 3-Space

Coplanarity Test(intersect)

• Two lines L1 {U1:V1}, L2 {U2:V2} are coplanar if

U1.V2+V1.U2 = 0

38

L1&U2: [U1U2:V1.U2]

L2 &U1: [U2U1:V2.U1]

Same plane!

L1

L2parallel lines

(U1U2=0) are automatically coplanar

Fall 2015

Page 39: Pl ü cker Coordinate of a Line in 3-Space

39

L1 & L2 Coplanar

• Intersecting point (non-parallel)– Find the common plane: [U1U2:V1.U2]

((V1.N)U2-(V2.N)U1-(V1.U2)N:(U1U2).N)

– Where N is unit basis vector, independent of U1 and U2, (U1U2).N ≠0)

• Parallel (distinct) lines (U1U2 = 0)Common plane:

– [(U1.N)V2-(U2.N)V1:(V1V2).N] with N.U10

L1: {U1:V1}L2: {U2:V2}

Fall 2015

Page 40: Pl ü cker Coordinate of a Line in 3-Space

Example

40

L1={1:1:0:0:0:1}L2={0:1:0:0:0:-1}Pick N = (0,0,1)((V1.N)U2-(V2.N)U1-(V1.U2)N:(U1U2).N)=(1:2:0:1)

L1={1:1:0:0:0:1}L2={2:2:0:0:0:-4}

Pick N = (1,0,0)[(U1.N)V2-(U2.N)V1:(V1V2).N]

=[0:0:-6:0]

Fall 2015

x

y

y

Page 41: Pl ü cker Coordinate of a Line in 3-Space

41

L1 & L2 Skewed

• Not coplanar IFF skewed

• Find distance

• Find pair of closet points

Fall 2015

Page 42: Pl ü cker Coordinate of a Line in 3-Space

42

Distance Computation in R3

221

221

221 zzyyxx 222

111

cba

dczbyax

222

21

cba

dd

  Point (x2:y2:z2:1)

Line {U:V} Plane [D:d]

Point (x1:y1:z1:1)

(1)

Line {U:V}  (2a): parallel

(2b): skewed

If no intersection,

generate a point on line & point-plane distance

Plane [D:d]   

Fall 2015

Page 43: Pl ü cker Coordinate of a Line in 3-Space

43

(1) Line-Point Distance

L

p

D

1. Generate 1 containing L & p as [D:d]2. Generate 2 containing L & D3. Compute distance from p to 2

1=[D:d]

2

Fall 2015

Page 44: Pl ü cker Coordinate of a Line in 3-Space

44

(2a) Parallel Line Distance

[D:d]

D U

1 2

L1 L2Find the common plane [D:d] Find 1 containing L1 and DFind 2 containing L2 and DFind distance between 1 & 2

D

Fall 2015

Page 45: Pl ü cker Coordinate of a Line in 3-Space

45

(2b) Skewed Line Distance

1

2

L1

L2

U1

U2

Generate 1 containing L1 and U2

Generate 2 containing L2 and U1

Find distance between 1 & 2

How to find the pair of points that are

closest?Fall 2015

Page 46: Pl ü cker Coordinate of a Line in 3-Space

46

Application

• Ray-polygon and ray-convex volume intersection

Fall 2015

Page 47: Pl ü cker Coordinate of a Line in 3-Space

47

Relative Position Between 2 Lines

Looking from tail of L1 …

Here, the lines are “oriented”!!{orientation defined by U}

Fall 2015

Page 48: Pl ü cker Coordinate of a Line in 3-Space

48

Example

x

y

zL1

L2L3

R

L1={1:0:0:0:0:0}L2={-1:1:0:0:0:-1}

L3={0:-1:0:0:0:0}

R={0:0:-1:1/3:-1/3:0} = {0:0:-3:1:-1:0}

R vs. L1: (0:0:-3).(0:0:0) + (1:-1:0).(1:0:0) = 1 > 0

R vs. L2: (0:0:-3).(0:0:-1) + (1:-1:0).(-1:1:0) = 1 > 0

P:(1/3,1/3,0)Q:(1/3,1/3,1)

R vs. L3: (0:0:-3).(0:0:0) + (1:-1:0).(0:-1:0) = 1 > 0

Note here the line is “oriented”; L and –L are not the same

Fall 2015

Page 49: Pl ü cker Coordinate of a Line in 3-Space

49

Example

x

y

zL1

L2L3

R

L1={1:0:0:0:0:0}L2={-1:1:0:0:0:-1}

L3={0:-1:0:0:0:0}

R={0:0:-1:1:-1:0}

R vs. L1: (0:0:-1).(0:0:0) + (1:-1:0).(1:0:0) = 1 > 0

R vs. L2: (0:0:-1).(0:0:-1) + (1:-1:0).(-1:1:0) = -1 < 0

P:(1,1,0)Q:(1,1,1)

R vs. L3: (0:0:-1).(0:0:0) + (1:-1:0).(0:-1:0) = 1 > 0Fall 2015

Page 50: Pl ü cker Coordinate of a Line in 3-Space

50

Discussion

• Plucker coordinate of transformed line– More efficient by computing the Plucker

coordinates of the transformed points (p.31)

Fall 2015

Page 51: Pl ü cker Coordinate of a Line in 3-Space

Extra

Page 52: Pl ü cker Coordinate of a Line in 3-Space

Vector Review

Fall 2015 52

kww

vvj

ww

vvi

ww

vv

www

vvv

kji

wv

21

21

31

31

32

32

321

321

sinwvwv

20cos

cos

vvvvv

wvwv

Vector triple product

Triple product

kwv :dependencylinear

Page 53: Pl ü cker Coordinate of a Line in 3-Space

53

Example

x

y

z

U=(1,0,-1)V=(0,-1,0)L={1:0:-1:0:-1:0}

Different normal gives different lineL’ = {1:0:-1: 0:-2:0}

Reverse normal gives different lineU=(1,0,-1)V=(0,1,0)L’={1:0:-1:0:1:0}

x

y

z Fall 2015

(because Q is different!)

Page 54: Pl ü cker Coordinate of a Line in 3-Space

IndexConstructors,

two points 11

tangent-normal 13

two planes 20

Distance (closest pt) to origin 18

Line-plane intersect25,26

Line-line intersect 38

Common plane

line, point 28

line, dir 29

Generate points on line 30, 35L

Parametric equation of line 35L

Parametric plane of line 35R

54

Line in plane30,32

Point in line 33

Point on plane 32

Line-line configuration37-40

Parallel (distance, common plane) 38

Intersect (point, common plane) 38

Skew 44

Distance (point-line-plane)41-44

Winding 45

Fall 2015