Piping11

Embed Size (px)

Citation preview

  • 7/26/2019 Piping11

    1/21

  • 7/26/2019 Piping11

    2/21

    Page 1 of 15

    HINDUSTAN PETROLEUM CORPORATION LIMITEDMUMBAI REFINERY

    DHT PROJECT

    PART : III

    SECTION : A

    TITLE: STRESS DESIGN BASIS

    DOCUMENT NO: 44LK-5100-00/L.02/0004/A4

    1 26.06.09 15 Revised as marked &Issued as Amendment

    no.2

    DRP PSK RMP/PVS

    0 09.12.08 15 Issued for FEED DRP PSK RMP/

    PVS

    Rev No. Issue Date Pages DescriptionPrepared

    ByChecked

    ByApproved

    By

  • 7/26/2019 Piping11

    3/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 2 of 15

    TABLE OF CONTENTS

    1.0 PURPOSE

    2.0 SCOPE

    3.0 DEFINITIONS

    4.0 SELECTION

    5.0 RELATED DOCUMENTATION

    6.0 PIPE STRESS ANALYSIS AND SUPPORTING

    7.0 CODES AND STANDARDS

    8.0 SOFTWARE USED

    9.0 DOCUMENT REQUIRED

    10.0 ATTACHMENTS

    10.1 CRITERIA FOR IDENTIFYING CRITICAL LINES

    10.2 CATEGORISATION FOR SEISMIC ANALYSIS

  • 7/26/2019 Piping11

    4/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 3 of 15

    1.0 PURPOSE

    This design basis deals with the subject of Identification of Stress Critical pipelines andpreparation of Critical line list. This procedure also defines the minimum requirements forperforming stress analysis, design and location of spring, support and extent of systemanalysis with the extent of documentation required for flexibility analysis

    Purpose of piping stress analysis is to ensure:

    Safety of piping and piping components

    Safety of connected equipment and supporting structure

    Piping deflections are within the limits

    2.0 SCOPE

    This specification covers the supply of engineering services to perform a complete piping andpipe support analysis for new and modified piping systems for HPCL Mumbai Refinery for itsDHT Project.

    3.0 DEFINITIONS

    3.1 CRITICAL LINES / CRITICAL LINE LIST

    Critical lines or Critical Line List as referred to in this procedure relates to Piping StressCritical Lines and does not include or refer to process critical lines.

    3.2 STRESS ANALYSIS TEMPERATURE

    Stress Analysis Temperature refers to either Maximum Operating Temperature or Steam-out temperature / hot Nitrogen purging temperature of the lines under review whichever is

    higher. In absence of the above values, it refers to the Design Temperature of the line underreview. The Line List should be strictly followed in obtaining the above temperature

    3.3 DESIGN PRESSURE

    Design Pressure refers to the Design Pressure of the line under review as indicated on theLine List. Design Pressure is as defined in clause 301.2 of ASME B 31.3.

    3.4 TEMPERATURE FOR FLEXIBILITY ANALYSIS

    The temperature to be used for the flexibility analysis shall be taken as the maximum /minimum temperature which the pipe will see under any combination of different normal /abnormal operating conditions, as defined in clause 301.3 of ASME B 31.3. Where piping isexposed to direct sunlight, solar radiation temperature of 70

    0C is considered in establishing

    the maximum temperature of piping. Even, for non-critical piping exposed to direct sunlight onpipe rack or elsewhere, expansion loops, wherever essential, are provided to take care of

    pipe movements resulting from piping skin temperature due to solar radiation.

    In general, unless there is a difference of more than 500

    C between working temperature andthe design temperature, the design temperature should be taken as Flexibility temperature.Ifthe difference is higher than 50

    0C the stress analysis temperature is needed to be decided in

    consultation with process Licensor/Group.

    The temperature under Fire Condition are not considered for stress analysis except for flarelines.

    Ambient Temperature shall be considered as 21 C. the assumed piping installationtemperature. The displacement stress range from this installation temperature to theminimum recorded ambient temperature of 12

    0C being less than the same from installation

  • 7/26/2019 Piping11

    5/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 4 of 15

    temperature to the maximum operating temperature of hot piping in most cases the latergoverns as per clause 319.2.3 of ASME B 31.3.

    4.0 METHOD OF ANALYSIS

    A line is selected and listed as a Critical Line provided it falls under any one of thecategories defined in Attachment 10.1 and is intended to include the specialrequirements of Piping Stress Engineer. It is hence defined as any line for which aflexibility review is required or where pipe supporting is deemed to be critical and needsreview by a Stress Engineer.Hence all lines following outside the categorization aredeemed non critical which can be reviewed using nomographs manual calculation and/onvisual analysis.

    All lines in this list essentially need a formal computer analysis with a trunioncalculation,Flange leakage calculation and nozzle load calculation as required,Very largediameter (thin walled)pipes and ducts need special design consideration which should behighlighted.

    4.1 LINES DEEMED TO BE SUPPORT CRITICAL

    Lines subjected to two-phase flow

    Cross country pipelines.

    Lines with pipe thickness Sch 160 or greater

    Lines DN 400 and above with pipe thickness less than 8 mm.

    Lines DN 250 and above with corrosion allowance 3 mm and above

    Lines with high concentrated loads such as heavy valves or fittings etc.

    Lines downstream of Relief Valve / letdown Control Valves / bursting (rupture) discs.

    connecting to vent or flare systems or discharging to atmosphere.Liquid Blow down Lines

    Lined pipes

    Non-metallic pipes

    4.2 LINES NEEDING DYNAMIC ANALYSIS

    There are instances where in the frequency of the applied load is comparable to thenatural frequency of the piping system. Such systems tend to store the energy andrelease it according to certain scientific laws. Such a system is dynamic in nature and thestudy of the response of such a system is referred to as Dynamic Analysis. Examples ofsuch kind of systems are Relief Valve discharge lines, Safety valves / rupture discs, waterhammer and surge in pipelines, two phase slug flow in pipelines, reciprocating pumps andcompressor piping, submarine piping,pipelines subjected to earthquake of largemagnitude etc.

    4.3 SPECIAL PIPING

    Special piping forming part of reformer tubes, heater internal piping, etc. are treated asproprietary piping and nozzle loading at the Interface connections are to be co-ordinatedwith vendor.

    4.4 Pipelines which will require seismic analysis,Refer to Attachment 10.2

  • 7/26/2019 Piping11

    6/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 5 of 15

    5.0 RELATED DOCUMENTATION

    5.1 CRITICAL LINE LIST FORMAT.

    The critical line list shall be prepared from the project line list document by insertingfollowing relevant fields such as

    Stress category Critical (C) or Non-critical (NC), stress package no., stress analysistemperature, support critical nature of the line, dynamic loadings, steam out / purgetemperature etc.

    The list shall reflect analysis status of line that includes its input received date from design& output handover date to design and specific remark if any.

    5.2 LINES AFFECTING THE FLEXIBILITY OF CRITICAL LINES

    a) Non-critical Lines found to affect the flexibility of critical lines which have not beenincluded during the initial review are subsequently added to the Critical Line List.

    b) Non-critical Lines on which advice may be sought by the Lead Piping Engineer are

    not normally entered into the Critical Line List but covered verbally, or by amemorandum if a record is required.

    c) All non critical lines (having size more than half of main run size) that tie into criticallines should be considered as critical upto first anchor if they have significant effecton main line flexibility.

    6.0 PIPE STRESS ANALYSES AND SUPPORTING

    6.1 Piping support Criteria and General Guidelines :

    Piping system shall be properly supported taking in to account of the following points:

    a. Sustained Loads:

    Weight of piping (Bare pipe, service fluid, valves, flanges etc.)

    Weight of insulation (if any)

    Weight of online equipment (if any)

    Weight of instruments (if any)

    Pressure relief load due to safety valve operation

    Wind / Seismic loads (as and when required)

    Dynamic loads due to pulsating flow/two phase with slug flow

    Pressure-Thrust loads in case of expansion joints.

    b. Thermal Loads

    Thermal loads due to operating / design / steam out / decoking or any other abnormalcondition.

    Pipe supporting shall be preferably follow the basic span as given in Piping DesignBasis (Annexure D), except for flare line in offsite on trestles in which case the basicspan shall be restricted to max.18m. For sizes not covered in Piping Design Basis,basic span shall be established based on project requirement. For piping on rack orsleeper, as a minimum, providing resting support on every grid of pipe rack / sleepersmandatory. Guides shall be provided on straight run of pipes at intervals as specifiedin piping design basis (Annexure C), unless specifically becomes non-viable due toflexibility problems.

  • 7/26/2019 Piping11

    7/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 6 of 15

    Additional supports, guides, anchors, special supports like spring supports and swaybraces shall be provided based on detailed analysis of piping system to restrict theforces on nozzles of critical equipments like pumps, compressors, turbines,exchangers, fin-fan coolers etc.

    A permanent support, either resting or spring support shall be provided for lines whichdo not need any supporting otherwise but require supporting during maintenance.

    Pads will be provided at pipe supports, for all sizes and services of lines irrespective ofwhether shoes are required or not.

    Adequate care shall be taken for small bore(1 inch NB and below) branch frompiping. For all lines in 600# and above classes - lines having two phase flow and lines

    having pulsating flow such as discharge of reciprocating compressors andreciprocating pumps, all small bore branches (vents, drain, orifice traps, pressure /temperature tapings, sample connections), PSV / TSV inlets etc., shall be providedwith 2 number stiffeners at 90 Deg to each other from main pipe to impart adequatestiffness to the branch connection. The stiffeners shall be made from 6 mm thick flatsof material equivalent to the pipe material. Irrespective rating, the stiffeners shall beprovided for all orifice taps, all small bore tapings from PSV inlet / outlet lines and allsmall bore tapings from control valve manifolds.

    For pulsating flow lines, detailed thermal and vibration analysis by analog study shallbe done to decide on location of anchor supports and guides etc.

    In case of two phase with slug flow lines, piping design shall be checked by dynamicanalysis to prevent vibrations.

    Piping support design shall be such that deflection in piping systems due to sustained

    loads shall not exceed 15mm, between two adjacent supports.

    Long trunion type of supports (more than 0.5m) is to be avoided. In case long trunionsupport is unavoidable, trunion height shall be restricted to 0.5m and balance height tobe made up by providing extended structure.

    In case of heaters having the provision for steam-air decoking, the main lines anddecoking lines should not be in hanging position when not in operation.

    Piping passing through technological structure or passing near the concrete columnetc. should have adequate space or gap considering insulation, to avoid restriction ofline movement during thermal expansion.

    High density PUF block shall be considered for cold piping supports. Wooden blocksmay be used for load taking supports on vertical lines or as anchor supports.

    All pipe supports shall be so designed that there is no undue tension on equipmentflanges.

    6.2 Flexibility Analysis Criteria and General Guidelines:

    6.2.1 Piping stress analysis shall follow ASME B31.3 and shall complete to prevent overstressing of pipe during operating conditions with wind and seismic loadings. Duringsustained, occasional (wind and seismic) & thermal expansion loading on piping, thematerial allowable stresses shall be as per ASME B 31.3 for ASTM materials. For DINmaterial specifications the allowable stress values shall be calculated as per ASME B 31.3clause 302.3.2(d), wherein yield strength and ultimate strength values at temperature shallbe taken from DIN material standards. For DIN material specifications, the other materialproperties viz. elastic modulus, density, coefficient of thermal expansion shall be taken

  • 7/26/2019 Piping11

    8/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 7 of 15

    from the respective DIN material standards.

    6.2.2 Analysis shall include, but not be limited to the following; thermal, dead weight, internal

    pressure, wind and seismic, and a combination of these based on ASME B 31.3.

    6.2.3 At a minimum, two (2) orthogonal horizontal components and a vertical component ofground motion will be considered in the seismic analysis. The seismic design shall be asper UBC, seismic zone-3. The minimum seismic accelerations applied to the pipingsystem in the horizontal and vertical plane shall be 0.3g and 0.15g respectively as perseismic zone-3 of UBC. Accelerations shall be combined and applied as follows todetermine the most unfavourable condition:

    0.7X, 0.7Z, 1.0Y (Y is vertical)

    1.0X, 0.3Z, 1.0Y

    0.3X, 1.0Z, 1.0Y

    Where, X and Z = 0.3 and Y = 0.15

    Based on the above combinations, the magnitude and direction of accelerationsshall beapplied to the piping system as follows:

    X-Direction Z-Direction Y-Direction (Vert.)

    0.21g 0.21g 0.15g

    0.3g 0.09g 0.15g

    0.09g 0.3g 015g

    Direction of loading () shall produce the most unfavourable condition.

    6.2.4 Wind analysis shall follow ASCE-7 using a basic wind velocity of 160 km/h. At a minimum,wind loading shall be applied to all components in two (2) perpendicular horizontaldirections at elevation 10 m and above. Shape factor for piping shall be considered as 0.7.ASCE-7 Exposure category C [kz = 0.85 for z =4.6 m up to 274m] & gust factor of value 1.5 shall be considered for taking care of effect ofheight and topography. Wind and seismic loading will not occur simultaneously.

    6.2.5Analysis of all nozzles loading on vessels within the piping boundaries is covered in thisspecification. Nozzle analysis shall follow the guidelines of ASME Section VIII, Division 1,and WRC 297 & 107 (latest editions). Nozzle stresses shall fall within the allowable as perASME.

    6.2.6 All forces on connections to equipment shall not exceed maximum allowable as specifiedby equipment vendor.

    6.2.7 Pipe supports loads shall be based on the maximum loads determined by the pipinganalysis. JE shall evaluate all pipe support loading including friction forces due to thermalexpansion using good engineering judgement. Adjustments shall be made to the pipingsystem and model such that the pipe supports loads are within a reasonable uniformitythroughout the piping system.

    6.2.8 Various Load cases built in Caesar II to check stress in piping system are listed below.

    1

  • 7/26/2019 Piping11

    9/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 8 of 15

    Load Case Type Remarks

    1) WW+HP HYD

    2) W+T1+P1 OPE

    3) W+T2+P1 OPE

    4) W+T1+P1+U1 OPE Seismic load (0.21g,0.15g,0.21g)

    5) W+T1+P1+U2 OPE Seismic load (0.3g,0.15g,0.09g)

    6) W+T1+P1+U3 OPE Seismic load (0.09g,0.15g,0.3g)

    7) W+T1+P1-U1 OPE Seismic load (0.21g, 0.15g, 0.21g)

    8) W+T1+P1-U2 OPE Seismic load (0.3, 0.15g,0.09g)

    9) W+T1+P1-U3 OPE Seismic load (0.09g, 0.15g, 0.3g)

    10) W+T1+P1+WIN1 OPE WIN1 +X direct wind load

    11) W+T1+P1+WIN3 OPE WIN3 +Z direct wind load12) W+P1 SUS

    13) W+P2 SUS

    14) L2-L12 EXP

    15) L3-L12 EXP

    16) L4-L2 OCC

    17) L5-L2 OCC

    18) L6-L2 OCC

    19) L7-L2 OCC

    20) L8-L2 OCC21) L9-L2 OCC

    22) L10-L2 OCC

    23) L11-L2 OCC

    24) L12+L16 OCC

    25) L12+L17 OCC

    26) L12+L18 OCC

    27) L12+L19 OCC

    28) L12+L20 OCC

    29) L12+L21 OCC

    30) L12+L22 OCC

    31) L12+L23 OCC

    P1- Maximum Operating Pressure W Dead Weight

    T1-Maximum Operating Temperature WW Water Weight

    P2-Design Pressure WIN Wind Load

    T2-Design Temperature U - Uniform Load

  • 7/26/2019 Piping11

    10/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 9 of 15

    HP- Hydro test Pressure L2 Load Case

    SUS, EXP, OCC, HYD, OPE Various load types, viz., sustained, expansion, occasional, hydro test,

    operating etc.

    6.2.9 The general guideline for stress analysis of Jacketed lines are as follows :

    a. Provide Spider (or spacer) at every 10 (3 m) and locate approx. 4 (100 mm) from elbow.b. Connect core to jacket by connect node and anchor.

    c. Verify clearance between core and jacket for thermal expansion.

    7.0 CODES AND STANDARDS

    The following codes and standards shall apply in the design and analysis of the pipingsystems covered under this specification:

    Allowable Stress ASME B 31.3

    Piping ASME B 31.3

    Nozzle Loadings As per specifications enclosed in the BID

    Wind Analysis ASCE 7 98

    8.0 SOFTWARE USED

    COADE

    s piping stress analysis software Caesar II, Version 5.0 or above shall be usedfor Pipe stress analysis. Pipe thickness & material allowable stress values will bemanually fed as input.

    9.0 DOCUMENT REQUIREMENT

    9.1 A written report shall be submitted on the piping and equipment analysis. The report shallinclude all pertinent information that shall include but not be limited to the following :

    Location and type of pipe supports with loads and movements.

    Location of expansion joints and movements.

    Vertical and horizontal loads including moments at all support points.

    Vertical and horizontal loads including moments on all equipment and vesselconnections.

    Caesar II analysis report, which shall include as a minimum, restraint forces,movements and stresses for all load cases. For flange connection, loaded with highbending moments and/or tensile forces in piping or at equipment connections, CaesarII flange leakage report will be provided. For piping analyzed, if subjected to hydro test,

    hydro test load case will be made in Caesar II to check for loading under hydro test &the requirement of any additional temporary supports for hydro test.

    Detailed nodal model used for the stress analysis

    All assumptions and limitations applied to the analysis.

    9.2 All dimensions and analysis shall be performed using metric and SI units.

    9.3 The final report / stress package folder shall be submitted as follows:

    1. Front sheet with Approval status

    1

  • 7/26/2019 Piping11

    11/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 10 of 15

    2. Isometrics with Hand written following information.

    Node numbers

    Type of supports selected by stress engineer Springs / Bellows data required for procurement like spring rate, loads, tide/untied

    information and SM (special material) identification.

    Maximum Expansion and sustain stress values with node number

    Nozzle/Anchors initial movements and piping imposed forces and moments onthe same

    Support loads (anchors, guides or rest) only they are above limit (The limit isdefined in the beginning of the project in consultation with civil)

    Design and maximum operating conditions

    Coordinate axis system considered for inputs

    Dimensional details for piping designer to locate supports in piping model/layout.

    3. Check list as per JE work instructions.

    4. Following outputs

    Load Cases

    Restraint summary

    Spring hanger report, if any

    5. Stress critical line list extract for the lines analysed

    6. Piping material specifications

    7. Equipment drawings with allowable loads, if available

    8. PID

  • 7/26/2019 Piping11

    12/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 11 of 15

    ATTACHMENT 10.1CRITERIA FOR IDENTIFING CRITICAL LINES.

    Note :1. Load sensitive equipment include fired heaters,boilers / steam generators, Reformers,lined

    vessels with lining of brittle material,non-ferrous equipment,Graphite heat exchangers,plate &

    frame heat exchanger,Spiral Heat Exchangers,Equipment on load Cells etc.2. Also include lines connected to nozzles having differential settlement / Thermal displacement

    more than 12 mm.3. Delta T refers to the differential temperature between the process piping and jacket.4. Very large diameter pipes (dia / thickness >100)and ducts need to be designed using finite

    element analysis methods.5. Category M Fluids involve toxic and harmful fluids which are identified by process.These

    services are lethal and hence critical.They need mandatory flange leakage calculations. To getthe loads at flanges,a computerised stress analysis is required.

    6. For critical lines in seismic prone, plants refer Attachment 10.2for categorisation.

    SRNO

    TemperatureT, Degree C

    PipeDiameter

    D,InchNB

    PipingMaterial

    Service and Description

    1 All D > 2 All Category M (Lethal) fluid service per ASME B31.3 (Ref. Note4).

    2 All D > 3 All Piping which is exposed to winds of speed > 75 mph.(RefNote 5)

    3 T < (-) 45 D > 3 All All Services.4 T > 200 D > 3 All All Services.5 T > 100 D > 16

    (see note

    3)

    All All Services.

    6 T > 65 D > 3 Non-Metallic

    All Services.

    7 T > 65 D > 2 All Lines with pressure > 900 psig.8A T < (-) 29 D > 3 All Piping connected to nozzle load-sensitive equipment, (see

    note 1)8B T > 65 D > 3 All air-cooled exchangers and rotating equipment (see note 1).9 DeltaT > 27

    (Note 2)D > 2 All Jacketed piping.(D=Inner Pipe NB)

    10A

    T > 65 D > 4 All Internally lined pipe (except glass lined).

    10B

    T < (-) 29 D > 4

    11 All All All Glass lined piping.

    12A

    T < (-) 40 D > 4 Metallic Underground Piping/Cross Country Piping.

    12B

    T > 80 D > 4 Metallic Underground Piping/Cross Country Piping.

    12C

    T < (-) 29 D > 8 Metallic Underground Piping/Cross Country Piping.

    12D

    T > 70 D > 8 Metallic Underground Piping/Cross Country Piping.

    13 All D > 2 All Safety Relief Valve Outlet Pipeline.14 All D > 2 All Pipelines connected to expansion joints or bellows (except

    rubber bellows used for alignment purpose).

  • 7/26/2019 Piping11

    13/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 12 of 15

    ATTACHMENT 10.2

    Categorization for Seismic analysis

    Definition: Plant Piping located in earthquake prone areas of the country will experience accelerationsimparted through foundations, structures and various equipment. Criticai piping {toxic, flammable, highpressure, high temperature, emergency) which must remain leak;tight or operable (deliver, control orshutoff flow) during or following the event, have nozzle loads within vendor's set limits, have minimumsway to avoid impact or interference with adjacent equipment / pipes / structures need seismic analysis todetermine the effects.Based on Indian code IS 1893-2002, areas falling under Zones IV and V are categorized as "Severe"while Zones II and III are prone to earthquakes of "Moderate" or "Low" intensity. The IS 1893-2002guidelines for BUILDINGS to be seismically designed are as beiow;

    For regular buildings, if the building height is greater than 40 m in Zones IV and V or greater than90 m in Zone II and III ;

    For irregular buildings, if height is more than 12 m in Zones IV and V and more than 40 m in

    Zones II and III,

    Method: Process Plants normally fall within the irregular building category and hence the piping andequipment are to be analysed accordingly. To get realistic results, it is essential that seismic analysis forpiping be carried out using the Dynamic analysis method viz. Time History method or Modal ResponseSpectrum method. Piping connected to tail columns/vessels, chimneys and any slender structure shouldpreferably be analysed using dynamic analysis. Long-run piping on tall slender structures (such as flarepiping on trestles) should be analysed using composite analysis. For toxic/lethal piping systems, theseismic anchor movements also need to be imposed during the dynamic analysis. However forsimplification's sake wherever dynamic analysis is not mandatory by the client or the responsespectra cannot be derived from data available, seismic design can be done using the EquivalentStatic (static coefficient) method.

    The seismic accelerations, response spectra and anchor movement values are to be obtained from theCivil Group.For seismic analysis, earthquake loadings shall not be considered to act simultaneously with wind. Also itis to be noted that cross-country pipelines, buried piping & piping for nuclear installations will needrigorous analysis and the selection criteria below does not apply. Refer LWI 220 for explanatorytechniques for seismic design of piping systems (under development)

    Selection: With due considerations to fluid criticality and intended operation, in order to assess maximumimpact it is recommended that only critical piping with higher sizes (i.e. higher mass and/or at higherelevations which in turn reflects as higher force) be seismicaiiy computer analysed. Since not explicit inIndian codes, following guidelines are a conservative selection.

    All critical piping systems aboveground with a weight (self+fluid+insuiation) greater than 410kg/m (corresponds to a 24" STD schedule water filled pipe).

    All critical piping systems above ground with any portion routed at a height (height as per theabove IS 1893 building categorization) with a weight greater than 210 kg/m (corresponds to a 16"STD schedule water filled pipe). Give due consideration to piping connected to tall equipment &piping routed on tall slender structures.

    All emergency service critical piping systems above ground with any portion routed at orgreater than 25m with a weight greater than 110 kg/m (corresponds to a 10" STD schedulewater filled pipe).

    Smaller critical lines (3" to 10") routed above 10 m elevation need to be seismically analysedprovided the wind load does not govern.

  • 7/26/2019 Piping11

    14/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 13 of 15

    Piping < 410 kg/m and below 10m elevation and non-critical piping can be considered as non-seismic critical. Such systems shall be made rigid overall preferably by having every 2

    Fld / 3

    rd

    support (appx 12m) as a seismic lateral restraint (guide) and every straight run (> 3 timesstandard supporting span) with a longitudinal (axial) restraint. Equivalent Static Analysis needs tobe done only if peak spectral acceleration / static seismic coefficient is > 0.3 g, maxcomponent weight is > 200kg and pipe centerline is > 1m.

    Branch lines can be decoupled from the run lines if I run> 25 leaned where I = moment of inertia.These guidelines are indicated graphically on Sht 2 of 2 of this attachment.

  • 7/26/2019 Piping11

    15/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 14 of 15

    ATTACHMENT 10.2

    Notes :

    1. For site specific Zoning as per IS 1893, refer Project Initiation Checklist in ProjectProcedure

    2. If Dynamic Analysis is not mandatory by the client or the response spectra cannot bederived from data available, Equivalent Static Analysis can be done. However, ifEquivalent Static Analysis yields uneconomical results, Dynamic Analysis methods

    may be adopted to achieve realistic results.3. Piping in this category are non-seismic critical. Systems shall be made rigid overallpreferably by having every 2

    nd / 3

    rd support (appx 12m) as a seismic lateral restraint

    (guide) and every straight run {> 3 times standard supporting span) with a longitudinal(axial) restraint. Equivalent Static Analysis needs to be done only if peak spectralacceleration / static seismic coefficient is > 0.3 g, max component weight is > 200kg andpipe centerline is > 1m.

    4. A Tall equipment (tower.etc) located at grade is analogous to a Building (RCC or steelframe structure). Piping connected to be categorized accordingly.

    5. Piping on tall slender structures (such as flare piping on trestles) should undergocomposite analysis.

  • 7/26/2019 Piping11

    16/21

    Jacobs

    HPCL, Mumbai Stress Design Basis Part - III

    LSTK DOC NO: 44LK-5100-00/L.02/0004/A4 Section- A

    44LK 5100 Sheet 15 of 15

    6. Emergency services are isolation/relief systems which reduce the potential of a majorhazardous accident such as emergency process control, emergency pressure relief,emergency venting / blowdown, emergency shutdown, emergency purging / cooling, etcclassified as safety critical by Process.

  • 7/26/2019 Piping11

    17/21

    FF, 125 AARH, AWWA C207 CL.D FLANGES.

    12 AWWA C207 CL.D FLANGES SHALL BE OF HUB TYPE.

    13 CORROSION ALLOWANCE SHALL BE 3.00MM FOR SIZES UP TO 2" AND NIL FOR SIZES 3" AND ABOVE.

    6 FOR U/G STEEL PIPES, PIPE WALL THK.SHALL BE CALCULATED AS PER SERVICE REQUIREMENT BY USING APPLICABLE CODES AS

    B 31.3 / 31.4, AWWA-M-11 AND API RP-1102 AND HIGHER OF THREE THK.

    7 ALL PIPING COMPONENTS EXCEPT VALVES AND STRAINERS FOR SIZES 3" & ABOVE SHALL BE CEMENT LINED AT SITE.

    8 VALVES AND Y-TYPE STRAINERS FOR SIZES 3" & ABOVE SHALL BE INTERNALLY FRE-LINED EXCEPT THE TRIMS.

    1 NDT REQUIREMENT SHALL BE AS PER JOB SPECIFICATION 44LK-5100-00/L.02/0103/A4.

    2 USE BUTTERFLY VALVES INSTEAD OF GATE VALVES FROM 10" ONWARDS IN WATER SERVICE AND UP TO 700C.

    3 BUTTERFLY VALVES FOR THE SPEC ARE PN10 RATED WITH A MAXIMUM PRESSURE OF 10.2 KG/CM2G

    5 BLIND FLANGES AND SPACER & BLINDS SPECIFIED TO MANUFACTURER'S STANDARD SHALL BE DESIGNED FOR 700C AND 6.6 KG/CM2G TO SUIT 150#,

    10 FOR SIZES >24", SPACER & BLIND SHALL BE DESIGNED BY THE MANUFACTURER AS PER ASME B 31.3

    PIPE JOINTS

    3" & ABOVE

    BUTT WELDED

    A. CODE

    2" TO 2.5"

    ITEM

    PRESS. CONN. 0.75" SCRD NIPPLE WITH VALVE

    VENTS ON LINES 1.5"

    TEMP. CONN. 1.5" FLANGED

    ON LINES 2" AS PER P&ID OR 0.75".

    DRAINS ON LINES 1.5" AS PER P & ID

    PIPING MATERIAL SPECIFICATION

    Client

    SIZE

    SPECIAL NOTES

    PRESS

    Document No.

    DESIGN PRESSURE FOR BUTTERFLY VALVES IS LIMITED UPTO 10 BAR.

    Project - Location

    NOTES

    52.1152.11

    SEA COOLING WATER SUPPLY & RETURN

    TEMPERATURE ( Deg. C ) AND PRESSURE ( Kg/Sq. cm g ) RATINGS

    7065TEMP

    ON LINES 2" AS PER P&ID OR 0.75".

    AS PER P & ID

    FLANGED

    : 300 #

    : CARBON STEEL

    : -

    51.09

    0.5" TO 1.5"

    FLANGED

    RATING

    SPECIAL REQUIREMENT

    BASIC MATERIAL

    4 ALL BLIND FLANGES, FIG 8 FLANGES AND SPACER & BLINDS SHALL BE FRE-LINED FOR THE WETTED PORTIONS.

    50.48 49.66

    PMC

    DESCRIPTION

    MAINTAINENCE

    JOINTS

    CORR. ALLOWANCE : 0 MM / 3MM (UP TO 2")

    : 1

    38 50

    SW COUPLING

    11 FOR SIZES ABOVE 30", TEMPERATURE AND PRESSURE RATINGS SHALL BE 700C & 6.6 KG/M2G RESPECTIVELY.

    0

    REVISION

    SERVICE

    9 FORGINGS ARE ACCEPTABLE INSTEAD OF PLATE MATERIAL FOR BLIND FLANGES AND SPACER & BLINDS.

    ALL

    Page 1 of 5

    : HINDUSTAN PETROLEUM CORP. LTD. PIPE CLASS

    : DHT MUMBAI

    B5Y: JACOBS ENGINEERING. INDIA PVT. LTD.: 44LK-5100-00/L.02/0101/A4

  • 7/26/2019 Piping11

    18/21

    BRANCH CONNECTIONS

    44

    42

    40

    36

    34

    T 32

    T R 30

    T R R 28

    T R R R 26

    T R R R R 24

    22

    T R R R R R 20

    T R R R R R R 18

    T R R R R R R R 16

    T R R R R R R R R 14

    T R R R R R R R R R 12

    T R R R R R R R R R R 10

    T R R R R R R R R R R R 8

    T R R R R R R R R R R R R 6

    5

    T R R R R R R R R R R R R R 4

    3

    T P R R R R R R R R R R R R R 3

    2T P P P P P P P P P P P P P P P 2

    T T P P P P P P P P P P P P P P P 1

    1

    T T T P P P P P P P P P P P P P P P 1

    T T T T P P P P P P P P P P P P P P P

    T T T T T P P P P P P P P P P P P P P P

    1 1

    1 2 2

    3 3 4 5 6 8 1

    012

    14

    16

    18

    20

    22

    24

    26

    28

    30

    32

    34

    36

    40

    42

    44

    L SWEEPOLET

    I INSTRUMENT TEE

    X REFER NOTESR

    S

    J

    PIPE TO PIPE

    REINFORCED

    SOCKOLETS

    THREADOLET

    P

    PIPING MATERIAL SPECIFICATION

    RATING : 300 # Client : HINDUSTAN PETROLEUM CORP. LTD. PIPE CLASS

    : -

    CORR. ALLOWANCE : 0 MM / 3MM (UP TO 2")

    SPECIAL REQUIREMEN

    W

    REVISION : 1

    H H. COUPLING WELDOLETS

    CODE DESCRIPTION

    SADDLE FUSED JT

    : DHT MUMBAIBASIC MATERIAL : CARBON STEEL

    F

    BRANCHPIPENB

    TEES

    RUN PIPE NB

    T

    B5Y: JACOBS ENGINEERING. INDIA PVT. LTD.: 44LK-5100-00/L.02/0101/A4

    Page 2 of 5

    PMC

    Document No.

    Project - Location

    1

  • 7/26/2019 Piping11

    19/21

    N

    N

    CALC IS-3589 IS-3589 GR.330 BE, WELDEDPIP PIPE 24.000 48.000

    ELB90 ELBOW. 90 08.000 48.000 M B-16.9 ASTM A 234 GR.WPB-W BW, 1.5D

    ELB45 ELBOW. 45 08.000 48.000 M B-16.9 ASTM A 234 GR.WPB-W BW, 1.5D

    M: TO MATCH PIPE SCHEDULE

    M,M B-16.9 ASTM A 234 GR.WPB BWTRED T.RED 02.000 02.000

    TEQ T.EQUAL 08.000 48.000 M B-16.9 ASTM A 234 GR.WPB-W BW

    M B-16.9 ASTM A 234 GR.WPB BWTEQ T.EQUAL 03.000 06.000

    TEQ T.EQUAL 02.000 02.000 M B-16.9 ASTM A 234 GR.WPB BW

    M B-16.9 ASTM A 234 GR.WPB BW, 1.5DELB45 ELBOW. 45 03.000 06.000

    ELB45 ELBOW. 45 02.000 02.000 M B-16.9 ASTM A 234 GR.WPB BW, 1.5D

    FEF SPCR & BLND 10.000 24.000ASME

    B-16.48ASTM A 105, FRE LINED 300, FF/ 250 AARH

    ASMEB-16.48

    ASTM A 105, FRE LINED 300, FF/ 250 AARHFEF FLNG.FIG.8 00.500 08.000

    FLB FLNG.BLIND 26.000 48.000AWWA-

    C207 CL.DASTM A 105, FRE LINED 300, FF/ 250 AARH

    FLB FLNG.BLIND 00.500 24.000

    FLG FLNG.SO 02.000 24.000 B-16.5 ASTM A 105 300, FF/ 250 AARH

    FLG FLNG.SO 26.000 48.000AWWA-

    C207 CL.DASTM A 105 300, FF/ 250 AARH

    14.00 IS-3589 IS-3589 GR.330 BE, WELDEDPIP PIPE 20.000 20.000

    14.00 IS-3589 IS-3589 GR.330 BE, WELDEDPIP PIPE 16.000 18.000

    12.00 IS-3589 IS-3589 GR.330 BE, WELDEDPIP PIPE 12.000 14.000

    10.00 IS-3589 IS-3589 GR.330 BE, WELDEDPIP PIPE 08.000 10.000

    PIP PIPE 03.000 06.000 STD B36.10 ASTM A 106 GR.B BE, SEAMLESS

    PIP PIPE 02.000 02.000

    PIP PIPE 01.000 01.500

    PE, SEAMLESS

    BE, SEAMLESS

    00.750

    PE, SEAMLESS

    ASTM A 106 GR.B PBE, SEAMLESS

    XS B36.10 ASTM A 106 GR.B

    XS B36.10 ASTM A 106 GR.B

    S160 B36.10 ASTM A 106 GR.B

    NIP NIPPLE 00.500 00.750

    PIP PIPE 00.500

    PIPING MATERIAL SPECIFICATION

    ClientRATING : 300 #

    TRED T.RED 00.500 00.750 B-16.11 ASTM A 105 SW, 6000

    B-16.11 ASTM A 105 SW, 6000TEQ T.EQUAL 00.500 00.750

    ELB45 ELBOW. 45 00.500 00.750

    SW, 6000

    B-16.11 ASTM A 105 SW, 6000

    M B-16.9 ASTM A 234 GR.WPB

    00.750 B-16.11 ASTM A 105

    26.000 48.000

    ELB90 ELBOW. 90 02.000 02.000

    Fitting Group

    ELB90 ELBOW. 90 00.500

    BW, 1.5D

    ELB90 ELBOW. 90 03.000 06.000 M B-16.9 ASTM A 234 GR.WPB BW, 1.5D

    Flange Group

    FLG FLNG.SW 00.500 01.500 M

    300, FF/ 250 AARHFEF SPCR & BLND

    Dmn. STD DescriptionCommodity

    CodeMaterial

    Pipe Group

    NIP 01.000

    Lower

    Size

    (Inch)

    Input

    Id.

    BASIC MATERIAL

    SPECIAL REQUIREMENT

    Item

    Type

    PMC

    Project - Location

    REVISION : 1

    CORR. ALLOWANCE

    : CARBON STEEL

    : -

    : 0 MM / 3MM (UP TO 2")

    NIPPLE PBE, SEAMLESS

    Document No.

    Sch/

    Thk

    Upper

    Size

    (Inch)

    M B36.10

    B36.1001.500 ASTM A 106 GR.BM

    B-16.5 ASTM A 105 300, FF/ 250 AARH

    MNF'STD ASTM A 285 GR.C,FRE LINE

    B-16.5 ASTM A 105, FRE LINED 300, FF/ 250 AARH

    : HINDUSTAN PETROLEUM CORP. LTD. PIPE CLASS

    : DHT MUMBAI

    B5Y: JACOBS ENGINEERING. INDIA PVT. LTD.: 44LK-5100-00/L.02/0101/A4

    TRED T.RED 01.000 01.500 B-16.11 ASTM A 105 SW, 3000

    B-16.11 ASTM A 105 SW, 3000TEQ T.EQUAL 01.000 01.500

    ELB45 ELBOW. 45 01.000 01.500

    ELBOW. 90 01.000 01.500

    B-16.11 ASTM A 105 SW, 3000

    B-16.11 ASTM A 105 SW, 3000ELB90

    1

    1

    1

    1

    1

    1

    1

    1

    Page 3 of 5

  • 7/26/2019 Piping11

    20/21

    N

    N

    PIPING MATERIAL SPECIFICATION

    ClientRATING : 300 #

    Dmn. STD DescriptionCommodity

    CodeMaterial

    Lower

    Size

    (Inch)

    Input

    Id.

    BASIC MATERIAL

    SPECIAL REQUIREMENT

    Item

    Type

    PMC

    Project - Location

    REVISION : 1

    CORR. ALLOWANCE

    : CARBON STEEL

    : -

    : 0 MM / 3MM (UP TO 2") Document No.

    Sch/

    Thk

    Upper

    Size

    (Inch)

    : HINDUSTAN PETROLEUM CORP. LTD. PIPE CLASS

    : DHT MUMBAI

    B5Y: JACOBS ENGINEERING. INDIA PVT. LTD.: 44LK-5100-00/L.02/0101/A4

    Fitting Group

    M: TO MATCH PIPE SCHEDULE

    GAV VLV.GLOBE 02.000 16.000 BS-1873

    BODY-ASTM A 216 Gr.WCB,

    FRE LINED

    TRIM-BRONZE

    FLGD, 300, B-16.5,

    FF/125AARH

    BS-5155

    BODY-ASTM A 216 Gr.WCB,

    FRE LINED

    TRIM-BRONZE

    FLGD, 300, AWWA C207,

    FF/125AARH

    API-609/

    BS-5155

    FLGD, 300, B-16.5,WAF/

    FF/125AARH

    BFV VLV.BTRFLY 26.000 48.000

    BFV VLV.BTRFLY 03.000 24.000

    IS:778 CL.2BODY-IS 318 GR.2 LEADEDTIN BRONZE, TRIM-IS 320

    ALLOY HT2

    SCRF, CL.2, 3000,

    B-1.20.1

    BODY-ASTM A 216 Gr.WCB,

    FRE LINED

    TRIM-BRONZE

    FLGD, 300, AWWA C207,

    FF/125AARH

    BS-1868

    BODY-ASTM A 216 Gr.WCB,

    FRE LINED

    TRIM-BRONZE

    CHV VLV.CHECK 00.500 01.500

    CAP CAP 08.000 48.000 M B-16.9 ASTM A 234 GR.WPB BW

    M B-16.9 ASTM A 234 GR.WPB BWCAP CAP 03.000 06.000

    CAP CAP 02.000 02.000 M B-16.9 ASTM A 234 GR.WPB BW

    M,M MNF'STD IS-3589 GR.330 BWREDE REDUC.ECC 08.000 48.000

    REDE REDUC.ECC 03.000 06.000 M,M B-16.9 ASTM A 234 GR.WPB BW

    M,M B-16.9 ASTM A 234 GR.WPB BWREDE REDUC.ECC 02.000 02.000

    REDC REDUC.CONC 08.000 48.000 M,M MNF'STD IS-3589 GR.330 BW

    M,M B-16.9 ASTM A 234 GR.WPB BWREDC REDUC.CONC 03.000 06.000

    REDC REDUC.CONC 02.000 02.000 M,M B-16.9 ASTM A 234 GR.WPB BW

    M,M B-16.9 ASTM A 234 GR.WPB-W BWTRED T.RED 08.000 48.000

    TRED T.RED 03.000 06.000 M,M B-16.9 ASTM A 234 GR.WPB BW

    GAV

    CPLF CPLNG.FULL 01.000 01.500 B-16.11 ASTM A 105

    GAV

    VLV.GLOBEGAV

    FLGD, 300, B16.5,

    FF/125AARH

    BODY-ASTM A 216 Gr.WCB,

    FRE LINED

    TRIM-BRONZE

    API-60024.00002.000VLV.GATE

    SCRF, CL.2, 3000,

    B-1.20.1

    SWGC SWAGE.CONC 00.500 03.000

    Valves Group

    SW, 3000

    CPLH CPLNG.HALF 01.000 01.500

    VLV.CHECK API-594

    00.500

    CHV

    VLV.GATE 00.500 01.500

    26.000 48.000

    01.500

    SCRF, CL.2, 3000,

    B-1.20.1

    IS:778 CL.2

    BODY-IS 318 GR.2 LEADED

    TIN BRONZE, TRIM-IS 320

    ALLOY HT2

    IS:778 CL.2

    BODY-IS 318 GR.2 LEADED

    TIN BRONZE, TRIM-IS 320

    ALLOY HT2

    FLGD, 300, B-16.5,

    FF/125AARH

    BODY-ASTM A 105 / A216

    GR.WCB, FRE LINED

    TRIM-BRONZE

    B-16.11 ASTM A 105 SW, 6000

    SW, 3000B-16.11 ASTM A 105

    CPLF CPLNG.FULL 00.500 00.750

    CAP CAP 00.500 00.750

    M,M BS-3799 ASTM A 105 PBE

    B-16.11 ASTM A 105 SW, 6000

    CPLH CPLNG.HALF 00.500 00.750 B-16.11 ASTM A 105 SW, 6000

    CAP CAP 01.000 01.500 B-16.11 ASTM A 105 SW, 3000

    SWGE SWAGE.ECC 00.500 03.000 M,M BS-3799 ASTM A 105 PBE

    CHV VLV.CHECK 02.000 24.000

    Page 4 of 5

  • 7/26/2019 Piping11

    21/21

    N

    N

    PIPING MATERIAL SPECIFICATION

    ClientRATING : 300 #

    Dmn. STD DescriptionCommodity

    CodeMaterial

    Lower

    Size

    (Inch)

    Input

    Id.

    BASIC MATERIAL

    SPECIAL REQUIREMENT

    Item

    Type

    PMC

    Project - Location

    REVISION : 1

    CORR. ALLOWANCE

    : CARBON STEEL

    : -

    : 0 MM / 3MM (UP TO 2") Document No.

    Sch/

    Thk

    Upper

    Size

    (Inch)

    : HINDUSTAN PETROLEUM CORP. LTD. PIPE CLASS

    : DHT MUMBAI

    B5Y: JACOBS ENGINEERING. INDIA PVT. LTD.: 44LK-5100-00/L.02/0101/A4

    MNF'STDB:A216 GR.WCB (GALV);

    INT: SS 304

    FLANGED, Y-TYPE,

    300, FF/125AARH

    Trap/Strainer Group

    TSR STRNR.TEMP 03.000

    PSR STRNR.PERM 03.000 24.000

    24.000 MNF'STDB:A285 GALV,

    INT: SS 304

    CONE TYPE, 300,

    FF/125AARH

    GAS GASKET 26.000 48.000 AWWA-C207 CL.D

    Buna-N (Nitrile) FULLFACE, 300, 2MM

    M: TO MATCH PIPE SCHEDULE

    B-16.21-

    ANSI B

    16.5

    16.000 B-18.2BOLT:A307 GR.B, GALV

    NUT: A563 GR.B, GALV

    Buna-N (Nitrile) FULLFACE, 300, 2MM

    Bolt Group

    BOM BOLT.M/C 00.500

    GAS GASKET 00.500 24.000

    Gasket Group

    B-18.2BOLT:A193 GR.B7,GALV

    NUT: A194 GR.2H, GALVBOS BOLT.STUD 18.000 48.000

    Page 5 of 5