187
() C) () C) () C) () 0,\ VIT, Pune Pagel o () () () C) c) 0\ o o o o o o o o '0 o o o e' () () o o Piping Design, Engineering and Material of Construction

PIPING DESIGN-PART-I.PDF

Embed Size (px)

Citation preview

Page 1: PIPING DESIGN-PART-I.PDF

()

C)()

C)()

C)()

0,\

VIT, Pune Pagel

o()

()

()

C)

c)o·0\

oooooooo'0

oooe'()

()

oo

Piping Design, Engineering

and

Material of Construction

Page 2: PIPING DESIGN-PART-I.PDF

c)()

(.1

()

()

C)

()

o

VIT, Puna

Contents

Page 2

o()

()

()

C)

()

()

oooooooooooooeoooo

1 Piping and Instrumentation Diagram 3-3

2 Introduction to Piping System 4-8

3 Applicable ASME Codes for Piping System 9 - 11

4 Overview of Piping design in ASME 8 31.3 12 - 16

·5 Fundamentals of Pipe Stress Analysis 17-32

6 Selection of Material of Construction 33 - 44

7 Testing of Piping System 45 - 47

8 Illustrated Examples 48 -50

Annexures

A. Graphs and TablesB. Code ExtractsC. Diagrams, Tables of Steel MetallurgyD. Selectioh of Gasket MaterialE. Guideline Tables for Piping SpecificationF. Drawings of Valves and Pipe Fittings

Page 3: PIPING DESIGN-PART-I.PDF

o()

One may read / sense the following inform;3.tion from a given P & ID(s).

Information Provided by P & 10.

With all such information mentioned above a plant engineer can now work outthe total area required for proposed plant. He may further finalizes the locationsof. all faci.lities is side. the plant· boundary. All the drawings required further forconstruction of plant, such as eqUipment layout, can now be developed further.

Drawing is a language of engineers. It is a very powerful tool developed byengineers to communicate the design of a future product! plant, suggestivemodifications, etc. which is in his mind. All the communications, instructions anddirection for easy construction becomes very easy and handy if properly drawn.

Page 3

CHAPTER 1

Piping And Instrumentation Diagram

• Number of process flow streams .• Utilities required• Line sizes of all Process streams as well all Utilities required• Operational sequence, Fluid flow direction.• Basic material of construction of pipes and Equipment• Equipment required and their capacities/ sizes• Insulation requirement• Sequence for process stream tapings• Automation philosophy• Various process controls required and instruments used for those controls• Electric / power requirement.• Specific requirements about equipment elevations• Special requirements of slopes in pipe lines, gravity flow pipe lines, etc~

• Safety precautions considered/ Safety measures assured such as reliefvalves

• Termination of scope, i.e. battery limit

Piping and Instrumentation Diagram (P & 10 or PID) is an engineering drawingand such a powerful tool which makes a sound foundation for entire down streamplant engineering. This drawing provides very vital information, such asequipment required, ,line sizes of process flow fines, utilities required, material ofconstruction, automation philosophy, etc. Based on this information plant (piping)engineer further develops further constructional drawings.

VIT, Punec)ooooooooooooooooaooooooooo~.. ,'

aooo

Page 4: PIPING DESIGN-PART-I.PDF

VIT, Pune

CHAPTER 2

Introduction To Piping System

Page 4

({)

(0

\\J

CO

<D(0'

<0

CO

JO,CO\fOk ,,'

What is a piping system? The piping network installed to convey the fluidsrequired for chemical processes or otherwise between the various equipmentand end users and consists of various components such as valves, fittings,online measuring instruments, etc is called as a 'Piping System'.

PIPING COMPONENTS

Mechanical elements suitable for joining or assembly into pressure-tight fluidcontaining piping systems. Components include pipe, fittings, flanges, gaskets,bolting, valves, and devices such as expansion joints, flexible joints, pressurehoses, traps, strainers, in-line portions of instruments, and separators.

1 Pipe

A pipe or a tube is hollow, longitudinal product. 'A tube' is a general term usedfor. hollow product having circular, elliptical or square cross-section or for thatmatter cross-section of any closed perimeter.

A pipe is tubular product of circular cross-section that has specific sizes and.thickness governed,by particular dimensional standard.

Classification: Pipe can be classified based on methods of manufacture orbased on their applications.

Methods of Manufacture: Seamless pipes are manufactured by drawing ore'xtrusion process. ERWpipes (Electric resistance welded pipes) are formedfrom a strip which is longitudinally welded along its length. Welding may be byElectric resistance, high frequency, or inductionwelding, ERW pipes can also bedrawn for obtaining required dimensions and tolerances. '

Pipes in small quantities are manufactured byEFW (Electric fusion welding)process wherein instead ofeiectric' resistance. welding, the longitudinal seam iswelded by manual or automatic electric arc process.

Page 5: PIPING DESIGN-PART-I.PDF

VIT, Pune Page 6

c

(i

()

oooooo()

()

()

VQ

ooV

For the Nominal size up to including 12", there is one unique 0.0. (different fromnominal size) and I.D. would vary depending on schedule number. For Nominalsizes 14" and above, 0.0. is same as Nominal size.

Schedule No. : Pipes are designated by schedule number or weight designationlike Std. (S), Extra Strong (XS) and Double Extra Strong (XXS)

Pipe schedule number S is defined as:

Sch. NO. S = 1000 PIS

Where P = Internal Pressure (PSI)S = Allowable tensile strength of material used.

Common pipe schedules are Sch 40, Sch 80, Sch 120, Sch 1'60, for larger pipesizes intermediate schedule numbers (Sch20, Sch. 30 etc.) are also employed(Ref. Pipe Dimension Chart)

For Carbon steel, Pipe wall thickness tolerance is± 12 Y2% Le. Pipe wallthickness can vary 12 Y2% from thickness obtained from dimension chart.

For stainless steels schedule numbers are designated by suffix S Le.1 OS, 40S,80S etc.

Length: ' Pipes are manufactured in 'random length' which is + 20' -0" and indouble random length ±40' -0".

2 Fittings

Pipe fittings are the components. which tie together pipe lines, valves, and otherparts of a piping system. They are used in "making up" a pipe line. Fittingsmaycome in screwed, welded, soldered, or flanged varieties and are used to changethe size of the line or its direction and to join together the various parts that makeup a piping system.

The majority of pipe fittings are specified by the nominal pipe size,type, materialand the name of the fitting. Besides the end connections mentions above(screwed, welded, soldered,and flanged) it is· also possible to order bell andspigot fittings, which are usually cast iron and used for low-pressure service.

Page 6: PIPING DESIGN-PART-I.PDF

VIT, Pune Page 7

Butt-Welded Fittings (ASME 816.9): Welded fittings are used primarily insystems meant to be permanent. They have the same wall thickness as themating pipe. Among the many advantages of butt welded systems are thefollowing:

In general, a fitting is any component in piping system that changes its direction,alters its function, or simply makes end connections. A fitting is joined to thesystem by bolting, welding or screwing, depending on many variables in thesystem.

One of the major disadvantages of butt-welded systems is that are not easy todismantle. Therefore, it is often advisable to provide the system with enoughflanged joints so that it can be broken down at intervals. (One of the main usesof the butt-welded system is for steam lines, which are usually in high-temperaturel high-pressure service). '

Socket Welded Fittings (ASMEB16.11): Socket welded fittings have certainadvantages over butt-welded fittings. They are easier to use on small-sizepipelines and the ends of the pipes need not be beveled since the pipe end slipsinto the socket of the joint. With socket-welded, fittings there is no danger of theweld protruding into the pipeline and restricting flow or creating turbulence.,Thus, the advantages of the socket-welded system are:

('

(

()

()

()

()

()

oooooo

ooo

1.

2.

3.4.5.6.7.8.

1.2.

3.4.

5.

They have a smooth inner surface and offer gradual direction change withminimum turbulence.They require much less space for constructing and hanging the pipesystem.They form leak-proof constructions.They are almost maintenance free.They have a higher temperature and pressure limit.They form a self-contained system.They are easy to insulateThey offer a uniform wall thickness through-out the system.

The pipe does not need to be beveled.No tack welding is necessary for alignment since joint and the pipe areself -aligning.We.ld a material can not extend into the pipeline.It can be used in place of threaded fittings, therefore, reducing thelikelihood of leaks, which usually accompany the use of threaded fittings.It is less expensive and easier to construct than other welded systems.

Page 7: PIPING DESIGN-PART-I.PDF

ie iVIT, Pune PageS

('I

c\C)

(.-',J

C)

()

()

()

()

()

ooo()

ooo()

()

()

o()

ooo

One of the major disadvantages of this type of fitting is the possibility of amismatch inside the fitting where improperly aligned or mated parts may create arecess where corrosion could start.

Socket-welded fittings have the same inside diameter as standard (Schedule 40),extra strong (Schedule 80), and double extra strong (Schedule 160) pipe,depending on the weight of the fitting and mating pipe. Socket-welded fittingsrare covered in ASA 816.11. They are drilled to match the internal diameter ofschedule 40 or schedule 80 pipe.

Flanged Fittings (ASME 816.1 I 816.5): Flanged connections are found onpiping systems throughout the petrochemical and power generation fields onpipelines that are a minimum of2 in.(5.08 cm ) in diameter. The majority offlanged fittings are made of cast steel or cast iron.

Flanged steel fittings are used in place of cast iron where the system is subjectedto shock or high-temperature/ high-pressure situations where the danger of fire isprevalent, because cast iron has a tendency to c rack or rupture under certainstresses. A flange may be cast or forged onto the ends of the fitting or valve andbolted to a connecting flange which is screwed or welded onto the pipeline,thereby providing a tight joint. An assortment of facings, ring joint grooves, andconnections are available in flange variations.

One advantage of flanged systems is that they are easily dismantled andassembled. One of the disadvantages is that they are considerably costlier thanan equally rated butt-welded system, because of the large amount of metal thatgo into making up joints and flanges. Moreover, flanged fittings occupy far morespace than the butt-welded or screwed equivalents. Because of this higherweight load, a flanged system becomes far more expensive to support or hangfrom the existing structure.

Page 8: PIPING DESIGN-PART-I.PDF

(

(

(

('

VIT, Pune

CHAPTER 3

Page 9

Applicable ASME Codes For Piping System

c

1) GENERAL: ASME Piping Codes give stipulations and guidelines for thedesign, materials, manufacture and testing of pressurePiping. These are issued by the American Society ofMechanical Engineers, New York.

()

(~

ooC)

ooo()

()

(;

oco()

()

It is a LIVE code and is revised and updated periodically byissuing new editions and addendas. It keeps pace with timeand is responsive to the questions from its users. .

2) APPLICABILITY: The editions and addenda become applicable after sixmonths from date of issue. Thus, 1st Jan. 2006, theconstruction of Piping shall be as per 2004 edition and 2005addenda. However, for old contracts spilling over beyond 1st

Jan 2006, the old applicable edition and addenda are validtill the completion of contract! up to start-up.

3) CODE INTERPRETATION: ASME issue written replies known as"Interpretations" to the inquiries concerning technicalaspects of the code. And are sent to "Edition - subscribers"as up-date service.

4) CODE CASES: ASME committee meets regularly to consider proposedadditions and revisions to the code. At the same time it mayformulate code cases to clarify , Intent' of existingrequirements. These are published as code-Cases. It ispublished along with new editions and supplements areautomatically sent to subscribers of code case-book till new·edition is published.

5) SALIENT FEATURES OF ASME CODES:

Every ASME Code starts with specifying the scope of thecode in terms of capacity, size and pressure and otherlimitations if any. It also deals with and the battery limits andthe areas of code jurisdictions.

The Codes categorize and classify a.cceptable grades for materials ofconstruction, for specific applications covered by the codes. The codes also·identify and categorize various methods of construction / fabrication.

The codes specify the required N.D.T. and other inspections. They also specifythe acceptance / rejection criteria.

Page 9: PIPING DESIGN-PART-I.PDF

(

VIT, Pune Page 10

(

('

(

(

C'(',

("',

C

C

C>

(7

C'C;

()

C'

()

ooooo()

()

oo

What is most important about the ASME Code is that they are user friendly, andkeep pace with changing technologies and new materials. No wonder - the Usersand the Manufactures world over has adopted the ASME codes wholeheartedly.

The participants are advised to refer the actual code clauses and extractinformation from the latest codes applicable. ASME code is even evolvingdocument and one has to refer to the latest applicable edition and addenda.These notes will help in understanding the code, and should not be referred to as

, the "Code" it self.

PRESSURE PIPING CODES - B 31:

The ASME 831 Code for Pressure Piping consists of a number of individuallypublished Sections. .

Rules for each Section have been developed considering the need for applicationof specific requirements for various types of pressure piping. Applicationconsidered for each Code Section include

831.1 Power Piping: Piping typically found in electric power generating stations,in industrial and institutional plants, geothermal heating systems, and central anddistrict heating and cooling systems;

831.3 Process Piping: Piping typically found in petroleum refineries, chemical,pharmaceutical, textile, paper, semiconductor, and cryogenic plants, and relatedprocessing plants and terminals;

831.4 Pipeline Transportation Systems for Liquid Hydrocarbons and OtherLiquids: Transporting products, which are predominately liquid between plantsand terminals and within terminals, pumping, and metering stations; .

831.5 Refrigeration Piping: Piping for refrigerants and secondary coolants;

831.8 Gas Transportation· and Distribution Piping Systems: Pipingtransporting products, which are predominately gas between sources and

. terminals. Including compressor, regulating, and metering stations; and gasgathering pipelines;

831.9 Building Services Piping: Piping typically found in industrial, institutional,commercial, and public buildings, and in multi-unit residences, which does notrequire range of sizes, pressures, and temperatures covered in 831 J ;

831.11 Slurry 'Transportation Piping Systems: Piping transporting. aqueousslurries between plants and terminals, and within terminals, .pumping, andregulating stations.

Page 10: PIPING DESIGN-PART-I.PDF

VIT, Pune Page 11

('

(

{~

(

(\

C\

(

('

(

C

(~.,

()

Ci

C:

()

()

oooooo()

()

oooo()

D

It is the owner's responsibility to select the code Section which almost nearlyapplies to a proposed piping installation. Factors to be considered by the ownerinclude limitations of the Code Section, jurisdictional requirements, and theapplicability of other codes and standards. All applicable requirements of theselected Code Section shall be met .For some installations, more than one CodeSection may apply to different parts of the installation.

ASME B 31.3 - Plant Piping Code:

The latest Edition and addenda issued at least 6 months prior to the originalcontract date for the first phase of activity covering a piping system or systemsshall be governing document for all design, materials, fabrication,erection,examination, and testing for the piping until the completion of the work and initialoperation. .

Code Revisions and Updating:The 1998 Edition of. this Code is issued on July 1,1999. The next Edition isscheduled for publication on July 1,2001 .The use of addenda allows revisionmade in response to public review comments or Code committee actions.

Each addenda is designated by small letters (a, b etc.) suffixed after codedesignation. Thus Addenda to 831,3 code (1999 edition), addenda 2000 will beASME B 31.3 b -2000 and so on.

ASME issues written replies to inquiries concerning interpretations of technicalaspects of the Code. The Interpretations are published in a separate publicationin .a separate supplement Periodically certain actions of the ASME 831Committee will be published as Cases. The Cases are published in a separatesupplement.

Clauses in the Code are not necessarily numbered consecutively. Suchdiscontinuities result from following a common outline, insofar as practicable, ·forall Code Sections. In this way, corresponding materiel is correspondinglynumbered in most Code Sections, thus fElGilitating reference by those who haveoccasion to use more than one Section.

Page 11: PIPING DESIGN-PART-I.PDF

/'(

(

VIT, Pune Page 1.2

c(

(\

C\

c(

(

(i

(i

()

c'c:C>

o()

ocoo(i

()

'()

()

0,

CHAPTER 4

Overview Of Piping Design in ASME 8 31.3

GENERAL:

The Code sets forth engineering requirements deemed necessary for safe designand construction of pressure piping.

Unless agreement is specifically made between contracting parties to useanother issue, or the regulatory body having jurisdiction imposes the use ofanother issue, the latest Edition and Addenda issued at least 6 months prior tothe original contract date for the first phase of activity covering a pipinginstallation .shall be the governing document for all design, materials, fabricationerection, examination, and testing for the piping until the completion of the workand initial operation, .

SCOPE:

Rules for the Process Piping Code Section 831.3 have been developedconsidering piping typically found in petroleum refineries; chemical,pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and relatedprocessing plants and terminals within the property limits. .

This Code prescribes requirements for materials and components, design,fabrication,assembly, erection, examination, inspection, and testing of piping.

Chemical plant: An industrial plant for the manufacture or processing ofchemicals, or of raw materials or intermediates for such chemicals. A chemicalplant may include supporting and service facilities, such as storage, utility, andwaste treatment units.

Petroleum refinery - an industrial plant for processing or handling of petroleumand products derived directly from petroleum. Such a plant may be an individualgasoline recovery plant, a treating plant, a gas processing plant (includingliquefaction), or an integrated refinery having various process units and attendantfacilities.

Page 12: PIPING DESIGN-PART-I.PDF

(',

VIT, Pune Page 13

(,

( ,

Fluid service: A general term concerning the application of a piping system,considering the combination of fluid properties, operating conditions, and otherfactors which establish the basis for design of the piping system. See AppendixM.

Category D Fluid Service : A fluid service in which all the following apply:

c'C'

1.

2.

3.

The fluid handled is nonflammable, nontoxic, and not damaging tohuman tissues as defined in para 300.2 ;

The design gage pressure does not exceed 1035 KPa (150 PSI) ;and

The design temperature is from -290 C (-200 F) through 1860 C(3660 F)

(:,

(I

c>o()

cooooooQ

01

o()

()

oo()

Category M Fluid Service: A fluid service in which the potential for personnelexposure is judged to be significant and in which a single exposure to a verysmall quantity of a toxic fluid, caused by leakage, can produce seriousirreversible harm to persons on breathing or bodily contact, even When promptrestorative measures are taken.

High Pressure Fluid Service: A fluid service for which the owner specifies theuse of Chapter IX for piping design and construction; see also para. K300

Normal Fluid Service: A fluid service pertaining to most piping covered by thisCode, Le.not subject to the rules for Category D, Category M, or High PressureFluid Service.

DESIGN

DESIGN CONDITIONS:

This paragraph defines the temperatures, pressures, and forces applicable to thedesign of piping, and states the considerations that shall be given to variouseffects and their consequentloadings.

Page 13: PIPING DESIGN-PART-I.PDF

()

(}

(

1)VIT, Pune-

Design Pressure:

Page 14

Cf

C

The design pressure of each component in a piping system shall be not less thanthe pressure at the most severe condition of coinciden~ internal or externalpressure and temperature (minimum or maximum) expected during service.

Design Temperature:

The design temperature of each component in a piping system is thetemperature at which, under the coincident pressure, the greatest thickness orhighest component rating is required.

Design Minimum Temperature:

The design minimum temperature is the lowest component temperature expectedin service.

Bases for Design Stresses:

The bases for establishing design stress values for bolting materials andallowable stress values for other metallic materials in this Code areas follows.

Basic allowable stress values at temperature for materials not exceed the lowestof the following: .

()

()

ooo

1.

2.

the lower of one-third of SMTS and one-third often~ile strength attemperature;

the lower of two-third of SMYS and two - thirds of yield strength attemperature;

oC:

oooGJ.

oooo()

G4)

Weld Joint Quality Factor, Ej:

Basic Quality Factors. The weld joint quality factors Ej tabulated in Table A-1 Bare basic factors. for straight or spiral longitudinal welded joints for pressure­containing components as shown in Table 302.3.4

Increased Quality· Factors. Table 302.3.4 also indicateshigh~r joint qualityfactors which may be substituted for those in Table A-1 B for certain kinds ofwelds if additional· examination is performed. beyond that required by the productspecification.

Page 14: PIPING DESIGN-PART-I.PDF

(I

c'

VIT, Pune

Pressure Design Of Components:

Page 15

(i

Straight Pipe:

The required thickness of straight sections of pipe shall be determined inaccordance with following equation.

tm = t + c

For t >0/6,

The minimum thickness T for the pipe selected considering manufacturers minustolerance, shall be not less than tm•

The following nomenclature is used in the equations for pressure design ofstraight pipe.

cC)(;

C>

C)

()

c

o()

ooo

tm =

t =c =

T =

d =P =0 =

E =S =y =

minimum required thickness, including mechanical,corrosion, and erosion allowances.pressure design thickness.the sum of the mechanical allowances '(thread orgroove depth) plus corrosion and erosion allowances.pipe wall thickness (measured or minimum perpurchase specification)inside diameter of pipe.internal.design gage pressure. ,outside diameter of pipe. as listed in tables ofstandards or Specification or as measured.quality factor from Table A-1 A or A-1 BAllowable stress value of materials.coefficient from Table 304.1.1, valid for t < D/6 and formaterials shown. The value of Y may be interpolatedfor intermediate temperatures.

d +2c

o()

o<D

o()

oooo()

Y =0+ d+2c

Page 15: PIPING DESIGN-PART-I.PDF

For t < 0/6, the internal pressure design thickness for straight pipe shall be notless than that calculated in accordance with Eq. (3a):

r'"\

c'C

C>

C'

VIT, Pune

Straight Pipe Under Internal Pressure:

t =PD

2(SE + py)

Page 16

c.':()

Following Equation may be used instead of above equation

PD

co t =

2SE

()

o()

oooo

For t 2: D/6ar for P/SE > 0.385, calculation of pressure design thickness forstraight pipe requires special consideration of factors such as theory of failure,effects of fatigue, and thermal stress.

Blanks:

The minimum required thickness of 'a permanent blank (representativeconfigurations shown in Fig. 304.5.3) should be calculated in accordance withEq. (15)

=

ooQ

oG

~

o()

()

Q

o

where­

dg =

E =P =S =c =

~inside diameter of gasket for raised or flat faceflanges, orthe gasket pitch diameter for ring joint and fullyretained gasketed flanges.same as defined earlier.design gagepre$suresame as defined earliersum of allowances defined earlier.

Page 16: PIPING DESIGN-PART-I.PDF

.(

( .

VIT, Pune Page 17

()

C,CHAPTER 5

c;(;

Fundamentals of Pipe Stress Analysis

Pipe Wall Thickness

()

(

Calculation of pipe wall thickness is based on thin cylinder formula which statesthat required thickness "t" for internal pressure "P" and outside diameter "0" isgiven by : (For seamless pipe)

t=

However, if we consider welded pipes with weld efficiency value "E", then

PO

where E is generally expressed in decimal fraction or percentage2SE E = 0.8 or E = 80% .

PO

2S where S = safe stress value kgl cm2

t &oexpressed in cmPgiven in kg/cm2 or

t=

Pipes are always given tolerance on thickness. Standard thickness tolerance formanufacturing (also called the mill tolerance (m)) is ± 12.5% of min. requiredthickness. Also for corrosive medium, pipes are given certain corrosionallowance (C). C is generally expressed in mmof thickness.

()

()

ocoo

ooooo()

oo

Additionally some times extra allowance (a) is required to take care of thicknessreduction due to threading or grooving, if any.Thus required nom. Thickness T can be expressed as

0.875 x T = t + c + a

ORt + c + a

T =----

0.875

(for coded designs thicknesses are worked out on the basis of respective codeformula. Refer code summary)

Page 17: PIPING DESIGN-PART-I.PDF

VIT, Pune Page 18

Maximum allowable· internal pressure

This is worked out on the basis of following formula:

CI

c)Ci

P =2SE t

D

D is expressed in cm (D = Pipe 0.0)S is expressed in kg/cm2

E is joint efficiency factorP would be in kg I cm2

The value of thickness '1' is expressed in cm and is worked out as follows:

If 'T' is actual nominal thickness (from pipe tables)(;

['I

()

()

Step I - Multiply the nominal thickness by 0.875 to get actual minimumthickness.(nett of mill tolerance) i.e. 0.875T

oSetp 11- Deduct corrosion allowance and other allowances from above

Thickness

4Et

PDSL=--

Longitudinal stress caused by internal pressure:

Use this value of t in above formula.

0.875T-c-a =t(t is nett of all tolerance and allowances)

Step In -

This is worked out by formula:

Here 't' is worked out same as step. II above Le. after deducting corrosion I otherallowance from the nominal thickness and after correcting the thickness for milltolerance, if pipes are ordered with plus tolerance, then correction for milltolerance is notrequired.

oooQooooooQ

o(1

(;)

()

ooo

Page 18: PIPING DESIGN-PART-I.PDF

()

(!

(';

()

()

Ct

VIT, Pune

Maximum Span for Piping

The empirical formula for calculating maximum span is given by:

L=O.32~

Page 19

This distributed load (W) = wt. of pipe /mtr + wt. of product /mtr + insulation/mtrPipe weight per unit length is obtained from the tables directly. Above formula inimpirial (F.P.S) system would be

Alternatively the safe span. can be worked out on the basis of standard spancharts for empty pipes and water filled pipes. For products like air, steam,vapours, gases etc. The product weight being negligible, can be ignored andspan as worked out for empty pipes is acceptable.

=~. J 1.2W

oCi

ooooooooo0'

ooo()

ooQ

o()

oG

o

Where L8

zW

L

Where L8ZW

=span in meters '=safe stress in bending- kg/cm2 (s = safe stress -long. Stress

due to internal pressure)= Pipe section modulus - cm3 (directly obtained from data table)=Distributed load kg/mt

=max span in ft=pipe stress in psi (8afe stress in bending)= section modulus in in3

= Distributed load Ib / ft

Page 19: PIPING DESIGN-PART-I.PDF

()

()

o(>

VIT, Pune

Selection of Flanges

Most common type of flanges in piping industry are:• Welding neck type• Slip on type• Threaded type

Page 20

oCi

()

C>

C)

Cl

(I

ooooooooQ

(..)

(;\

oOJ

()

()

oo()

Welding neck type: Are used where there are excessive direct bending stresson the flanged joint due to expansion of a section or supporting a heavy valve orother heavy equipment.

While specifying the flange, flange schedule must be specified and shall be sameas the pipe being welded to the flange (corrosion allowance shall be consideredwhile specifying schedule)

Slip on type: Used where quick assembly, saving in cost and where extremeload conditions are not present since flanges get welded to pipes with a filletweld, no corrosion allowance need to be considered while specifying the flange.

Threaded type: Used where flange '.is to be attached to piping where welding isnot easily possible or is' expensive due to considerations like PWHT etc. alsoused where wearing and frequent replacement of flange may be expected.

Selection of flanges for the required pressure and temperature service is done onthe basis of pressure temperature rating charts.

Pressure temperature ratings charts are available for various materials. (Refercode extract)

Pipe supports to cause zero load at terminals equipment

The first step in grid analysis is to ensure that the piping grid does not causestresses at equipment terminals.

This is ensured by determining the CG of all the loads likely to cause stress atequipment terminal. Then choosing the support I hanger locations so that the CGof· supports coincide with that of loads. It can be selected from the safe spancharts of different pipe size.

Page 20: PIPING DESIGN-PART-I.PDF

o()

c>()

o

VIT, Pune

Thermal Expan$ion Analysis

Page 21

Simplified analysis is based on guided cantilever method. Guided cantilever is acantilever beam restrained by guides at free end in such a way that its free endwill not rotate when deflected in a direction perpendicular to longitudinal axis. Theguides themselves can also displace along with the free end. Bending moment Mis given by

Corresponding stress

for a pipe material E& S are constant

Thus L afDo

Z[

where M = Bending momentE = Modulus of elasticityI = Moment of Inertia0= deflection perpendicular to axisL = length of span

where i =stress intensity factor

6Elo

6 E 10 i 3ED oiS = =

Z L2 L2

Or

L = J3:D@

For a pipe size D is also constant L a .if:Thus L/ / h1 = L2

2/ 02 = Li /03

iMS-~­

z

M~--

oQ

ooo()

ooooooooooooo(;1

Q

oQ

oooG

o

()

Page 21: PIPING DESIGN-PART-I.PDF

VIT, Pune Page 22

i.~,1lJ

(tJ

Analysis of Thermal displacements I expansion movements

Stress Range:

The stresses induced in to the piping system due to thermal expansion /contraction are of secondary nature. These stresses get reduce as localizedyielding takes place. Therefore ASME B31.3 provides some relaxation on theallowable stress value. The expansion stresses are compaired with stress rangeand not with basic allowable stress. The stress range is given by:

SA = f [1.25 Sc + 0.25 Sh] ..... (1 a)

f is stress range reduction factor. For practical purpose f can be consider as 1.0for plants having thermal cycles less than 7000 in 20 years.

Three simple rules are quite handy in thermal movement analysis:

1. For a coplaner piping, thermal movement of length of pipe perpendicularto the axis depends on total length of piping irrespective of pipe routing.

2. Fora vertical stretch of piping of length (I), if two anchored horizontalsegment of length m and n are connected then, the nil displacement pointdivides length (I) in the ratio m : n

A

Nil displacement point

Also, the vertical expansion(B moving up) in segment 08 (80S) and verticaldownward expansion (c moving down) in segmentOC (80c) will be in ratio ofm: n

~=-l!!80B n

.. L...c---_

n---l

C

n

If I = 6 mtr.

And A8 = 8 mtr.

CD =4 mtr.

80 8Then·-- =

OC 4

o

LeBO :::4mtr.& OC= 2mtr.

Page 22: PIPING DESIGN-PART-I.PDF

( "

VIT, Pune

B. Bellow Type:

Page 25

Metallic bellows of compatible materials (usually stainless steels) and thinnerthan piping thickness are used to compensate the thermal expansion. Thicknessof bellows is of the order of 1.0 to 2.0 mm

Bellow type joints have several advantages over telescopic type.

()

C,'()

1.2.

3.

4.

5.

No packing materials, hence no potential leakage points.No contamination problems, no wear & tear of packing and noreplacement shut-downs for changing the packing materials.

·Can be used in service which also call for some degree of angularmovement or off-set movements in addition to axial movements. Howevercan not absorb torsional movements.Metal bellows are thinner than piping materials, hence susceptible torupture by over pressure.

Bellows can also fail fatigue due to :

a) Stress concentration at crest or valley of corrugations.b) Repeated exposure to cyclic stresses.

[)

()

()

()

()

oCj

\)

o()

()

C!o;~

c. Expansion Loops:

Expansion loops being of same thickness and same materials as the main pipingthey do not have problem of rupture due to over stressing. They can also absorbsome degree of torsional movements.

They are also suitable for high temperature / high pressure applications and aretherefore preferred in steam service.,

However, they usually require larger space than the previous two types. Alsothey may be hindrance to piping layouts. Oversize expansion loops also are quitebulky and heavy and may cause support problems. Ideally suitable forlongitudinal movements, can be easily insulated for high temperatures unlike thetwo earlier types where insulation of sliding / bellow elements has its ownpractical problems. Hence expansion loops are invariably the preferred choice insteam services.

DESIGN OF EXPANSION LOOPS

The slip type, and bellow type expansion joints have proprietary designs and areavailable in market as per specifications.The piping engineer only needs to selectthem for his purpose, Expansion loops however need to be designed by pipingengineer himself, based on the geometrical configuration of the system.Symmetrical ,U-type, expansion loops, which are, the most common type, ofexpansion loops in piping practice can be conveniently designed by adoptinggraphical method for which force graph and momen't graphs are extensivelyused.

Page 23: PIPING DESIGN-PART-I.PDF

(I

/ VIT, Pune Page 26

(

(,

u

+- w--.tH

~ LJ

n~'G~

,(~ L

c:(, Now we define few new terms:

(~)

Factor a = G / H 13 = W / H 'Y = F / I

Use Of Graphs To Find Out Induced Bending Stress:

Reference graph, enter at scale 13 with calculated value of 13 for proposedconfiguration. Move vertically to reach curve corresponding to a. Movehorizontally to intersectvalue of 80. (where 80 = total thermal expansion for lengthL) move vertically downward to appropriate value of H and then read value of'Y by moving horizontally up to 'Y scale. Calculate axial force 'f' after knowing valueof I for the pipe section (Available in data table).

After knowing bending moment (B.M.) work out

This stress should be within the specified safe limit.

Bending stress (Due to expansion)

Now again with cal~ulated value of ~ move 13 scale of moment graph, govertically up to value of a move horizontally to value of H and then verticallydown to line corresponding to axial force 'F' (Calculated from force graph) Movehorizontally to read moment in ft-Ib. Since all the graphs are in FPS system. It isadvised to'convert all parameters in FPS system before using above graphs.

(Z =sectional modulus, i = stress intensification factor)Z

B.M. xS=

c:oC)

Q

()

ooo()

eoo()

(;

()

Page 24: PIPING DESIGN-PART-I.PDF

(

( ..

VIT, Pune Page 27

('

(',, .

c, )

c~

C>

CJ

{)

()

oooooooCf

Q

()

I., .\:~

()

Optimization Of U Loop Design I Installation

An economic loop design can be effected by using the graph showing variation ofbending moment and stress vis-a-vis values of ~ and a. Usually values of ~ isfixed (W & H) once the loop is fabricated, still it is possible to optimize theinduced stresses by changing value of a.

Pipes Under External Pressure

Situations where the pipes may be subjected to external pressure are:Jacketed pipingUnderground pipingSubmarine piping,etc.

Most common method adopted for finding pipe thickness is the one, adopted byASME codes. In this method, a suitable pipe thickness is assumed and it is thenchecked for safe external pressure.

IF P = External design pressurePa = Maximum allowable working pressureDo = Outside diameterL = Equivalent length taken as largest of following.

-Length to Which the pipe is subjected to ext. pressure (Jacket length)-Dist. Between two adjacent flanged joints.

t = Min. required wall thickness (i.e. nominal thickness less corrosionallowance)

ASME cod~s.(ASME SEC. VIII DIV. I) make use of thickness charts forfinding out safe. external pressure for an assumed thickness. Since ASMEcharts are in FPS system, value of Pand Pa should be expressed in psi.(1 Kg/cm2 =14.23psi, 1 atm = 14.5 psi)

Do, Land t should 'be expressed in inches (1 inch = 25.4 mm) If PaobtCiined from assumed thickness is smaller than P, assume next higherschedule and repeat calculations till the value of Pa is greater than P.

Page 25: PIPING DESIGN-PART-I.PDF

(

(,

(,

(~-­

l

VIT, Pune

Following is the step wise procedure:

Page 28

(,

C\

c\,

(,

()

C)(';

1.

2.

3.4.5.

6.

7.

8.9.10.

Pa =

Take a value of pipe schedule of selected pipe size and thickness and findout the nominal thickness for corresponding pipe schedule.Calculate minimum thickness by deducting corrosion allowance and milltolerance t = tnom - C.ADetermine Do (outside dia from pipe dim~nsion chart)Calculate ratios UDo and DoltEnter chart A at value of UDo on y-axis. Enter at 50 when UDo is graterthan 50 (if pipe length is not given it may be assumed that pipe issufficiently long and UDo shall be grater than 50). Enter at 0.05 if UDo isless than 0.05. .Move horizontally to the line representing Dolt. from the pointingintersection move vertically to read value of factor A.Enter chart B at X-axis with value of A obtained in step 6, move verticallyto applicable temperature line. (Temp. is in of, Temp of = 9/5 x °C +32)From intersection move horizontally and read value of BCompare Pa = 4B I 3 (Dolt) psiFor values of A falling to the left of applicable temperature line, the valueof Pa is calculated by2AE

E = Young's modulus at design temperature

(~'

()

()

ooooo()

()

()

3(Do/t)

Pa shall be greater than P1

Page 26: PIPING DESIGN-PART-I.PDF

(

(.

VIT, Pune Page 29

Stresses In Underground Piping:

(

()

Unlike above ground piping, the underground piping experiences stresses due toearth pressure, stresses due to pipe and soil friction and stresses due to fluidexpansion. For understanding the stress pattern on underground piping, weconsider following:

1. Internal Pressure : Internal pressure imposes loop stresses andlongitudinal stresses. For internal pressure 'P'

PD(SH) Hoop Stress =

2 x tx E

PD

4x t x E

PD4 x t x E

S L

(EP)

Underground pipe

External pressure = H.p (Where p = soil density)

And longitudinal stress due to

Both stresses are tensile in nature.

Internal pressure, SL (I.P) =

External Pressure : This is caused due to soil pressure or hydrostaticpressure (in case of submarine piping) the hoop and longitudinal stressesresulting from hydrostatic / soil pressure are calculated the same way asinternal pressure stresses and are opposite in sign. (SL (E.P.) =Longitudinal external pressure)

c'(

C. )

(,

(\

C 2.

C)

(';

(,_./

c:\

()

C'

0

0

0

0

000

W

V()

0{)

Page 27: PIPING DESIGN-PART-I.PDF

C'

CVIT, Pune Page 30

('

(

3. Fluid expansion pressure SL (E.) : In case of above piping there areseveral leakage path available, in case of excessive build up of internalpressure due to fluid expansion caused by the increase of temperature.The leakage paths are provided by flanged joints, vents and drainconnections etc. In case of cross country buried piping such leakage pathsare limited since almost all pipe joints would be welded type, and therefore fluid expansion would result in internal build up of pressure and wouldcause both hoop as well as longitudinal stresses.

5. Thermal expansion / contraction stresses: Due to temperature change ofthe 'fluid thermal exp~nsion / contraction stresses are caused.

4. Pipe and soil friction stresses : The combined longitudinal effects oftemperature, pressure and fluid expansion tend to cause displacement ofpiping which is opposed by soil friction.

SL (T.) =E ex ~tWhere E - young's modulus

a - Coefficient of expoLl t - temperature change

C'.'(

Ci

(

C>

()

C:

C

C

()

C)

ooooooVI()

Soil friction stress is given by(j

SL (F.) = L x H x p x2 x t

where L = Length of pipe sectionH = depth of cover above

pipep= pipe density(j =coefficient of friction

between pipe and' soilt = wall thicknes

Page 28: PIPING DESIGN-PART-I.PDF

(

cVIT, Pune Page 31.

cC,'(,

('

()

ooo,0

()

o(]

()

V

oeV

Thus considering above 5 types of stresses resultant longitudinal stress in buriedpiping is given by

SL = SL (I.P.) + SL (E.P.) + SL (T.) + SL (E.) + SL (F.)

• I .. L, • I(net longitudinal) t (due to ext. pressure) • (Due to fluid expansion) +

(Due to internal pressure) (Due to temp.) (due to friction)

E

o N R

Typical load extension diagram is shown above various points on the curve andsignificant ranges of material between (plastic, elastic and flow range) aredescribed above. .

The area under the cure indicates the work (energy) that should be spent toreach up to that ·point.

For example, for point mto be reached worked represented area under curveeM shall be expanded (Le. area of triangle OMN). This is stored as strain energyand can be released as soon as the load is removed.

Strain energy = area of triangleOM~ = Y2 ON x MN '= Y2 stress x strain.

In plastic range (say Point P) if load is removed the curve will take. route POcausing permanent set i.e permanent strain is represented by extension CO. Ifthe specimen is again subjected to loading. It would trace a. path indicated byQP. Effectively new Y,P will be Point P. Thus the material has higher yield stressdue to pre-straining equal toGO. This phenomenon is caused strain - hardening.

Page 29: PIPING DESIGN-PART-I.PDF

c(,

(, VIT, Pune

Pipe Supports:

Page 32

ooooo

ou()

V

oo{)

Pipe supports are provided as a means to transfer to soil a) the load of pipingsystem (dead load, product load) B) the loads due to pressure - induced effects,vibrations, wind etc. C) transient load effects.

The pipe supporting elements shall be provided in such a manner that

1) piping supports do not cause excessive interference with thermal expansionand contraction of pipe which is otherwise adequately flexible.

2) They should not contribute to leakage at joints or excessive stresses at thepoint where they support piping system

3) Be such that a complete release of the load will be prevented in the event ofspring failures or transient loads imposed on piping system.

Supports can be broadly specified as :.A) Hanger type (suspended from ceilings)B) Support type or resting type (Directly resting on ground / piperack)C) Integral attachment type brackets

Hanger rods may be pipe straps, chains, bars or threaded rods etc. with orwithout springs and turn buckles. These permit free movement in desireddirection i.e. movement in linear (X - direction) linear and cross (X and Ydirection) and vertical direction (Z direction) springs are also used in resting typesupports. Spring type supports shall be designed weight load at point ofattachment and the load axis shall be concentric to spring (avoid eccentricloading, misalignment, buckling) springs are generally provided 'with stops toprevent spring over travel. Design and support is generally worked out on thebasis,of structural loading principles.

Page 30: PIPING DESIGN-PART-I.PDF

VIT, Pune

CHAPTER 6

Selection Of Material Of Construction

GENERAL CONSIDERATIONS

Page 33

c.···(

C',

(

( '<

(.,

(0)

()

C)C)

()

ooooo()

oeoV()

e()

This chapter should serve as a brief information guide for a piping engineer whomust be familiar with commonly used construction materials to be able to specifythem correctly on engineering documents of material specifications for aparticular job. A more extensive treatment of the selection of materials forindustrial pressure piping is beyond the scope of these study hotes.

The selection of construction materials for code pressure piping has to be madefrom code approved material specifications. A metallurgical engineer usuallyspecifies the most economical materials of low first cost and/or low futuremaintenance cost that will be satisfactory under operating conditions and willmeet other requirements.

There are many factors supported by experience and laboratory test results thatm'ust be considered in selecting the most suitable materials. They include thefollowing:

• Corrosion resistance in the service corrosive environment,•. Strength requirements for design temperature and pressure,• Cost,• Ready market availability• Fabricability,• Quality of future maintenance

Generally, process piping is designed for a certain minimum service life underspecific operating conditions. Based on a corrosion rate in mils (0.001 in) peryear (MPY) , a total corrosion allowance is established which is added to thecalculated required thickness. Typical design lives are given below for severaltypes of petrochemical equipment and aUachedpiping

20 years : Fractionating towers, reactors, high-pressure heat-exchangers shells,and other major equipment which are difficult to replace.

10-15 years : Carbon steel pressure vessels, removable reactor parts and alloyor carbon steel towerintemals. .

5.,10 years: Carbon steel. piping, heat-exchanger tube bundles, and variousprocess column internals.

Page 31: PIPING DESIGN-PART-I.PDF

(r

VIT, Pune Page 34

(

(

(I

(

(-)

(!

C)

o()

()

cooV

ooo()

V()

oo

The selected material must be suitable for services of djfferent levels of severityfrom the stand point of pressure, temperature, corrosive environments, cyclicsteady operations etc., Obviously a number of divisions is possible. Howeversince the choice of material for a vessel depends primarily on the serviceenvironment, it would seem practical to classify construction materialsaccordingly the service: monocorrosive, the corrosion rates negligible or very lowand definite established (for carbon steel, a maximum of 1,4 in total otherwise analternative material with a better corrosion resistance is used.); or corrosive,requiring specific materials other than carbon steels or low~alloy steels.

1.1 NONCORROSIVE SERVICE

In the range of cryogenic temperatures (From - 425 OF to -150 OF) carbon andlow alloy steels are brittle and austenitic stainless steels or non ferrous metalslike aluminum alloys that do not exhibit loss of the impact strength at very lowtemperatures' must be employed. For a cryogenic engineer the dividing linebetween the cryogenic and low temperatures is usually -240°F below whichtemperature only so-called permanent gases remain in the gaseous state. Thisdistinction is not of practical significance here.

The temperature r.ange at which a material changes gradually form ductile tobrittle is called the transition temperature and is readily determined from charpyimpact tests conducted over a range of temperatures. The designer of code low- ,temperature equipment must base his computations on the code approved'properties of 'the material at room t~mperature. However, for, some codematerials (ULT 23) the higher yield and tensile strengths of alloys at very lowtemperatures can be used to reduce weight and cost where possible . Becauseof the low reactivity of most chemicals at very low temperatures, corrosionproblems are few.

At low temperatures (from -150°F to +32°F; the code upper limit is ~20°F) lowalloy and fine grain carbon steels tested for notch toughness are found toperform satisf,actori Iy.

In the range of intermediate temperatures (from +33°F to about +8000 F) lowcarbon steels are sufficient. Up to about 800°F 'they behave essentially in aelastic manner; that is, the structure returns to its original dimensions when'applied forces are removed and maximum stress is below the yield, point. Thedesign allowable stress is based on the yield strength or the ultimate strength

(obtainedfrom short time rupture tests, supplemented by fatigue or impact testsvvherefluctuating or shock stresses are involved.

At elevated ,temperatures (above 800°F) marked changes in mechanicalproperties occur in steels. They begin to exhibit a drop in ultimate and yieldstrengths and cease to be elastic, becoming partly plastic. Underaconstantload,thereisa continuous increase in permanent' deformation" called 'Creep'. The

Page 32: PIPING DESIGN-PART-I.PDF

creep rate is measured in percent of a unit length per unit time. Actually, somecreep begins at temperatures over 650°F, but it does not become an importantfactor for carbon steels until temperatures over 800°F are reached. The designallowable stress is then based on two criteria (A) the deformation due to creepduring the service lifetime must remain within permissible limits, and (B) a rupturemust not occur. The allowable stresses are obtained from long term creep testsand from stress rupture tests at elevated temperatures. Some data are availableon high-temperature endurance limits.

C.'

(

c·(

('I

VIT, Pune Page 35

Steels used in equipment and piping construction for elevated temperatures canbe classified into five general types:

Selection of steels for elevated temperature service is generally a complexproblem and not so straight forward as material selection for lower temperatures.The choice has to be based on several factors. At high temperatures, a numberof changes in the steel microstructure may occur which affect mechanicalproperties to a high degree. The mechanical properties of alloys are affectedboth by chemical compositions and by grain size. Usually, at low andintermediate operating temperatures, fine grained microstructure (above ASTMno. 5) is preferred in steels because of the resulting higher tensile, fatigue, andimpact strengths and better corrosion resistance. However, at high temperatureswhere the main requirement is superior creep-rupture strength, a coarsedgrained material may be preferred. .

(';

c

o()

()

o

oe)oao

1.

2.

Carbon steels: These vary in strength at temperatures below 650°Fbecause of small differences in carbon content, but they all have similarproperti~s in the creep range. Where their use is not limited by sulfurcorrosion or hydrogen attack, they usually represent the most economicalmaterial for intermediate as well as' for elevated temperatures at lowpressures. Not only are they relatively cheap per kg.; they are alsocomparatively easy. to fabricated. Each additional alloying elementincreases the cost of the steel, and often the difficulty of fabrication andwelding as well. The final overall cost of a carbon steel vessel may bemuch less than the cost of an alloy steel vessel.

Carbon- molybdenum steels, low chromium-molybdenum alloysteels (up t03 Cr-1 Mo) and intermediate chromium - molybdenumalloysteels (upt09 Cr - 1 Mo).Some ofthese can be used up to 1200oF,where resistance to graphitization and hydrogen attack is required. Thesesteels have' better.creep-rupture properties and high- temperature strengththan carbon steels, and there is an economy in using. them for pressurevessels subjected to high' pressure at ternperatureover 650°F. Furthermore, these steels may be required to' resist oxidation solidation, orhydrogen attack.

Page 33: PIPING DESIGN-PART-I.PDF

(,

(i

VIT, Pune Page 36

(,

(

C

(

'(I

c:(

3.

4.

5.

Ferritic (straight chromium) stainless steels. These are used in someapplications.

Austenitic stainless steels : These are the only steels assignedallowable stresses in the code for temperatures higher than 1200oF, up to1500oF. A decrease in oxidation resistance limits their usefulness abovethis temperature.

Special high-temperature resisting alloys. These are used fortemperatures above 1500oF. They include type 310 stainless steels andincoloy.

c()

(;

()

Stainless Steels

General Constructions

Steels with chromium content of 11 percent or more, but less than 30 percent areknown as stainless steels because of their excellent resistance to corrosion. Withover 30 percent chromium content they are classified as heat-resisting alloys.

Stainless steels are basically alloys of chromium and iron. The most importantadditional alloying element is nickel. Other alloying ,elements may be added,including carbon, manganese, molybdenum, columbium, titanium, selenium,silicon, and sulfur, all of which result in properties required for special service.Stainless ~teels are frequently used for construction of petrochemical processingequipment and in many other applications. Some of the reasons for this use are:to provide the necessary resistance to a corrosive environment, thus increasingthe service life of the equipment and the safety of the working personnel; toprovide. strength and oxidizing resistance at elevated temperatures and impactstrength at low temperatures; to facilitate the cleaning of the equipment.,

) Stainless steels become corrosion resistant (passive) because of the formation ofan unreactive film which adheres tightly to the surface of the metal. This can bechromium oxide or an adsorbed oxygen film that acts as abarrier protecting themetal against further attack in certain types of .environment. This protective film,which is not visible, is formed within minutes or months, depending on the type ofalloy. The formation ofthe film may be hastenedor it may be produced artificiallyby a strong oxidizing agent such as solution of nitric 'acid in water. This artificialformation of protective film, or passivation, servers a double purpose, since 'italso. helps to remove any foreign metals or other substances that mightcontaminate the stainless-steel surface.

Page 34: PIPING DESIGN-PART-I.PDF

( \

(! VIT, Pune Page 37

()

(

()

c()

C'

c:

()

(;

If the chromium content is less than 11 percent the film is discontinuous and thecorrosion resistance of such steels approaches the relatively poor corrosionresistance of ordinary steel.

The variation in corrosion resistance appears to be dependent on the amount ofthe chromium in the steel: it can be greatly improved by the addition of nickel andmolybdenum as well. Stainless steel grades 410 or 405 are less corrosionresistant than those having a higher amount of alloying elements, such as thegrades 304 or316.

No protective coatings such as paints are applied to the surface of stainless steelparts, since they would only prevent oxygen penetration for formation of thepassive layer. All grades of stainless steel are affected in some manner bywelding heat, which modifies their resistance to corrosion and changes theirmechanical properties. Welding metal deposits are of cast structure.

Stainless steels are produced mostly by the electric furnace process. The cost ofstainless steels varies with type, form, and quantity, and not all the grades arereadily available in every form.

Based on the principal alloying constituents the stainless steel used for pressurevessel and piping construction can be divided into three main groups:

. Based on their metallurgical microstructure, these stainless steels can beclassified as austenitic, ferritic, or martensitic. (the fourth group, precipitation ­hardening stainless steels, for instance 17-4 PH, are not used in the constructionof pressure vessels).

(.

()

()

(]

o

1.

2.

3.

The straight ch~omium group (400 series), with chromium content up to 30percent.The chromium-nickel group (300 series), quite often referred to as 18-8stainless steels With Cr and Nivarying in percentage; andThe chromium-nickel-manganese group (200 s\eries) with manganesereplacing aportion of the nickel.

G

oo(;1

Austenitic stainless steels

Because of their large of nickel, 300' series stainless steels retain their austeniticstructure after cooling, with Cr, Ni, and C in solid solution with iron. Under amicroscope only austenitic crystals can be distingUished. These are highchromium-nickel-iron alloys. They are nonmagnetic,highly corrosion resistanteven at temperatures up to 1500°F, and harqenable only by cold working, andthey posses high impact strength at 'low temperatures. The typical and, mostcommonly used grades of stainless steel are grades 304 and 316. Higher-

Page 35: PIPING DESIGN-PART-I.PDF

chromium - content austenitic stainless steel (grade 309 and 310) are' resistantto oxidation and sulfur attack up to 2000oF.

(,

:(. I,

e')c'

VIT, Pune Page 38

(I

(;

f)l

C',

(!

(\

('i

(I

C

Ci

ooaocooo·0

oooV

D

{)

o

The primary problem with austenitic stainless steels is grain-boundarysensitization (between 800°F to 1600oF). Most austenitic stainless steels arefurnished by producers in solution annealed condition. Solution annealing of type300 stainless steels consists of raising the metal temperature above 1850oF,where austenite acts as a powerful solvent. With Cr, Ni, and C dissolved in theaustenitic matrix, these steels offer maximum corrosion resistance together withthe maximum ductility and strength..To retain this microstructure at lowertemperatures, these stainless steels have to be cooled rapidly to below 800°F.However, at any subsequent rise in the temperature (for instance at welding) tothe range of 800-1600oF carbon molecules diffuse to the grain boundaries andprecipitate out of the solid solution as chromium carbide (Cr4C) at theboundaries. The effect is depletion of chromium content in the thin envelopesurrounding each grain. The carbide formed is not as corrosion resistant as themetal from which it develops and the corrosion resistance of the envelopedepleted of chromium is drastically reduced.. The stainless steel becomessusceptible to intergranular corrosion and is said to be sensitized. If the thinenvelope corrodes, the grain rich in chromium falls out and metal begins todisintegrate. The boundary envelope poor in chromium is also anodic withrespect to the rest of the grain, and galvanic corrosion is possible.

Sensitization of all the material may be caused by slow cooling from annealing orstress-relieving temperatures. For instance, stainless steel parts welded to acarbon-steel vessel shell can be sensitized by stress relief given to the carbon;.steel shell. Welding Will result in sensitization of a band of material 1/8 - ~ inwide slightly removed from and parallel to the weldon each side. These twoareas are the heat-affected zone where the steel has been held in the sensitizingrange longer than elsewhere and cooled slowly. The material in betweenincluding the weld metal, is not sensitized, since its temperature is raised wellabove 16000 F and subsequent cooling is comparatively rapid.

Sensitization may not be harmful .in certain environments, for instance ifcontinuous exposure to liquids is not involved and when operating temperaturedoes not exceed 120°F.

The corrosion properties of sensitized steel can be restored by desensitization,that is, heating above 16000 F to dissolve carbides and subsequent rapid cooling.The effect of sensitization on mechanical properties is far less important, beingalmost negligible at 'intermediate temperatures, and causing some ductility loss atlow temperature. According to the degree of possible sensitization of the grainboundaries,the austenitic stainless steels can be divided into three groups:

Group I: these are the" normal-composition, so-called 18-8, chromium-nickelsteels, such as, typical grades 304 , 316,309 and 310. They are susceptible to

Page 36: PIPING DESIGN-PART-I.PDF

To summarize, the standard 18-8 stainless steels in the solution-annealed stateare suitable for parts in corrosive environments, when no welding or stress reliefare required and the operating temperatures stay below 800°F.

sensitization, which means that their corrosion resistance in environmentsusually encountered in petrochemical plants is reduced by welding or by flamecutting. Whether used for preparation of edges that are to be welded or forcutting of openings. To regain fUll resistance to corrosion, it may be necessary togive the weldment a final full solution annealing. However, the required quickquenching may-introduce residual stresses which are too harmful for certainapplications. To avoid impairing corrosion resistance, low-temperature stressrelieving (below 800°F), holding at that temperature for a relatively long time, andthen allowing the weldment to cool slowly, is sometimes used. Obviously, thisprocedure is not very effective, since the maximum locked-in stresses after astress relief are equal to the depressed yield strength at the stress-relievingtemperature. In comparison with carbon steels, the stainless steel require a muchhigher stress-relieving temperature and a longer holding time, since they retaintheir strength atelevated temperatures.

{

(

(

(

(

(

()

C.'( "

(

C

VIT, Pune Page 39

c;()

c\'()

oo()

oo

Group II. These are the stabilized stainless steels, Types 321 or 347. Grain­boundary sensitization is eliminated by using alloying ,elements like titanium orcolumbium which stabilize the stainless steel by preempting the carbon: becauseof their stronger, affinity to carbon; they form carbides in preference to thechromium, which stays in solid solution in iron. The carbides formed do not tendto precipitate at the grain boundaries, but rather remain dispersed through themetal. The creep strength of stabilized stainless steels is superior to that ofunstabilized steels. Cb is stronger stabilizing agent than Ti, making Type 347superior to Type 321.

To summarize, stabilized grades of stainless steels in the annealed condition are'immune to intergranular corrosion. They can be welded and stress relievedcooled slowly in air. They can be annealed locally without sensitization of theadjacent areas. However, under certain special heat treating conditions they canbe sensitized and become susceptible to corrosion known as knifelike attack.

They present some problems when welded, being susceptible to cracking. Theircost is quite high, and therefore they are used only for sp'ecial Jobs, such as foroperating temperatures above 800°F. They also tend to lose their immunity tointergranular corrosion when their surfaces are carburized by the processenvironment.

Group III. These are extra-low-carbon stainless steels can be stress relieved,welded, and slowly cooled without significantly increasing their susceptibility tointergranular attack. They are very often used in pressure vessel construction,either as solid plate or for internal lining material. They are more expensive thannormal-composition stainless steels because of the difficulty and cost of

Page 37: PIPING DESIGN-PART-I.PDF

removing the carbon. However, they are not equivalent to group II, since they aresubject to sensitization if the operating temperature remains in the 800-1500oFrange for a prolonged period of time. Consequently, the extra-low-carbon gradescan be used for applications at operating temperatures up to 800°F.

(I

c\()

Ci

VIT, Pune Page 40

(?

Ci

()

( ,.

(1

(

(,

c'coooooooo()

G

ooV

oooo

Ferritic Stainless Steels

Ferritic stainless steels usually include straight chromium stainless steels with16-30 percent chromium. They are nonhardenable by heat treatment. A typicalstainless steel of this group is type 430. the grade quite often used for corrosionresistant cladding or lining is type 405, which contains only 12 percent chromium,however, its chromium to carbon ratio is high and addition of aluminum renders itferritic and nonhardenable. When type 405 cools from high welding temperaturesthere are no general transformation from austenite tomartensite and it does notharden in air. However, it may become brittle in heat-affected zones because ofrapid grain growth. Ferritic steels may become notch sensitive in heat-affected·weld zones, and they are also susceptible to intergranular corrosion. Ferriticstainless steels.are sensitized by heating to a temperature of 17000 F and then aircooled at normal rates. If they are cooled slowly (in a furnace) their resistance tointergranular co,osion is preserved. Annealing of a sensitized ferritic stainlesssteel at 14500F allows chromium to diffuse into depleted parts to restore thecorrosion resistance.

Welding of ferritic stainless steels sensitizes the weld deposit and theimmediately adjacent narrow bands of base material on both sides of the weld.The composition of electrodes used for welding ferritic stainless steels is oftensuch as to produce austenitic or air-nonhardening high alloy weld metal.

Sensitized ferritic stainless steel is much less corrosion resistant then sensitizedaustenitic stainless steel. The methods used to suppress sensitization inaustenitic stainless steels are not effective with ferritic stainless steels. Whenferritic stainless steels are heated into the 750-900oF range for a prolongedperiod of time, notch toughness is reduced. This has been termed 885°Fembrittlement and has been ascribed to the precipitation of a chromium richalpha-prime phase. Ferritic stainless steels also exhibit lower ductility at lowtemperatures, which limits their use in the low temperature range.

Fabrication and Handling

Since stainless steels exhibit the maximum resistance to corrosion only whenthoroughly clean surface, preventive measures to protect cleaned surfacesshould be taken and maintained during fabrication, storage, and shipping Specialefforts should. be made at all time to keep stainless steel surfaces from coming

Page 38: PIPING DESIGN-PART-I.PDF

( \

nL\ VIT, Pune Page 41

(i

(,

()

oexc>Ci

( ')

c'(J

oo()

a()

oooooOli

otV

()

Q

()

G()

into contact with other metals. For cleaning,· only clean stainless steel wool andbrushes should be used. If flame cutting is used, additional metal should beremoved by mechanical means to provide clean, weldable edges. All grinding ofstainless steels should be performed with aluminum oxide or silicon carbidegrinding wheels bonded with resin or rubber, and not previously used on othermetal. Proper identification and correct marking of the material is important. Thestainless steel components exposed to the weather are often subject to theexposure testing. The surfaces that are not machined are sandblasted to cleanwhite metal, and the component is exposed to weather. After several weekssurfaces are visually examined for evidence of rust or contamination.

Overall Effects Of Alloying Elements

Chemical Properties Of Metals

The mechanical properties of a metal can be altered by the application of variousmechanical and thermal treatments. However, drastic changes will also occur ifthe chemical composition is changed. From a welding standpoint, of primaryinterest are alloys or mixtures of different elements, both metallic andnonmetallic. The most common example is steel, which is a mixture of iron andcarbon, plus other elements occurring in various amounts.

In addition to mechanical properties, a metal's chemical composition will alsohave an effect on its corrosion resistance and weldability (the ease with which ametal can be successfully welded ).

Alloy Groups

Metals can be grouped into many alloy categories; some common categories aresteel, aluminum, nickel and copper. This discussion is primarily concerned withsteel alloys, they further divided into three subcategories: plain carbon steels,low-alloy steels and high alloy steels.

. Based on tonnage, plain carbon steels are the most widely used. They containprimarily iron but also small additions of carbon, manganese, phosphorous, sulfurand silicon. The amount of carbon present has the greatest effect on the metal'sproperties.

Low-alloy steels contain minor additions of other elements such as nickel,chromium, manganese, silicon, vanadium, columbium, aluminum, molybdenumand boron. The presence of. these elements in various amounts can result inremarkable differences in mechanical properties. Theselow~alloy steels can begenerally classified as either high strength .low -ctlloystructural steels,

Page 39: PIPING DESIGN-PART-I.PDF

automotive and machinery steels, steels for low temperature service, or steels forelevated temperature service.

I

()

f)

()

(J

VIT, Pune Page 42

()

oc~

()

()

()

()

ooooooooooo0,

o~.

0;

(;1

(}

o(}

o

The last group of steels are the high alloy types, Stainless and other corrosionresistant alloys are examples of this steel alloy group. Stainless steels contain atleast 11 % chromium, and many grades also contain significant amounts ofnickel.

Compositions of some of these stainless steel types, which are divided into fivegroups, austenitic (200/300 series), martensitic (400 series), ferritic (400/500series), precipitation hardening (600 series) and the duplex grades.

Effects of Chemical Elements in Steel

The following list shows the effects of various alloying elements on the propertiesof steel, including weldability.

Carbon: is generally considered to be the most important alloyingelement in steel and can be present up to 2% (although mostwelded steels have less than 0.5%). The carbon can existeither dissolved in the iron, or in a combined form such as ironcarbide (Fe3 C). Increased' amou'nts of carbon increasehardness and tensile strength, as well as response to heattreatment (hardenability). On the other hand, increasedamounts of carbon reduce weldability.

Sulfur: is usually an undesirable impurity in steel rather than an alloyingelement. Special effort is often made to eliminate it during steelmaking. In amounts exceeding, 0'.05% it tends to causebrittleness and reduce weldability. Alloying additions of sulfur inamounts from 0.01 to 0.03% will tend to improve themachinability of steel. Such types may be referred to as"resulfurized" or "free-machining". The free-machining alloysare not intended for use where welding is required.

Phosphorus:. is generally .considered to be an undesirable impurity in steels.It is normally found in amounts up' to 0.04% in most carbonsteels. In hardened steels, it may tend to cause embrittlement.Inlow-alloy high-strength steels, phosphorous may be added inamounts up to 0.01 % to 0.03% improve both strength andcorrosion resistance.

Silicon: Usually only small amounts (0.20%) are present in rolled steelwhen it is used .as a deoxidizer. However, in' steel castings,0.35 to 1.00% is commonly presElnt. Silicon dissolves in ironand tends to strengthen it. Weld metal usually contains

Page 40: PIPING DESIGN-PART-I.PDF

o()

f)

'0

o()

()

Q

oo()

oo()

o()

o()

o(]

o(]

oooQ

(ll

oC)r

"o(I

G

o

VIT, Pune Page 43

approximately 0.50% silicon as a deoxidizer. Some filler metalsmay contain up to 1% to provide enhanced cleaning anddeoxidation for welding on contaminated surtaces. When thesefiller metals are used for welding of clean surtaces, the resultingweld metal strength will be markedly increased. The resultingdecrease in ductility could present cracking problems in somesituations.

Manganese: Steels usually contain at least 0.30% manganese because itacts in a threefold manner: (1) assists in the deoxidation of thesteel, (2) prevents the formation of iron sulfide inclusions, and(3) promotes greater strength by increasing the hardenability ofthe steel. Amounts up to 1.5% are found in carbon steels.

Chromium: is a powerful alloying element in steel. It is added for twoprinciple reasons ; first, it strongly increases the hardneability ofsteel, and second, it markedly improves the corrosion resistanceof alloys in oxidizing media. Its presence in some steels couldcause excessive hardness and cracking in, and adjacent to, theweld. Stainless steels contain chromium in amounts exceeding11%.

Molybdenum: This element is a strong carbide former and is usually present inalloy steels in amounts less than 1.0%. it is added to increasehardenabilityand elevated temperature strength. It is added tothe austenitic stainless steels (2 to 3%) to improve pittingcorrosion resistance.

Nickel: is i;idded to steels to increase their hardenability. It pertormswell in this function because it often improves the toughnessand ductility of the steel, even with the increased strength andhardness it brings. ,Nickel is frequently used to improve steel'stoughness at low temperatures.

Aluminum: is added to steel in very small amounts as a deoxidizer. It isalso a grain refiner for improved toughness: steels withmoderate aluminum additions are referred to as having beenmade to a "fine grain practice".

Vanadium: The addition of vanadium will result in an increase in thehardenability of steel. It is very' effective in this role, so it isgenerally added in, minute amount. 'In amounts greater than0.05%, there may be a tendency for the steel to becomeembrittled during thermal stress relief treatments.

Niobium: like va.nadium, ,is genera!ly considered to ,increase thehardenability of steel. However, due to its strong affinity for

Page 41: PIPING DESIGN-PART-I.PDF

Dissolved Gases:

VIT, Pune Page 44

carbon, it may combine with carbon in the steel to result in anoverall decrease in hardenability. It is added to austeniticstainless steels as a stabilizer to improve as-welded properties.Niobium is also known as columbium.

ce.tp

({)

'e?~

CO(Q

({)

Hydrogen (H2), Oxygen (02) and Nitrogen (N2) all dissolve in molten steel andcan embrittle steel if n,ot removed. Steel refining processes are designed toeliminate as much of these gases as possible. Special fluxes or shielding gasesare used to prevent their solution in the molten weld metal.

Page 42: PIPING DESIGN-PART-I.PDF

VIT, Pune Page 46

C-'

c) Preliminary Pneumatic Test. A preliminary test using air at no morethan 170 kPa (25 psi) gauge pressure may be made prior tohydrostatic testing to locate major leaks.

2. Other Test requirements:

('

c-/

a)

b)

c)

Examination for leaks. A leak test shall be maintained for at least10 min. and all joints and connections shall be examined for leaks.Heat Treatment. Leak test shall be conducted after any heattreatment has been completed.Low Test Temperature. The possibility of brittle fracture shall beconsidered when conducting leak tests at metal temperatures nearthe ductile-brittle transition temperature.

(3. Special Provisions for Testing

c)

a)

b)

Limits of Tested Piping

Piping Subassemblies. Piping subassemblies may be tested eitherseparately or as assembled piping.Flanges joints. A flanged joint at which a blank is inserted to isolateother equipment during a test need not be tested.Closure Welds. The final weld connecting piping systems orcomponents which have been successfully tested, need not be leaktested provided the weld is examined in-process and passes with100% radiographic examination or 1OO%,ultrasonic examination

Externally Pressured Piping.

Equipment which is not to be tested shall be either disconnected from thepiping or isolated by blinds or other mectns during the test. A valve may beused provided the valve (including its closure mechanism) is suitable forthe test pressure.

Piping subject to external pressure shall be tested at an internal gaugepressure 1.5 times the external differential pressure, but not less than 150kPa (15 psi)

5.

4.

c

oHydrostatic Leak Test

Test Fluid. The fluid shall be water unless there is the possibility of damage dueto freezing orlo adverse effects of water on the piping or the process.

Test Pressure. Thehydrosta,tic test pre~sure at any point in a metal.lic pipingsystem shall be as follows:

Page 43: PIPING DESIGN-PART-I.PDF

VIT, Pune Page 47

()

{)

Q(.)

C

o

(.)

()

()

()

o()

a) Not less than 1 Y2 times the design pressure;b) For design temperature above the test temperature, the minimum test

pressure shall be calculated by equation below, except that the value of S T /S shall not exceed 6.5;

1.5 PSTPT =

SWhere PT = minimum test gauge pressure

P =internal design gauge pressureST = stress value at test temperatureS = Stress value at design temperature.

c) If the test pressure as defined above would produce a nominal pressurestress or longitudinal stress in excess of the yield strength at testtemperature, the test pressure may be reduced to the maximum pressure thatwill not exceed the yield strength at test temperature.

Pneumatic Leak Test

Precautions. Pneumatic testing involves the hazard of released energy stored incompressed gas. Particular case must therefore be taken to minimize the chanceof brittle failure during a pneumatic leak test. Test temperature is important in thisregard and must be considered when the designer chooses the material ofconstruction.

Test Fluid. The gas used as test fluid, if not air, shall be nonflammable andnontoxic.

Test Pressure. The test pressure shall be 110% of design pressure.

Proce~ure. The pressure shall be gradually increased until a gauge pressurewhich is the lesser of one half the test pressure or170 kPa (25 psi) is attained, atwhich time a preliminary check shall be made, including examination of joints.Thereafter, the pressure shall. be gradually increased in steps until the testpressure is reached,holding the pressure at each step long enough to equal izepiping· strains. The pressure shall then be reduced to the design pressure beforeexamining for leakage.

Hydrostatic-Pneumatic Leak Test

If a combination hydrostatic-pneumatic leak test is used, the requirements ofpneumatic leak test shall meetandthe pressure in the liquid filled part of thepiping shall not exceed the limits stated above. .

Page 44: PIPING DESIGN-PART-I.PDF

() VIT, Pune

CHAPTER 8

Illustrated Examples

Page 48

2 (20000 x 0.85 + 0.4 x 203)

1) Calculate wall thickness for 20 inch cooling water line having internal pressureof 14 bar, Material of Construction is ASTM A53 GRB(ERW)f;,

c~

('J

(:1

(1

C~

,:

Pressure = 14 bar = 203 psi

PDot =

(2SE + py)

203 x 20t=

E = 0.85S =20000 psiY=O.4

C)= 0.118844109 inches= 3.0186 mm

()tnom =

3.0186

0.875+ 1.6 = 5.049 = 5.05 mm

Q

()

oQ

o

selected schedule 10 = 6.35 mm

2) Calculate the pipe wall thickness for following design condition of jacketedpipe

Core pipe size = 8"Internal pressure 50 Bar at 250°CJacket pipe size = 10"Jacket having saturated steam at 25 bar pressureCorrosion allowance internal =1.6 mm

External = 1.0 mm

Material core pipe A106 Gr. BJacket pipe A 53 GR B.

A) First calculate pipe wall thickness Jar core pipe:

Page 45: PIPING DESIGN-PART-I.PDF

c(

(

()

c( ,

j'

VIT, Pune

P = 50 bar = 725 psiTemp = 250°C = 482°F8 =18.9 ksi = 18900 psi

P x Do 725 x 8.63T= =

2(8 x E + P Y) 2 [(18900 x 1) + (725 x 0.4)]

= 0.163 inches

Paqe49

t = + --0.875 25.4

= 0.186 +0.1024= 0.288= 7.324 mm

Ie(\

(\

(\

0.163 2.6

Selected schedule =std wall = 8.18 mm

B) Calculate MAWP for external pressure

T = (8.18 x 0.875) - 2.6T = 7.1575 - 2.6Tactual = 4.5575

Pa= =----

()

C:

()

C'

oooceo()

oeD

Factor A = 0.0015Factor B = 11000

4B

3 (Do/t)

= 21.0399 bar

4 x 11000

3 x 48.075= 305.078 psi

Page 46: PIPING DESIGN-PART-I.PDF

("

VIT, Pune Paqe 50

(,

(, But actual pressure is 25 bar so selected std. wall is not suitable. Therefore selectnext sch., i.e. Sch 60 =10.31 mm.

Repeat the procedure.

t = (10.31 - 2.6) x 0.875 = 6.74

L 6000

c\CI'

('

=Do '219.1

Do 219.1

= 27.38

= 32.47t 6.74

c) Factor A = 0.0025, Factor B = 12000

() 4 x 12000

Ci

()

Pa=3 x 32.47

=492.76 psi =33.98 bar

( '-"J

()

()

C

Q

oo

Therefore, sch 60 is acceptable for core pipe. Thickness of jacket pipe can becalculated with same method for internal pressure.

Page 47: PIPING DESIGN-PART-I.PDF

( i

( .

( ,

( ,

( ,

\.

f:

(

( ,

(

( )

(,

('

(

(

C

C

Annexure A

Graphs and Tables

Page 48: PIPING DESIGN-PART-I.PDF

e .~ e) e e () cc ace; 0, C 0 0 .-, ~ r"\ .-, ,'1"""

,..-, ""-, """'\

\j \_.J \~> ,~ ',~'

\ '":J ,-)\ " \-., ~, .-,

¥ (~

AppendixF.Dim~nsionsof seamless and welded ste,el pipes, ,

Dimensions of seamless and welded steel pipes which are given in as 1600: Part 2 are reproduced in table 25 for information only.

Table 25. Dimensions ofseamlessand welded steel pipe

o.utlidel Nominal wall thicknessd.amet.t . i j .•' iii j I Iii Iii i I I

I N.ominalpipe,iz. SChedule, SChedule., SCh,,e,d,ulel SCh,edule

5S' • 'lOS· '10' '20Schedule I Schedule30 ,40S·

Standard I, SChedule, SChedule' Schedule ,I Extrawall ,,40 60 '80s' strong

Schedule.80

SChedule, SChedulel Schedule100 120 .140

SChe,dule, Double160 . • .Xtra

strong

lill12.7014.27

15.09 18;26 20.6218.26 21.44 25.4021;44 25.40 28.58

23.82 27.79 31.7526.19 30.96 36.5229.36 34.92 39;69

32.54 38.10 44.45

34.92 41.28 47.62

38.89 46.02 52.39

·in mm \mm mm mm mm mm mm, mm mm

'/1 21.3 1.65 2.1; - - - 2.77 2.77 2.77lf~ 26.7 1.65 2.11 - - - 2.87 2.87 2.87

I' 33.4· 1.65 2:77 - - - 3.38 3.38 3.~_8

11/.- 42.2 1.65 2.77 - - 3.56 3.56 3.56lIb. 48.3 1;65 ' '2.77 - - - 3.68 3:68 3.682 \'60.3 1.65 '2.77 - - 3.91 3.91 3.~1

2.1/1' 73.0 2.11 3.05 - - - 5.16 S.16 5.163 88.9 2.11 '3.05 - - - 5.4,9 5~49 5.49,

4 114,3 2.11 :1.05 - - - 6.02 6.0,2 6.02SC 141.3 2.77 3,40 - - - 6.55 6.55, 6.556 168;3 2.77 3.40 - - 7.11 7.11 7.11

8 219.1 2.77 3.76 - 6.35 7.04 8.18 8.18 8.18H) 273.0 ' 3.40 4.1;9 - 6.35 7.80' 927 9.27 9.2712 : ~' ,,3.96 4.57 6.35 8.38 9;52. 9.52 "'1 0.3 r,

'--~_./

14 355.6 3.96 ,4.78 6.35 7.92 9;52 9.52 11.1316 406.4 4.19 4.78 6.35 7.92 9.52 9.52 12.7018. 457.2 4.19 4.78 6.35 7.92 11.13 9.521 14.27

20 508;0 4.78 ,5.54 6.35 9.52 12.70 9.52 15.08

22 558.8 4.78 5.54 6;35 9.52 12.70 - 9.52 15.8824 609:6 5.54 ' 6.35 6.35 9.52 1427 - ' 9.52 17.48

mm

10.3112.7014.21

15.0916.6419.05

20.6222.2224.61

mm mm mm

3.73 3.73 3.733.91 3.91 3.914.55 4.55 4.55

4,85 4.85 4.855.08 5.08 5.085.54 5.54 5.54

7;01 7.01 ' 7;017;62 7.62 7.62

8.56 8.56 8.569.52 9.52 9.52

10.97 10;97 10.97

12.70 ,12.70 12.7012.70 12.70 15.09

,12.70 12.~Ot 17.4.7

12.70t 19.0512.70 21.4412,701 23.82

12.70 " 26.1912.70 28.5812.70t 30.96

mm mm -mm mm

4.785.566;35

6.367.1;48.7~

9.62

11,l~

13.4915.8818.26

23.0128.5833.34

35.7140.4945.24

50.0153.9859.54

mm

1.41T7.82t9.09t

9.10t10.161.n.OH

14.02t15.24t

17.12t19.051

. 21.95t

22.22125.4025.40

·Schedules5S.10S.40Sand80S apply to austenitic chromium-njcl<elsteelpipe only.

t E';cept when marked l;Sland~rd. Extra Slro~g and Double E."a Strong 'Nail thicknesses have pipe 01 corresponding wall thickness listed under one of, the schedule numbers.

• The,use- of-these sizes should 'be-avoided. in new construc-tions.

NOTE 1. Dimensions in this table are based on ANSI/ASME B36.10 M .old ANSI/ASME83B.19.

NOTE 2~ .For:tol.e,ratices.on outside d~ametef andw,allthickness see apP'opriate speclf1cations.

CDU>

(J1mo

U>

~O·:J

!--'

CDQ) ,':CD ';:

.":;:"

Page 49: PIPING DESIGN-PART-I.PDF

( I

{,

( \

(

("

()

Cl

()

C)c)·C;

o()

oooC()

A.40 PIPING FUNDAMENTALS

TABLEA1.2 Wire and Sheet-metal Gauges'"

u- ;~].~ lS:!s i i i@l8, ]J .1:1 .:s';:!:... ale-

~.~~ l.i ' ~!l-:s ~ .. l~-r~'E .! r~ '~l. ~

~I'l"'" a~ d t> ji~~ a~1 .~jl 1::g·E 1 !l~

s_~cri 8

.11~ "l.c:l~

.... e8 1~0>' j 0. 'Sp.e .d '":'

lilr:tl IS . bO.B] .B ~ !:t: ·B S~o.;:l;:l w~ ... t;j .....~~~e ]!:t: ...1=1 p:s~ .. .a .... .$cri .. c:l;:l .... c:llXl

c3 w Q~ w &:I ....... ;:)is ~ u !:;1iS:5 &:1.1=1 ~ .....

0000000 ...... 0.4900 ..... ..... 0.500 0.500 .. ·.. ·1 0.6666000000 ....... 0.4615 ..... , .... 0.464 0.469 ...... 0.62500000 0:460' 0.4305 0:454

..... 0.432 0.438 .. · .. ·1 0.58830000 0.3938 .... , 0.400 0.406 .... ··1 0.5416

000 . 0.410 0.3625 0.425 .... , 0.372 0.375 0.500000 0.365 0.3310 0.380 ~ .... 0.348 0.344

..... '!0.4452......

0 0.325 0.3065 0.340o:ii7

0.324 0.312 ., .... 0.39641 0.289 0.2830 0.300 0.300 0.281 ...... 0.35322 0.258 0.2625 0.284 0.219 0.276 0.266

id39i0.3147

3 0.229 0.2437 0.259 0.212 0.252 . 0.250 0.2804-4 0.204 0.2253 0.238 0.207 0.232 0.234 0.2242[ 0.25005 0.182 0.2070 0.220 0.204 0.212 0.219 0. 2092 1

0.22256 0.162 0.1920 0.203 0.201 0.192 0.203 o 1943

1

0.19817 0.144 0.1770 0.180 0.199 0.176 0; 188 0.1793 0.17648 0.128 0.1620 0.165 0.197 0; 160 0.172 0.1644 0.15709 0.114 0.1483 0.148 0.194 0.144 0.156 0.1495 0.1398

10 0.102 0.1350 0.134 0.191 0.128 0.141 0. 1345 i 0.125011 0.091 0.1205 0.120 0.188 0.116 0.125 . 0.1196 0.111312 0.081 0.1055 0.109 0.185 0.104 0..109 iO.l0461 0.099113 0.072 0.0915 0.095 0.182 0:092 0.094 10.08971 0.OB8214 0.064 0:0800 0.083 0.180 0.080 0.078 iO.0747! 0.078515 0.057 0.0720 0.072 0.178 0.072 0.070 ;0.0(173 0.069916 0.051 0.0625 0;065 0.175 0.064. 0.0(,2 0.OS98 0.0(,2517 0.045 0.0540 0.058 0.172 O.OS(, 0.056 0,0538 0.055(,18 0.040 0.0475 0.049 0.168 0.048 0.050 0.0478' 0,0,j')519 0.036 0.0410 0.042 0.164 0.040 0.0438 '0.04181 0.044020 0.032 0.0348 0.035 0.161 0.036 0.0375:0.0359; 0,039221 0.0285 0.0317 0.032 0.157 0.032 0.03440.. 0329

1

0.034922 0.0253 0.0286 0.028 0.155 0.028 0.0312 ;0.0299, 0.031323 0.0226 0,0258 0.025 0.. 153 0.024 0.02810.0269, 0.027824 0.0201 0;0230 0.022 0.151 0.022 0;0250'0.0239 0.024825 0;0179 0.0204 0.020 0.148 0.020 0.0219 ,00209, 0.022026 0.0159 O.OHII 0.018 0.146 0.018 0.01880.0179, 0.019627 0.0142 0.0173 0.016 0.143 '0.0164 0.0172 ,0.1064i 0.017528 0.0126 0.0162 0.014 0.139 0.0148 0.0156 ,0.01491 0.015629 0.0113 0.0150 0.013 0.134, 0.0136 0.0141 '0.0135 0.013930 0.0100 0.0140 0.012 0.127 0.0124 0.0125 :0.0120, 0.012331 0.0089 0:013'2 0.010 0.120 0.0116 0.0109 ~00105i 0.011032 0.0080 0.0128 0:009 0.115 0,0108 0.0102 10.00971 0.009833 0.0071 0.0118 0.008 0.112 0.0100 0.0094 10.0090 0.008734 0.0063 0.0104 0.007 0.110 0.0092 0.0086 0.0082 0.007735 0.0056 0.0095 0.005 0.108 0.0084 0.0078 10.0075 0.006936 0.0050 0.0090 0.004 0.106 0.0076 0.0070 ,0.0067 0.006137 0.0045 0.0085 0" •• O.IOl 0.0068 0.0066 0.0064 0.005438 0.0040 0.0080 .0 ••• 0.101 0.0060

~:~~~~ I~: ~~~~I0.0048

39 0.0035 0.0075 .,.... 0.099 0.0052 0.004340 0.0031 0.0070 ..... 0.097. 0·.0048 ...... I.. ·; .. ! 0.003941 ...... 0.0066 "" . 0.095 0.0044 . ..... ;..,,' "', 0.003442 .... , . 0.0062 ..... 0.092 0.0040 ...... 0.003143

• '," to 0.0060 ',0" • 0.086 0.0036 ...... '::::: :i 0.002744 ... , .. 0.0058 ,. 0." 0;085 0.0032 •• 0."" ..... 'i 0.002445 o. ,-,. 0.0055 ..... 0.081 0.0028 . ..... • • • • .'. I 0.002246 ., 0., •• 0.0052 ..... . 0.079 0.0024 ....... . . . . , , 0.001947 • "0 0" 0.0050 ..... 1l':J77 0.0020 , ' .....

· .... 10.0017

48 ·.... ,-, ·0.0048 '" .. 0.075 0.0016 I 0" ,"'. 0.001549 0.0046 0.072 0.0012 [ ... I O.QOI'!,., .,-, ...... • •• '0, ::::: :!50 ".' ... 0.0044 • 0 ••• 0.069 0.0010 . ..... 0.0012

*Diamctcrsrnd thicl<nessesin decimal parts of nn inch.

Page 50: PIPING DESIGN-PART-I.PDF

( I

{

()

(

c!

flMF.IlICflN NflTIONflL STI\fWflnOS 1l:1!L PiPe flLflNOr:S.FLflNoeo VALVES fiNO FIl TlNGS

APPENDIX G

PRESS URE·TEMPE RATURE1RATIN GS, METnlC UNITS I

v

flNSID1G,!)-1!)7:1

c:

Ci

()

Tl.us nppcllulx cOlllillllS lhc mclrlc vcrsloll of lht;pressure-lelllperalure ralillgs. Tables 2.. The lables InlIus appendix were calculaled using lhe Urlle slressvalues lIS were used for Tal>les 2. The slrcss valueswere inlerpolaled (Iine;uly) 'lo oblain lhe selectedslress al lellllieralure• .T. III deCrees Celsius. These

were u~d 10 cwcuJale the pres:surerolings as SII~WlIIn billsl The labulaled vAlues LIe In bars. (gage). Thepressure unilof 1 bar Is equal to 100,000 Ne wI O'lS

, ....per sq~are meier. The conversion faclor Is I bar isequal 19 14,5038 pounds peraqu.re Inch.

MATEnIALS: Gnoup 1,.1

C"

C

c()

AIO'A155·CM751\ 3,50·Lr 2A203.01\515·10

,AIO<;·CA155·KC70A35O-LF3A203·E

,A516·70

A1H-CM70A155·KCF70A2U·WCO

c!o

oooo0,.

oe()

TABLE G·1... .

-TEMPE nATURE WORKINO PRESSURES IN BARS

IN·e

"150 300 0400' GOO 1100 '1600 2CiOO, --3010 3. U.S 51.0 •••0 102.1 15.1:1 U5.t 42'.4

SO 19.1 50.0 66.7 100~1 150.1 :nO.2 417.1100 17.7 46.3 610. 92.7 ,13'.0 231 •• 386.3

,160 11•.1 45.2 60.2 90.4 135.6 226.0 316,1200 16.7 43.11 ' 58.4 87 •• 131.4 2'19.0 365.0250 . 15.9 41.7 55.6 13.• 125.1 208.5 347.5

300----,.- I .... H.7 51.6 77 •• 111;1 ' 19J.' ' 322,6350 104.1 36.' 4'.2 73.' 110.' 184.7 .107.9375 13.9 36.4 4 •.6 ".9 109.3 1U.2 " 303.,7,o~---, --T3.2 . J~.4 4).1/ "61.9 10.1.4 17M 2~

U5 11.0 28.7 31.3 n.4 14.1 143.7 239.'j I'll --10-.50' 7.6, ' 20.0 Z6,7 40,0 60,0 100.1 166.8

41) 5.1 13.' 18.0 21.0 40.' 67.6 112.8500 3.3 8.7 11,7 17.' 28.3 43.9 73.2525 I. 9, 5.1 6.9 10.3 1S.5 25,1 43.1~50 ,0.1 1.9 2.6 3,t I.t t,t I'.~

Page 51: PIPING DESIGN-PART-I.PDF

(1

(.

('.1

(:.

'.'!"..:, ,,'

,('B~v)

D~,N RatingPN:10 I

Cp.sr)

ANSI Class

1251b

" .. ' .., .. ;' .:: '.,'.

c( .....

C'

(:'c!ooooCI

oooooQ'

o

oD

()

oQ

'. ,

, PN 16-t. ,l">l'l 20·--·--~· 150lb

PN 25~

PN 40---·...........I

P N 50 - - ~ ~ . 300 IbPN 63 .' .. Vl'I' b~ • . -' - - - . .4~0\ b

PN100- 600 Ibp 1'\ 1 50 - . - ·900 Ib

• o'

~. PN 160--'PN 250 1500 Ib,PN 320 .......----I

PN400·~:·Pl't42.0 -._-- . 2500lbPN 630-----

.h ~..~~~;:~..~.~~'I/:Pr-- '"" .C'~10 . \ '\1It! .' '\ '~I

. \~\ " j~ .

~~1?

Page 52: PIPING DESIGN-PART-I.PDF

VJC; 1~ e e e <:\ C 0 C 0 0 ,-... ~, tJ '-', ~ (,-.., ,-.., ,,",,' --- ,-." ""', ,-., "1 ---., - ~

<-"-" 't_+" ..) \,j \j . ../ " ~."

155v,

}Summary of Major Requirement~ of

f If I N G C 0 DESpertainillg to

PIPE WALL THICKNESS AND ALLOWABLE PRESSURE

Summary of Major Requirements of

PIPING CODES

(continuation from facing page)

CODE&: SCOPE FORMULAS NOTATIONNOTES

I. nle minimum thickness fur the pipeselected. cOllsiderinI; manufacturersminus tolerance. shall 1I0t be less thantm

. The minus tolerance f"r seatll­less steel pipe is I ~.5'K of the n"minalpipe wall thickness.. .

~. Where steel pipe is threaded and usedfor steam sen.;ce at pressure' abo\~250 psi, or for water service above100 psi with water temperature above:220 F the pipe shall be seamless hav­ing the minimum ultimate tensilestrength of 48.000. psi and weightat least equal 1<> Sell 80 of ANSIB36.1 O. (Code ANSI B31.1. Para.104.1.2 CI)

3. Piping systems installed in open ease­ments. which are accesible to thegeneral public or to individuals otherthan the. owner of the piping systemor his emoloyee or agent. shall bedesigned i~ accordance with USASB31.8. (Code USAS B31.02. Para.

20U)

4. When not specifically required by agas using process or equipment. themaximum working pressure for pip­ing systems installed in buildings in­tended fcr human use and occupancyshall not exceed 10 psig. (Code USASB31.2. Para 201.2.1) ,

5. Every piping system, regardless of an­ticipated selvice conditions shall havea design pressure of at least 10' psigbetween the temperatures of minus20 F and 250F. (Code USAS B31.2,Para. 201.2. 2.b.l

'6. Where the minimum wall thickness isin excess of 0.10 of the nominal dia­meter. Ihe piping system shall mee!the requirements of USAS B31.3.(Code VSAS B31.2. Para. 203)

7. Pipe "'ith I equal to or greater than0.,14. or PISE greater than 0.6, re­quires special consideration. taking in­to account design and malerial factorssuch as theory of failure, fatigue, andthermal stresses. (Cod~ B31.3, Para.304.1.2.b.)

8. Pipe bends shall meet the flatteninglimitations of the applicable Code.

10 bl e. 304 "d(l3> ~, '3)

t ~

s =

P =

F =

d =

t m

A = an additional thickness. in inches to compen­sate for material removed in threading. gr"'1\'­ing etc., and to provide for mechanicalstrength, corrosion and erosion.

For cast iron pipe the fo~lowing values of A

shall apply:Centrifuplly cast . • . . . . . . . . 0.14 in.Statically cast .••......... 0.18 in.

c = the sum in inches of the mechanical allow­ancesithread or groove depthl plus corrosionand erosion allowance.

inside diameter of the pipe in corroded con­

dition, inches

outside diameter of pipe, inches

efficiency factor of welded joint in pipe(seeapplicable code)For seamless pipe E = 1.0

for cast iron pipe casting quality factor Fshall be used in place of E

internal design pressure, or maximum alloW­able working pressure. psig

maximum allowable stress in material due tointernal pressure at the design tempera lure.

psig.thickness of pipe required for pressure, inches

~ minimum thickness of pipe in inches requiredfor pressure and to compensate for materialremoved for threading, grooving. etc., and 10

proVide for mechanical strength. corrosion and

erosion. •

Sote: The value of y may be inlerpolated belween the50 F values shown ill the Table. For nonferrousmaterials and casl irun, y equals 0.4-

I Fer pipe with a Doltm ratio less than 6. the value of.vfor ierritic and austenitic steels d~signed fur temperaturesof 900 F and below shall ,be taken as:

)'=~

Values of y &Y

900 1 11 SO

T~mpeuture I and30d

F below 9S0 1000 lO50 1100 ah"v\:"

Fcrrllic Steels II 0.4 O.S 0.7 0.7 0.7- 0.7

.:;,ustenitic Steeb 0.4 0.4 0.4 0.4 O.S 0.7

y &y ~ coefficients

0&0 =. 0

E=

(~.

1

NoWW/T1t PRAWN

)

PD..

PD" . + A2TSE + Py)

P = 2SE(lm-AIDn - 2 y (tm - A)

Pd + :!SE A + 2yPA2(SE + Py -P)

t =m

t ­m

Intr:,rnal Pressure

t ~ JSDE(See n(,les t. 3. 4.5,6.8)

VALUES OF,S,IOOO psi.For ~bterials ASTM A 53B. and A 106 B

For Metal Temperatures Not Exceeding Deg. F-,--20 to 100- 200 300 400 450

20.00 19.10 ;3.15 17.25 16.80

Internal .Pressure1m ~ t'+ A

P ~~

Int einal Pressure

t m =t + C

(See nutes I. 7. 8)

p _ .:2 SE(tm - AI

d - :2y (1m - A) + 2tmVALUES OF,S. 1000 psi.

For Malerials ASTM A 53 B and A 106 BFor Melal.Temperaiures not Exceeding Deg. F

-20 to 650 700 . 750 80015.0 143 12.9' 10.8

External- Pre.ssureFor determining walllhid,"ess and stiffening require­ments the procedures outlined in Para. UG-28' ofSeclion VIII. Di';sion I of the ASME Boiler and Pres­sure Vesselende shall he foHowed.(&-e No(es j. 2. 8) .

2\SE Tl'YYPd

~~PV-P)

VALUES OF,S,IOOO psiFor Materials ASTM.-\ 53b and A 106b

For Metal Temperatures not Exceeding Deg. F- 20 to 100 200 300 400 500

A 53B' 20.00 19.10 18.15 17.25 16.35AI06B 20.00 20.00 20.00 20.00 18.90External PressureFor determining. wall thickness and stiffening require­ments. the procedures in Para. UG-28of Section VIII,Division I. of the ASME Boiler and Pressure VesselCode shall be followed.

USASB31.2-1968FUEL GAS PIPING

This Code covers the design. fabrica­tion, installation, and testing of pipingsystems for fuel gases such as natural gas,manufactured gas, liquefied petroleumgas'(LPG)- air mixture. above the uppercombustible 'limit, liquefied petroleumgas (LPG) in the gaseous phase, or mix­lures of these gases.

ANSI B31.1-1973POWER PIPING

This Code prescribes minimum re­quirements for the design, materials, fab­rication. erection. test and inspe,ction ofpoWer md allXiliary service piping

. systems for steam electric generalionsta.tions; ind~strial and institutional plan ts;central and district heating plants: dis­trict heating systems. both on the prop­erty of and within the buildings of theusers_

ANSIB3L3-1973PETROLEUM REFINERY PIPING

This Code prescribes minimum re­quirements for the materials. design. fab­'ication, assembly, test and examinationof petroleum ,refinery pressure and vac­uum piping systems.. Except as excludedin 300.1.4. this Code covers ail pipingwithirl the property limits ora petroleumrefinery, . loading terminal, natural gasprocessing planl'(includingliquified nal­ural gas facilities), bulk plant, compound­ing plant, or refinery tank farm, any of

. whi.ch are engaged. in!heprocessing orhandJing .of .petroleum and related pro­ducts. lt also covers· intereonnectinglinesbet~enseparatesections of a re­iinery~

Page 53: PIPING DESIGN-PART-I.PDF

cc c:- o e c 0 ('0 0 (') a 0 a c 0 0 (') 0 i' rj ~ ,~ ~-, '1 '] '\ -, --, .-" -. '--',

J -1.)0 -~ .~

J ISi-;

Summary of Major Requirements of

P IPf N G CO DES. -pertaining to

flI>-E"WALL THiC~NESS AND ALLOWABLE PRESSURE

, Summary of Major Requirements of

PIPING CODES

Continuation from facing page

FaetorT1.000.0.9670.9330.9000.867

mechanical. currosion anderosiun allowances

T = Temperature Derating Factorfor Steel Pipe

TemperatureDegrees Fabrenheit

250 For less300F350F400F450F

Note: Interpolate for inter­mediate values

y = coeffICient for R13terillls in­dicated:

For du.:tile nonferrous ma­terials. ferritic steels and aus­tenitic steels y = 0.4

If Dult in range of ~, used

y = d+ Do

for ductile materials.

For brittle materials usey = 0.0

I. In selection of pipe the manufacturersminus tolef3nce shall, be taken intoconsideration. The minus tolerancefor seamless steel pipes is 12.5% ofthe nominal wall thickness. This tol­erance may be used also when speci­fication is not available.

2. Pipe bends shall meet the flatteninglimitations of the applicable Code.

3. Classification of Locations. In CodeB31.8, Para. 841.01, four classes aredescribed as a basis for prescribing thetypes of construction.

4. Limitation of Pipe Design Values,Code B31.8, Par3.'841.14.

5. Least Nominal Wallll1ickness. Code?31.8, Table 84I.I41.

The formulas and regulations are extract­ed from American National StandardCode for Pressure Piping with the per­mission of the publisher. TIle AmericanSuciety of Mech:mical Engineers.

NOTES

tm = minimum required thickn~ss

in inches satisfying requil~­

ments for design pressur~ and

A = sum of allowance, inches forthreading and grooving as re­quired under C-ode, Para 40.4.2, corrosion as requiredunder Code, Para. 402.4.1.'and increase in wall thicknessif used as protective measureunder Code. Para; 402.1.-

c = for internal pressure, the sumof allowances in inchesthread and groove depth,manufacturers' minus toler­ance, plus corrosion and ero­sion allowance:-for external _pre;sure, thesum in inches of corrosionand' erosion allowances. plusmanufacturers' minus toler­ance.

d = inside diameter of pipe,inches

E = Longitudinal joint factor'obtained from' Code, table841.12. For seamless pipe,E = 1.0

F = Values of Design Factor F

Construction Type Design Factor F(See Code 841.02)

Type-A 0.72Type-B 0.60Type-C 0.50Type-D 0.40

P &Pi

= internal design pressure, psig

S = as described at the formulas.and inapplicable code, psi.

t = as described at the for.s,.inches

tn = nominal wall thickness satis­fying requirements for pres­sure and allowances, but notless than the nominal walllhiclcness listed in Code.Table 404.1.1. inches

NOTATION

D & Du

= outside diameter of pipe, ., inches

I'

(,j

~;

r'il~

i4':r

"S tP = D-x F X ExT. where

specified minimum yield strength,psi.

For pipe materials ASTM A 53 Band A 106 B, S =35.000 psi.

nominal wall thickness. inches(See note;s L, :?~ ,?,~ 4:, ..~1

I'

5

Internal Pressure

Internal Pressure

tn = t + A

PiD=~ ,where

5 = applicable allowable streSs value,psi, in accord;;nce with Code, Para.402.3.1 a, b, c. or -d, For pipematerials ASTM A SiB and A 106B, 5 =25.200 psi. at -20 F to250Fpressure design wall tl~ickness; in­ches (see no.tes I ,2)

FORMULAS

tm = t + C

PO" ---fl!.2 (5 + Py) or t- 2 (5 + Py_P)

2StDo - 2yt ' where

maxim\lm allowable stress in :ma­terial due to internal pressure atthe design temperature,- psi. Forpipe materials A5TM A 53 BandA 106 B. 5 = 15,000 psi, at 100 Fto 400 F,

t = ;;>ressure .. design wall thickness; in­ches(5ee notes I,~)

External PresSure

The pressure design thickness, t shall bedetermined in accordance with Code,Para. 504. 1.3.

fnterital. Pressure

S

CODE&. SCOPE

ANS1Il31.4-1974UQUIDPETROLEUM

TRANSPORTATION PI('ING SYSTEMS

This Code prescribes minimum re­quirements for, the design, materials,

'construction. assembly, inspection, andtesting of piping transporting liquid pet­roleumsuchas Crude oil, c::lndensate.natural gasoline, natural gas liquids, lique­fied -petroleum gas, and liquid petroleumproducts between producers' leasefacili­ties, tank farms, naturalgJ.S processingplants.refmeries.stations, terminals, andother delivery and receiving points.

USASI 831.54966REFRIGERATION PIPING

This Code prescribes minimum re~

quirements far the materials, design, fab­rication. assembly, test and inspection ofrefrigerationpillin~for temoeratures aslow as ,-320 F(whether, erected On thepremises or f actoryassembled) exceptas specifically excluded .n the followingparagraphs.

USAS 831.8,1968GAS TRANSMISSION AND

DISTRIBUTION PIPING SYSTEMS

This Code covers the design, fabrica­t:on, installation. inspection, testing, andthe safety aspects of operation and main­tenance algas transmission and, distribu­tion systems, including gas pipelines, gascompressor stations, gas metering andregulating· stations, gas mains, and servicelines .•1;;-' to the outlet of the customer'smeter set -asSembly. Also .included with­-mihe:-:s60~Qf-t.hissection_a_n~_gas storage

"i'tM'~lE ,?( ~'O,"~'~~ ~t~ tw~ r~lJ:neated'or forged from pipe or fabricatedfrom p;pe and filtings, and gas storage

I Iines_.__. __-__.-"--- - -- ---1'---.--_-__....:.._

Page 54: PIPING DESIGN-PART-I.PDF

C\

STRESS M"AL'y'SIS OF PIPING S'l'STHIS 8.161

Maximum bending stress, psi

FIGURE B4.16 Bending stress in empty pipe.

3 ------0 0 0 0 0 0000 0 0 0 0 0 0 000 0 0 0 00 0 0 00 0000 0 0 0 0 00 000 0 0 0 0("J r<) V III \D r-, (p O'lg. 0. 0. 0. 0. 0.'0. 0.0.0. 0. g- o. o.

N r<) v III \D r-, a)0'l9 0 0 0N r<) V If)

specified for particular valves. It is suggested that, wherever possible, valveweights should be obtained from the manufacturer of the particular valves whicharetobe installed irlthe piping. , '. "

Equation (B4.62)is based on thecoll1bination of a simply supported beammodclanda fixed-end beall1,ll1odclbecause the behavior of pipe lies somewherebetween these two models. , .,> , .

'Atablcofstlggcstcdmaxilllut;u;pans between supports of pipe based on R for-

60

80

70

90Bending stress in empty pipe,standard weight, caused by loadbetween supports - based onsingle span with free ends.

s= W~Z85m

W=Wei9ht in pounds per lineal inch~ =Oistoncc between honQeH in inches

50 Sm=Section modulus

o

o

oooo

o

,,..- .....(

c>

c

cC;

()

()

()

o0'

oooooQ

()

o()

oO'

Page 55: PIPING DESIGN-PART-I.PDF

(8.162 GENERIC DESIGN CONSIDERATIONS

Maximum ben~ing stress. psi

FIGURE B4.17 Bending ~tress in water·filled pipe.

mula similar toEq. (B4.62) isgiveninASME Codes,51,52 as shown in Fig. B5.1 ofChap.B5. The~espanshavebeen calculated by c;onsidering insulated, standardw~ll thicl<l1~s$ and he~.lVier pip~,\imited to a maximum stress of1500 psiandmax­imumpipe sag of 0.1 in. For sm~H pipe whcn~ soc;ket welds arc used, Eq. (134 .63)can be rewritten as

80

70

90

8 8 8. 0 88888 0 0 0 00 0 0 0 0

0. ~ o. 0. 9.~o.O. o. o. o. o.IN 'It If) ID r--C7l2 0 0 0 0

IN r<'l 'It If)

, Bending stress in empty pipe,standard weight, caused by loadbetween supports - based onsingle spon with free ends.

, o 0 0 0000.8o 0 0 0000r<'l 'It If) !Dr-- l:DC7lg.

()'

o

f '

(

(

C

(

(,

(,

C)

o

G, I

oo·oo

Q.

o[)

a

\)

()

Q

G

s = O.75iM= L89WL2

Z Z(B4.64) ,

o

Page 56: PIPING DESIGN-PART-I.PDF

121.2-121.7.1 ASr-,IE B31.1.2001

L\

()stress value during hydrostatic testing shall not exceed16,000 psi (110.3 MPa).

TABLE 121.5SUGGESTED PIPE SUPPORT SPACING

46

Suggested Maximum Span

Water Steam, Gas,Nominal Service or Air Service

Pipe Size,NPS It m It m

1 7 2.1 9 2.7

2 10 3.0 13 4.0

3 12 3.7 15 4.64 14 4.3 17 5.26 17 5.2 21 6.48 19 5.8 24 7.3

12 23 7,0 30 9.1

16 27 8.2 35 10.7.20 30 9.1 39 11.924 32 9.8 42 12.8

GENERAL NOTES:(a) Suggested maximum spacing between pipe supports for horizontal

straight runs of standard and heavier pipe at maximum operatingtemperature of 750°F (400'C).

(bl Does not apply where span calculations are ma~Jeor wher.e thereare concentrated loads between supports, such as flanges, valves,specialties, etc.

(c) The spacing is based on a fixed beam SlIppOr( with a bandingstress not exceeding 2300 psi (15.86 MPa)and insulatedpipefilled with water or the equivalent vveight of steel pipe for steam,gas, or air service, and the pitch of the line is such that a sag of0.1 in. (2.5 mm)belween supports is permissible.

121.4 Hanger Adjustments

Hangers used for the support of piping, NPS2 1/ 2

and larger, shaH be designed to permit adjustment aftererection while supporting the load. Screwed adjustmentsshall have threaded parts to conform to ASME B1.1.

Class 2 fit turnbuckles and adjusting nuts shall havethe full length of thread in engagement. Means shallbe provided for' determining that full thread length isin engagement. All screw and equivalent adjustmentsshall be provided with suitable locking devices.

121.5 Hanger Spacil1g

Supports' for piping with the longitudinal aXIS In

approximately a horizontal position shall be spaced toprevent excessive sag, bending and shear stresses inthe piping, with special consideration given wherecomponents, such as flanges and valves, impose concen­trated loads. Where calculations are not made, suggestedmaximum spacing of supports' for standard and heavierpipe are given in Table 121.5. Vertical supports shallbe spaced to prevent the pipe from being overstressedfrom the combination of all loading effects.

121.6 Springs

(B) Rolling or sliding supports shall permit freemovement of the piping, or the piping shall be designedto include the imposed load and frictional resistanceof these types of supports, and dimensions shall providefOf the e>;pected movement of the supported piping.Materials and lubricants used in sliding supports shall.be suitable' for the metal temperature at the point ofsliding contact.

,--.,...----.--~-··-·----·-------·--·(cy Where···corrugated"or'slip~type··expahsidl,--joj'ntS,···-"···

The springs used in variable Of constant effort type or flexible metal hose assemblies are used, anchors andsupports' shall' be designed and manufactured in ac.cor· guides shall be. provided where necessary to direct thedance with MSSSP.58. expansion into the joint or hose assembly. Such anchors

shall be designed to withstand the force specified byth,e manufa<:turer for the design conditions at whi<:hthe joint or hose assembly is to be used. If this forceis otherwise unknown, it shaH be taken as the sum ofthe product of the maximum internal area times thedesign pressure plus the force· required .• to deflect .thejoint Or hose. assembly. Where expansion .joints orflexible metal hose assemblies are subjected to a combi­nation of longitudinal and transverse movements, bothmovements shall be considered in the design and appli·<:ation of the joint or hose assembly.

121.7 Fixtures

121.7.1 Anchors and Guides(A) Anchors, guides, pivots, and restraints shall be

designed. to secure the desired points of piping inrelatively fixed positions. They shall permit the pipingto expand a:nd contract freely in directions away fromthe anchOred qr g\.liqed point and shall be structurallysuitable to withstand the thrusts, moments, and otherloads. imposed.

121.3 Temperature Limitations

Parts of supporting elements which are subjectedprincipally to bending or tension loads and which' aresubjected to working temperatures for which carbonsteel is not recommended shall be made of suitablealloy steel, or shall be protected so that the temperatUreof the .supporting member will be maintained within

. the appropriate temperature limits of the material.

(I

o

( I

Ci

()'

ooQ

o

()

()

C)

()

(1

o()

()

o

Page 57: PIPING DESIGN-PART-I.PDF

u c e ~> () t!:) C o o 0 a 0 (') 0 00 0 0 0 ~.~ ~ r"\ ---. -,~ J ,--./ - -...-,i

-'"'"'I-.J

'j .")-:f ...~ "j

~ --... --. ......,,~ .j

-,-,./'

TABLEC4.12 . Pipe Spans for Standard WcightSteel Pipe for Straight Runs with No Valvesocec,mponents

Pipe and insulation Pipe, water, and insulation

ASTM A53 type Fbutt weldS ==11-,250

Pressure in pipe

ASTM'AS3B Smls or ERWS =15,000

Pressure in pipe

ASTM AS3 type F butt weldS= 11,250

Pressure in pipe

ASTMAS3B Smls or ERWS = 15,000

Pressure in pipe

p....Q)(,rJ

Pipe· size(NPS)

!6314

111/.$1!622!634568

10121416182024

300psig(ft)

679

n1214161720

'15psig(ft)

679

n1214161720

Hangerload (lb)

59

1626345696

139224

400 psig(ft)

679

11121416i72022242831343638404346

15 psig(ft)

679

11121416172022242831343638404347

Hangerload (lb)

59

1626345696

139224338478829

1309174620382500299335154638

300 psig(ft)

679

111213151618

15 psig(ft)

679

111214161719

Hangerload (lb)

61119324575

128189317

400psig(ft)

679

11121416172022232528282929282827

15 psig(ft)

679

11121416172022242831333435363637

Hangerload (lb)

61119324577

129195334530782

1431236933013929501562237561

10603

L· Spans based on lesser of (I)halfthatpennittedby allowable stressin simple beam formula or (2) deflectionorO.Ix NPS toO.2in max. for empty pipe and fiberglass insulation.

2.Formulasused:peflection span, ft = [{384EIGIW)°·2S]112.Simple beam span, (ft) = [{8Z(S- SL)IW} 0.5]/12,where E= modulus of elasticity, I. = moment .of inertia,.G = .permitted deflection, Z =: section modulus,S=allowablestress, SL=longitudinaI stress caused by pressure, W= weight.

3. Hanger loads listed are the full weight of the longer span in each category.

Page 58: PIPING DESIGN-PART-I.PDF

()

C)

(J

() ­

()

c!()

oo()

()

()

o()

ooooooo·oooooQ

o01

G

ooQ

o

C.164 PIPING SYSTEMS

TABLE C4.13 Pipe Spans for Copper Tube Type L for Straight Runs with No Valves orComponents

Pipe and insulation Pipe, water, and insulation

ASTM B88 type L hard drawn ASTM B88 type L hard drawnS :::: 11,300 to 250QF S :::: 11 ,300 to 250QF

NominalPressure in tube Pressure in tube

pipe size 300 psig 15 psig Hanger 300 psig 15 psig Hanger(NPS) (ft) (ft) load-(lb) (ft) (ft) load (lb)

112 4 4 1 4 4 2sis 5 5 .2 5 5 33f4 5 5 3 - 5 5 4

1 7 7 6 7 7 8IV4 8 8 8 8 8 13IV2 9 9 12 9 9 192 11 11 22 10 11 372112 12 12 33 10 12 564 14 14 52 12 13 8831/2 . 15 15 70 12 14 1244 16 16 93 13 15 1675 18 18 147 14 17 2696 20 20 216 15 18 4008 23 23 473 18 21 854

10 25 25 791 20 23 148012 28 28 1175 21 25 2214

1. Spans based on (1) lesser of half that permitted by allowable stress in simple beam formula \.I!' ())

deflectiopof 0.1 x NPS to Q.Z.inm~.2. Formulas used: Simple beam span (it) = [{8Z(S .. SL)/W} 0.5]112; Deflection span (ft) = [(384£1G/

W) 0.25]/12, where E= moduhis of elasticity,l = moment of inertia, G =permitted deflection, Z -;=

section modulus, S = aUo\'iaplestress, SL :: longitudinal stress dpe to pressure, W = weight (lb/in).3. Hanger loads listed are the full weight of the longest spnnill each category.

Page 59: PIPING DESIGN-PART-I.PDF

BUILDING SERVICES PIPING C.165

c\\

(.

(

(~:i

\~:'

C~

()

C>\~=)

C;l

()(J

TABLE C4.14 Pipe Spans for Standard Weight Aluminum Pipe for Straight Runs withNo Valves or Components .

Pipe and insulation Pipe, water, and insulation

AS1M B241 A93003·0 A1M B241 A93003·0S = 3,400 to 200°F S = 3,400 to 200°F

NominalPressure in pipe Pressure in pipe

pipe size 180 psig 15 psig Hanger 180 psig 15 psig Hanger(NPS) (ft) (ft) load (lb) (ft) (ft) . load (lb)

1/2 6 6 2 6 6 3.J!4 7 7 4 7 7 5

1 8 8 6 8 8 911/4 10 10 10 8 9 1411/2 12 12 13 9 10 192 13 14 19 9 10 3121/2 14 15 33 10 12 513 16 17 47 11 12 774 18 20 74 12 14 1325 19 22 108 12 14 2076 21 24 149 13 15 3048 22 27 252 13 17 550

10 25 31 383 14 18 90112 26 33 534. 14 19 1329

1. Spans bnsed on (1) lesser ofhalf thtH permitted by allowable stress in simple beam formula or(2) deflection of 0.1 x NPS to 0.2 in rna". .

2. Formulas used: simple beam span (ft) == [{8Z ($ . $L)/W} 0.5]/12; deflection span (ft) = [(384EIGIIV) 0.25]/12, where E = modulus of elasticity, I = moment of inertia, G = permitted deflection, Z '"section modulus, $ ;:; allowable stress, SL =longitudinal stress due to pressure, W =weight. (Ib/in).

3. Hanger loads listed are thefull weight of the longest span in each category.

Page 60: PIPING DESIGN-PART-I.PDF

1""", 1/'...~. ~)

""" .".... "f .,,... ""'" .1""\; f"\ f""', ",....,v· c/ \.b'~v ~} v; 'L) \c/ 4/ 0 r"'1 ~ '0 l-" :T"', !""' ,-.,., ,.,..-., i--"·,v "j 'v '..:':_j l.'JI , _/

),-..

j ~ ....., "-J..d 1

-", ~ ',.,\~< -"" ,,,,",,,,,,

"J"ABLEC4.15 Pipe Spans for Sch 40 CPVC,PVC, ABS, and Sch 80 PP Thermoplastic:Pipe, Including Water and Insulation

CPVC ASTM F441 #4120 PVC ASTM D1785 #1120 ABS ASTM D15HCell no. 23447 Cell no. 12454 Des. no. 1210 Polypropylene Schedule 80 pipe

Nom- Pipe presstlre(psig) Pipe pressure (psig) Pipeptessure (psig) Pipe pressure (psig)ina1

73°F too°F 180°F 73°F lOO°F 73°F 100°F 73°F lOO"F 18QOFpipesize 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15

(NPS) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)

.1,6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 33,4 4 4 3 3 2 3 4 4 4 4 3 3 3 3 3 3 3 3 EX 3

1 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 3

P Iv-. 5 5 5 5 EX 4 5 5 3 5 5 5 4 5 5 5 5 5 3~ 11,6 6 6 6 6 4 6 6 6 6 5 6 4 5 6 6 5 6 3.0')

2 7 7 7 7 4 7 7 7 7 5 6 4 5 6 7 5 6 40')

21,6 8 8 8 8 5 8 8 8 8 6 7 5 6 7 7 6 7 4'3 9 9 8 9 5 9 9 8 9 6 8 5 7 8 8 6 7 44 10 10 8 10 5 10 10 9 10 6 8 EX 7 8 9 6 8 55 10 11 9 10 5 10 12 9 11 EX 8 76 11 12 9 11 6 11 12 9 11 9' 8 9· U 7 9 58 11 13 9 12 6 11 13 9 12 9 8 9 12 EX 10 6

10 12 14 10 13 7 12 14 10 13 10 912 12 15 10 13 7 12 15 10 14 11 9

1. Spans based on lesser of (1) half thatpermitted by aJlowable stress in simple beam formula or (2) dcflecti?nofO.! x NPS.toO.2.inmax. for. empty pipe andglass.fiber insulation.

2. Formulas used: Deflection span (ft) = [(384EIG/W) 0.25]/12; simple beam span(ft) = [{8Z(S-SL)/W} 0.5]/12,whereE = modulus of elasticity, I = moment of inertia. G= permitted deflection, Z = section modulus,S = allowable stress, SL= longitudinaLstress caused by pressure, W =weight. .

EX--At this pressure the hoop stress in lhepipe exceeds the allowable stress for this size and larger.

Page 61: PIPING DESIGN-PART-I.PDF

/."

Brockel l3roc ke\

.:c :J.

Guide GlIid~

brockel brocket

:r I.

Guide f:---,-Guide

brocket brocketII

-1~"

deeket

deeket

deeket

. ,..-J-.!I

-, :rIf)

I d Cuibra

II :t

ICui

I bra

II

:x:

I Cui

I ::r:: braIf)

I ci

i ... Q ..~£r'

(,

c'(

(

(,

()

('i

)BrOCket

Figure 1. Maximum spacing .of brackets for riser piping on columns and vertical vessels

1f--1-----I- G.uide brockel

11.30

1?-.r..o1:1.7r..H.:J~,

Ii \0

111 :\1)

MaxlrT)um splicingor brackels

H

Inm

o~

10'(

12'

14'

Hj'

:?O'

ANSI

1

, NomInal dlametorON

DIN

GOO

600

200I~-'---~- - ..

250--_.........._._ ... _', , .........300'-----'--'-- _._,350._ _ , ..__ ._ _.~ ,', .100

Guide bro<;ket

::r: ::r:

8.25

10.'10

3'

u'

2"1".. ... _..._..... -.. _..

NomInal diameterON

DIN ANSI In m25 I' 6.70

- .--.-----.. - .. ·_'-------·1--......;..;.;..____ ._~._.__ •· .~_~~"-_. 1...,__7__

50 2' 7.30- ,. ,. .. _., _._. -----~----.-;,;.-

65.- ,;, --_.~.; .80

100 '1'~ ~ -....-.; ..__. - '.', , _ .

150

\)

Q

c)()

(~

()

aoG

'0Q,

o'0·oo.;~

o

Page 62: PIPING DESIGN-PART-I.PDF

V L SUAN

U

A

• :, ',' 'PLA~B

I I Gil-~"------~~"<;..-- ~

A =4.TYl,

.j;,y 6" II~. C;~d,-,C;rQ(i~ ",

PI,. .Lt' ::: 'Q -66 LT ,'"

.. 6= O~-S..2.L'

-;:: 0 '32-)<6 ;:1-<t£:r,\,

ll~ IT .O'90L '--I-- -+--+--+,..;.+\-+-+

o· aD Lr+-+\-j--t-f-!'\-l-=-'...j....:....~\ .

'I·, - .PIPC? 5UPPO,sqr..'_$Pli-OI FIc;»Tlo./'j

OVER -HUt~GOF PIPES AT ·CORNERS(",

C:J

r(

(

c-( ....

(")

C)

(

B

Is-7< f~.1 L1, ~11

..!-.

\'\ PLAN

).' \'-i-

~< .~--;-- rf\

\'--t-- --1--- r r\ ..

-~-!-. f \.

iT' f\:1\

l~\

1\

LHj'\

I\,d--'nf\.'tr-1

:]' .' I-I\.- ,_I

-

O-GOl

Q-30t

0'40

O'ML

0'10

O:90L" '

O'SOL'B'

, "

~'<b

()

()

()

()

(~)

() " ..

Q~}'()

ooo()

o()

()

()

o()

V

Page 63: PIPING DESIGN-PART-I.PDF

('"

(

.. - ~;

,PIPS SC/PP&~T SP£CI .'/ 17CJ.OYER·' HUNG OF PIPES AT CORNERS '...---

UAH V I. S

(-)

I,:..'

/ ..

v(.

-.. ,/~ (.\""\

·ooL.- '. O,.L·IOL-:-

~~~t I B'"OL .ao\.I'OOL,.~1 I,'10L

l'OOLO',40L 9'(;OL,' a·eOlI I

A

"

1..- s~)pporn SPA,ethic>" 70'1.. o~. VALuES G'VEI--J IN PS·37 50·01PART·2

I \lfC~c",

- .. ..

.... .. ............... '- C1\ \

:,W .

. . , . .~\: ' .

I'· \ 1\ 1\

f-\1\I' \ \'\ 1\\\ ~ [\

.2-'~\ "' [\ ' .

L : WI 1\ 1\ 1,\ \ 1\ '\

\ \ \ \[\ I\. f'\. K.. "'-,\ ' \ \ .\ "I'-.. ~ 't-;,

,,;;...., ~-, i\ r'\ "'- '" r.........t-.... to--

;\ 1\ t'-.. i"- t'- r-.........

l"- i'--~ r::: to-- ..:....

'-- I---

l f- \ \ \ K r....... r- r.......~

~h r- r-- ::-t-- to- t=:"r-I' 'S I'..... i""'- """h

.......~t--

. I. 1~")J·,; .. t-...kt---t-- 10-

lIfit'll.lLoo

1-":0-:- E ;---

0'10 1

0'20

a·GOL

KII

O'BOL

• 0-70L

, 0':,>0

'C'

.'

\ ,

".~- -"

c\c!()i,

()

()

oooCD

o()

(),

oeQ

()

c:(

c\(~

(

()

()

()

Page 64: PIPING DESIGN-PART-I.PDF

. \1·"

',j (101.6)

TABLE 25 DcOrclion. in (mill). .Pipr Lrp "\Clill~ .lS a C~nlile\'rr I' .

! r-;om~nal ~~_$l,ze•...:.in_(:..m_I)1:....) ---,

--- --,- 8 (203.2)6 (15~.-I)

'('",;,I nlilr\cr Irn~lh.h(m l(

c'

5 (15,10 (3.0)15 (-1.6)20 (6.1)25 (;.6)30(9.1)

0.26 (6.6)l,lXl (26.2)203:2 (5b.9)oi.l~ \lOH)6.,j~ (163.6)

• , g.26 (2,35.2)

O.li .,(4,3) .0.13 (1(~'~)(1 - 8) 0.54 \J ••

0.70 I. l.Z1 '(130.,7)1.58 (~O.l) :.'..lS (SUl2.80 (71.1)4038 (111.3) 3.~.5 (85.1)6.30060.0) ..53 (12.2.7)

I

, "

, .. , .... ,

.: ~.: .

D(-----"I •• ,II· , •.

.•. ,: ....

, ,1

(

-. -"'-).' . '

l.·~,.'(... ,

1

I,.,.

I .' .' '. -.'.. l

, I, ;.

" <'.'

;.! .

(-- ----1\. I

O.~75 (3.96,O.o..'i:!.5 (~.3SI0.0575 Hi9) "O.06:!-l (5 'I0.0670115(,21

"ulal/alion It'm~ra(ure .

0.050 (~.I; \oo.s,s( -I.5S)OIX>o I,; 0) ,oQ<5.5 :5·.~~)

o.orol~ 8.3)

... 'j

.~6 '·:Ii.·

~r-- -, .

I ,

)

....600.31 6,6.50 \3-1.).~(() 13';1'

. -5,0 :399,~OO :~;:7

I~Cl." "'t. 26 T.". rrrl'a/ E"p.1~io.n o.{.Pjpe~ ,1,',"(Ilmm m' rC.lrlx-n ~nd Carbon'~lo/\' Sle-e/ .

I and \\'/: ' ." '. . .

I . OP\'ralin.·lemP\'ralurr.

OF !oC.

~)'jJ)" ,v,\./

. .

~::::l "

, . I I," ., . ' '0 ,. .\ ' :

. . I ,I

" . (7' [J)

~~..

1.-.' ~/ "r;-~! .'

Fla. 15 r!~ ahapcs C'OOlmonlywed In powC/ all<lprc.cru 'phn t! lJ.rumr 'II( ,ppro/.lm.lr form.';ho"'T! \'. tht Q«ltdlinc:a ....hcll,lhc pI~ lelTlp<"lu'rri~l, 'f~r., 'I . 'j •

! .

'-

I"'j!.

: !

I, j'

L.~ ,

ooe(J'

ooQ

o

(~

ooo()

(J

c()

()

r.-'\

" -.-1

(;,

Page 65: PIPING DESIGN-PART-I.PDF

ce C> e (j o 0 () ·C1 0 () 0 DOD C ,.,....,"-.)

,­\_I n ,.~

)

.~! "'" .-., o .r--, r\

...;...;j )-,, ......,

.j '\ .~

j '\

THERMAL EXPANSION OATA

linear ThermalExpansion~B(inJlOOftl

'Ml'aIlCO~fficientof+lll~nnaIE~~llsion=A6 (inJinJ"Fl10

:rl><

"I:l.,ao'::J

o.,~

-i;;.,3~

1400130012001000 HOO

in Going From 70ft F to Indicated Temperature}Temperature Range 70°F to

400 500 600 700· 800 900300·20070':'50Coef'fidenl ~325' -150Material

r~i1"~'f~$lceti:-car.bon rnolysteell........ ,·.hf"()nil·-(~:;-"·:·. HhrolJqh'iCd

.A

II5.00

'717

5.50. 1.4';

5.80

~0.84

b.07

ob.38

0,99

&.&0

1.82

&.82

2.70

7.02

3.b2

7.23

'1.&0

7.44

5,&3

7:65

&.70

7,84

1.81

7·.<n

tl.U9

8.12

10.04

8.19

iUO

8.28

12.22

8.3&

13.3'1

b!·····"<:'tl••11(' allo, steels

'~.:,Mo \hr(.,,·:11 9Cr Me'

A

B4.70

-2.22

5.20

.,-1.37

5.45'-0.7q

5.73

o&.04

0.94

&.19

1.71

&.34

250

&.50

3.35

&.&&

4.24

&.80

5.14

&.9&

&.10

7.10

7,07

7.22

8.0&

7.32

9.05

7.41

10.00

7.49

11.0&

75512.05

~It~·;:'.ttll '5-tllltl:e~s steels A

BKl·5

-3,858.&0

-2.278.QO '}.Il

o9.341.46

9.47

2.bl

9593.80

9.70

5.01

9.82

&.24

9.Q27.50

10.05

8.80

10.1&

lO.12

10.29

11.4!3

103912.84

10.4814.20

10.54

155b

10.&0

Ib.92

::-.f,- 1I.I;ht-; hlf\fnll.i:l __ ~t:lif11r(,,· ... :~~~.. I",

.: ': f I/Ci', Ijnd )1,Cr}

'1

Ii'l.lll '1.70

-2.0'1 -1.24'i.00

-0.72

5.74

o5500.8&

5.66

1.5&

~).Bl r>.9(, 11 .1-\ fl."Il.

2.30 . 3.08 3.90 4.73

()_19

5.&0

l-,.~)?

bA9

(Ll) .i

7.40

1,,//

fl.l1I"/B

9.70

(,.IVJ

10.11

fL~~{J

11.01

'J'J7.

~;·llNI 11

Bb:-3~"

-3.00h.85

-1.81

7.20-0.Q8

7A8o

.7.7&

1.21

7.922.18.

8.08

3.20

8.224.24

8.38

5.33

8.52

6.44

8.b8

7.&0

8.81

8.7fi

8.92

9.95

9.00

11.12

9.08

12.31

9.12

13.4&

9.18

14.b5

~O"",I

If-I 'Ni 'u(..>A

B5.55

-2.&2

&.75-1.79

7.15 7.48

o7.84

1.22

8.02

2.21

8.20

3.25

8.40

4.33

8.58 8.78

5.4& . &.&4

8.9&

7.85

9.1&

9.12

9.34

10.42

9.52

11.77

9.70

13.15

9.88

14.58

10.04

1&.02

~..,\~":..r4

t,.J.N •. -."uCu AD

A

II5,35

-2.53

6.45-1.70

6:80-0.98

7.12o

7.481.17

7.b82.12

7.90

.3.13

8.094.17

8.305.28

8.500.43

8.707.&2

8.908.8&

9.10

10.1b

9.30

11.50

9.5013.00

9.70

14.32

9.89

15.78

t.. f~j"'~If1tlnl A

B9.90

-4.&8

10.90

-2.8811.&0

-1.&7

12.25

o12.Q5

2.00

13.28

3.&&

13..&0 13.90 14.20

5.39 7.17 9.03

(J'.a. {.a~tlr-on A

B o5.75

0.90

5.93

1.&4

&.10

2.42

b.28

3.24

&.47

4.11

&.&5

5.03

&.83

5.98

7.00

&.97

7.19

8.02

8.20 8.50-3.88 -2.24

:::.~~..;.~~ A

B

A

B

8.40

-3.988.75

.,-2.319.15

.,.,1.32

8.95

-1.29

9.57o

9.34o

10.03

1.5&

9.7b

1.52

10.12

2.79

10.00

2.7&

10.23 10.32 10.44 10.52

4.05 5.33 &.&4 7.Q5

10.23 10.47 10.&9 10.92

4.05 5.40 &.80 8.26

10.&2

9.30

11.1b

9.78

10.72

10.b8

11.40

11.35

10.80

12.05

11.b3

12~98

10.90

13.47

11.8514.65

11.00

14.92

12.091b.39

;;­'J;

3::"'lc::....

'~":f ;"J~~lt--lnJli A

B5.70

-2.706.30

-1.b7

b.b5-0.96

&.97.0

7.321.14

7A82.0&

7.&13.01

7.733.99

7.885.01

8.01b.Ob

8.137.12

8.298.2b

8.399.3b -.c

~

1\ h.b"> lAO 7.80 8.16 8.54 8.71 8.<:;0 g

Page 66: PIPING DESIGN-PART-I.PDF

(

\"" ,

(

........... 0

Temperature range minus 30 to 600 C

i··.·•.•.•·.···•.•···•·. . - '. 0

"Linear expansion coefficient in mill per m per' C

c:

c·C\'

CS/MSALLOY Steel58<>,

i;i~::" '~,');Y r~i-,":::'~::',.'

THERMAL EXPANSION

expansion of pipeline depends on material and

0.01-213 to 0.01750.0138 to 0.0'1760.0194 to 0.0227

SLIDE

('~

j

()

ocoo(.D

ooo~

OJQ

(}

ooG

o

St~~rn'Hneat ambient temp. when carrying steam, attains temp. of steam;~ffectpf this on linear expansion of\pipeline :

Sat. 'steam 1 3 '10 15pressureKg/sq;cm, g -_.5teamtemp. C 120 143 183 200Expansion of

,.-41rnm 51 m m 69mm 77 mm

'CSIMS pipe per 30m.

I (pmb. Temp. 30t)I (Coeff. 0.015) --.

Expansion jointlfitting/bend is used to accommodate thermal e')(pan s1on

!xpansion loop of this type is commonly used, onesuch loop is provided for calculated expansion of 125to 150mm :using this criterion:

Page 67: PIPING DESIGN-PART-I.PDF

I

II

II

4\X/.Mc I res

ISO 175 20(1

M:I.ximul11 pres~ure

10 b.u ;

'\'\;/xinll/Ill l',rSSU/l'

I? \>;\1 ':' ,

I ': 1111"" "I I.If(' 2M)" C

-h5' ,.W.Metres

~ I; .

..........- -- ...,--~,~ .. \'('e Idill g

Z..... bcnd.~

2\X1 ..j.•..f1--.~ •.... ,\.1(1',,' .. ,... . \XI. '

1.5 di"c=:: . · ...._=:l

101)

Exp:lnsiol1 f,olll neutroll ~()si.t.i?n (mill)

E>J""'i"" r"'\'; '""",,1 I""" i"" (,,"', I!O() 12!i 150 175 200

75

?5

1. 2~5'

\X! ) ..\ (' I res

--_.. \" -. --...}.. }.,.,~-'. ~'l

\,1:' ,,\! ," I t' \

~..._-~.!.:. 'H".'. . -'...

f\': .i. i

.....L'..~._.!. .'.'"

70-·t--t-­

00···--

O,F>'

50'

30

e 200!v.~

K'0.

1 I00 - --.. ".-•.'E <ip... ..

Z co -_... '-'-

E <JOt)

5.~ 300, --i--j-

VI

vCl.

;- 200-c:'Ei.

\ I 'j

I !

I i

i :,

':".

, \

oooCD

G

o

o

(j

oo

Ci

Ci

()

C)

()

c:()

c..(

(')

(')

(

(

G Ag 1.3 S't-ed~1-i')M'S;;'~N' ~O(){\S

ooeo . !

Page 68: PIPING DESIGN-PART-I.PDF

c,

(,

(

(

(,

(

(!

(}

c:()

o()

oooooooQ

G'

oooG

o

r. 1

It, :? I'') 01:$~A,-t {3

------'1I

" II

~,.

Page 69: PIPING DESIGN-PART-I.PDF

(

(

()

ccooo(.)

oG

()

()

oG

o

Page 70: PIPING DESIGN-PART-I.PDF

()

--

P1PfNG DEStGN METHOD BEATS COMPUTER

c'(

{i

(, )..)

()

oo()

()

oao(;)

ooo(1),

oQ

()

o

Q

o

a::ot­otten<nwa:t­end3....,ZW

'~;:,E

~.

a: G/H{3: W/H

'. '

/

Page 71: PIPING DESIGN-PART-I.PDF

0.311'00'2260.1,22

Water

0.IS70.128O.OlH

O.S(iS 0.4781~40 :..0.40fl1.~8 0.374" .

Pipe

R.,'\diUl! 1__~..,...'fV_ei...gl_lt;,.....o_r~_of

Gym­tion

..Sec­tion

Mod­ulus

'i

BendCharac­teristic

pl'r UnitBend

H:\clillsinches3 L 11ft illl'hcs lI'p U'v'

7. I II Ill. Tg Ib ,icr rt II> per 1'1_._--....-.-_.- --- -------'9.0043 i 18.6 0.127 0.180 0.0320.C052I' 28.7 0.122 0.245 0.0250.0060 47.5 0.115 0.315 0.016

0.0103 I 13.8 O.W9 0.330 0.0570.0123 I 20.7 0.163 ' 0.425 0.0450.0140 I 32.2 0.155 0.535 . 0.031

0.0174, 8.38 0.217 0.423 0.1010.0216 12.81 0.209 0.5G8 0.0S3

.0.0255/ 20.1 0.190 0.73!> 0.0l))

0.197 0.0143 0,0341 I 6.95 0.269 O.Gil 0..1540.250 0.0171 0.0407 I 9.79 0.261 0.851 0.1320.320 0.0201 0.0478: H.7 0.250 LOO 0.101"0.38-1 o.o:m 0.0527 : 21.1' 0.240' 1.30 0.Q74O'SQ.!,.. 0.0~43 0.0577 ,47.3 0.210 L72 0.022

0.201 ,i·'0.0~·',5'· 0,0:1(\7 i 3.22 0,3,l!) . 0,684' 0.288~" 0.252,." '0.0~lI7 0,0561}' 4,20 Q,3'13 0,S57 Q.2(\l\

0;333, .1 :,1;. 0.0370'\ 0.0706; 6.is' 0.334 ),'13' 0.231

'ri:l~~;~···:J,,~:. i'o.6lfs: {1~Q~O~531 '9.21' :&;321' 1:.47·0;570",· ',i, . 0.0527': ,,; 0.100 i , .. ' 15:1' ; 0.304" L94

O.71S. . II 0.0579" \ 0.110 I 26.9 0.284 2.44

~, i0.255 0.0500. 0.0761 2.00 0.443

" '0~413, C" '0:Q757.: :'00.)1,5;·J 3.60 ' ..0.~2S"0.494 ';.:. 0.0874 ""··0.133'! 4.570.420'

". I

;;\'.;00, ....·,..11,02.56.;'! ,:.0.~6l;.,Lj3..6~ .' .0.407 . 2.17

'·~;0.190'i· iU.5S' -';"6~3S{' '-";Z;8'4."·0.141 . 0.214 "I" 18~76 '0:361 3.M .

Cross- MomentSertiollal of

Metal Incrtill-Area

squnrc indu,'s inrhc!,lA I

0.055 0.00090.072 0;00110.092 .' 0.0012

0.097 0.00280.125 0.00330;157 O.C03S

0.124 0.00500.167 0.00730.~17 0.0086

0.057 0.545. 0;080 0.4930.110 . 0.~23

..,,'... :.....t. :,,' J) ~,' ./

0.614

APPENDIX

,ChartsalldTahles

C-l. Properties and Weights of Pipe

Xv~r- Miiii~. ~e mum Inside.Wall Wnll Dinm-l'bick- Thirk- cter1<:" , ".,' ;,~~C; nC~$

.,,;: (-= %l"inches indlt'o' ,I illchcs

'. t f... 'd... ;-.'-'-....,-.,;,...--_-.;.J----. --'-'----

10:: .0.049 0:0!3 0.307%!~. ~ ,4G 40~. 0;068 ·o.oao 0.269

.',0,4.05' ,-;:XS . >SO:,;':S~':;&.09$.:O.OS3 . 0'215

;>;(.'.';~: ir/i?ios: ';~~ ,o.~~; 0.410U": 'Std. 40 401:: . Q.088 ..' " .","". .' 0.077 0.364

". 0.540;.~, X;S SQ. 80S Oa~9 0.10!; 0.302;.' o,l. )"'-t;~'.

Nomhla:l Weight•Sizp .Designatio"

Outside . and/or.. Dia~- . 'Schedule'

. " :'eteV ' " "Number'>;"1' '

o(j

oooo

(.i' "

f

( J

(

C,

C

Cio

('

c)

C(I,

C;\.

('I_.:1

C;

()

0

()

C)

0 I

0

0

Page 72: PIPING DESIGN-PART-I.PDF

()CHARTS AND TABLES

C:"l•. · Properties andWeighls of Pipe- ContinuedC',!

Nominal Weight Aver- Mini-Cr()llll-

Site. Design!'tion age mum In~idtlSectionalC Outside lind/or Wull Wnll l)i:!m-

MetalDiam- Schedule Thick- 'fhil·k· ..\t(~r

ArCll-('~ et('r Nunlber ne:lS nc..,,~

(= Ystlinchl?s inches indle" indIes square hll'lll'"

D e e.. .1 A-------1.11. 0.801.81 0.712.27 0.65

3.00 0.5(J3.76 0.465.22 0.27

1.27 1.07 ,)2.0\1 0.902.i2 0.88

3.03 n.774.87 0.1>16..tl 0.41

1.60 1.722.64 1.583.(J5 1.45

5.02 1.287.45 0.1l79.03 0.77

2.48 2.503.53 . 2.36.5.71l 2.0S

i.66 1.8410.0 1..5413.7 L07

3.03 a.784.33 3.1)17.58 . 3.20

10.3 Vlli14.3 2.3418.6 LBO

0.65~.Ii.~

0.62

0.5li0.550.54

1.232.172;91

3.32 0,015.15 0.588.53 0.55

0.585 0.821.02 0.801.50 0.79

2.25 0.773.!1.!) 0.735.57 0.70

0.511 0.990.759 0.!J81.37 0.95

Ul6 0.1l22.88 O.SO4.91 0.S4

0.341 1.21. 0.504 1.20.' 0.961 1.Hi

-;'lA~<: "'.1.14··

2.24, Lon3.42 1.05

Benl!Jtncliu~

\Vlli~ht IlfCharae- oftensUe

I'<,r UnitGj'rll- Pipe Wat..,,·

llendlion

H:ldius11ft indle" /I'p U.'II'

hJR Tg Ib por ft Ib per ft.------

0.4940.6871.06

0.291 4.250.342 6.04Q.411. J1.2

0.166 0.9270.2(\0 . 1.630.326 2.26

0.7310.9791.10 .

0.2650.4200.561

0.4120.5080.5il8

0.2420.2840.341

0.7100.9881.53

0.1580.2470.310

0.3!!10.4830.5tiS

0.3150.4.990.666

0.868. 1.16

1.31

l\!onumtSCI"tion

of Mod-Ilwrt.ia uJus

illl·hes· . inches3

/ .' Z

0.104 0.1250.161 0.1930.195 0.235

1.071.431.8!)

0.330.530.67

1.482.192.66 '.

0.881.111.53

0.380.610.80

0.731.04..1.70

0.470.78.1.07

1.5001.33$1.100

1.\'139I.l;S91.503

2.7092.l\352.46~

2.:H5 .2.1572.0$7

5~ 0.065 0.057 1.530~O~ 0.109 0.095 1.442

40 4O~ 0.140 0.123 1.380

80 80S 0.191 0.167 1.278160 0.250 0.219 1.160

0.38~ 0.334 .0.S96

5~ 0.065 0.057 l.;iOlOS 0.109 0:095 1.l;S2

40 40S' 0.145 0.127 I.l\]O

'80 80S 0.200 0.175160 0.281 0.246

0.400 0.350

'.5:: 0,065. 0.057.

lOS 0,109 0.095

~W'; 49. 40S 0.1~40.13~

::X~sO 80S 0.218 ·'0.191160 . 0.343 0'.300

XXS 0.436 (l.382

Std.13-~"1.660 xs

XXS

,Std.

l~f'1.900 XS

NXS~,

2"2;375

o

(;

Ci

o

(i

oo

C\

()

()

()

120 0.438 0:382· 3.1.;24 5.59 11,7 5.18160 . 0,531 0.4G5 3,438 <i.62 13.3 5.00

XXS 0.(J74 O.linO 3.152 8.10 15.3 6.79

0.260- 1.30 3.47 5.000.383 1.37 4.97 4.131.,0;.792 ,·.:1,34,,:~ '.' 9.-h •. '.' ·~·:;4..:28; .. :':'b':: ~:~':J.f'i ,: ~""':;"'.;'

.1.13 1.31' 12.5 3.85

2..70· 1.21 22.!J 2,~a

0.204 1.56 3.92 li.400.300 1.55 5.61 6.170.626 ·I.S1 10.8 5.510.1l33 1.48 15.0 4.08

1.27 1.45 IIl.O 4.47I.G2 1.42 22.5 4,02

2.21 1.:17 27.5 a.:HI

Page 73: PIPING DESIGN-PART-I.PDF

; .(

(

()338 DESIGN OF PIPING ~YSTEl\IS

;(. '1, ~,.~.;'.. : ::: / ,,' -

C-l. Properti~ and Weights ~fPipe-:- COntinlloo .. • :.,'.: ';,' '.' - ',.

7.0n1\.335.(\2

21.720.S10.S18.8

1O,alUll8.14

17.6]tj,7

10.1IS.S

37.4~6.9

35.734.!I3'4.1

14.013.712.511.3

60.667.872.474;7

Pipe Wuter

28.635.643.450.9

9.9113.422.4

·24.7

15.218.728.0~~.2

'40.5""

54.7 32.364.3 3l.1

.;.).';~~}~j ,::~,;~,.:;):.,<,<,:,;:',::,', .•....j 8Q~1\:J'F.:'.2:?"l; (":"'\.""'\ :;1: :',1;;',' ,.

2.15 :mA2.10 45.32.06 53.2

2.30 . 5.372.30 9.202.25 19.02.20 28.6

1.8027.01.76 33.01.72 . 38.6

2.942.912.882.85

.n~,diu8 • ,,_r('_ip;.,..rh_t, or 'uf

Gyra­tion

".~M2, .. 89-.2".·... ,f7•.Q"":."3.51 ;·92.3}',;;:,:2'(.1'/, .. 3.47 ,,104:""""·' ·.:,';,26.0·'3.43 116 24.6

0.7350.9881.25

0.9361.231.55

0.1230.1530.3340.541

0.072 3.01.0.099 3.000.171 2.960.191 2.95

'(1,551 2.81·0.6392.780.699 2.76'

,&7~0 :.,2.75

0.2240.289

. 0.364i 0.441

Rcnd·Ch"roo.i.cristic

per UnitBend

RadiusI 1ft in~hcs ll.'p /I'll"

hill r, II> perft III "llr ft-------0~176 1.!l3 6.35 !l.i30.218 1.927.77 !l.530.440 1.88 14.6 8.13130.669 1.84 20.8 i.8S

SCI'- ::tion

l\[od­ulu~

3.584.35 .8.50

12.2

6.138.21

13.414.7

16.8 .20.624.528.1

2.503.035.45

·7.43

9.2510.812.1

• 32:635.6

·37.6

;3~.i?

15.017.8

. 20.0

26.535~457.763.4

11.914.428J40.5

49.659.066.3

25.730.033.6

72.588;8

lQ6121·

141154162

l!Xl,t.

Momehtof

Inertia

inl'hes4

I

6.958.43

'.15.220.7

2.92 .3.946.587.26

2.232.735.58,8040

10.713.315.6

8.4010.512.8IS.!} .• '\

7.95.9.70'11.3 '

7.~81 '7.8137.6257A~·

Cro~q..

lll,ide ., .. Sq~tionlllDi~m" Melllieler Area.

inches square inchesd \ A

1.872.294.306.11

Aver';' Mini-liKe mum

.W"II ,wl'lf1'hick- Thick-

ness ness(= %t)

inches inchest tm

5S 0.109 OM5 &.407103 0.148 0.130 8.329

20 0.250 0.219 8.12530 0.277 0.242 8.0n8"

8.625.

5 0.109 0.095 5.345lOS 0.134 0.117 5.295

Std. 40 ,405 0.258 0.226 . 5.0475~' XS 80 80S 0.375' 0.328 4.8135.563

120 0.500 0.438 4.563160 0.ti25 0.547 4.3i3

;, ',~, :... XXS 0.7'50 0.e55 4.0G3

5S 0.109 0.095 6.407lOS 0.134 0.117 6.3:'17

.. 40 40S 0.280 0.245 6.06580 80£ 0.432 0~78 5.761

6.625120 0.562 0.411,2 5.501160 0.718 0.628 5.189

XXS 0.864 0.756 4.897

~o.nlin~1 . W~i~ht

.,'S,i~·'.I; ';,,<~)o.lgnutlon ,Ol1"l~o.';'I!oUclY(W·:I"Dillm. Sche!lule '.eterN.u~ber·

. ,.:inchesD

Std. 40S 0.322 0.2820.406 0.355

XS 80S 0.500 0.438

." :0.~~3 O~Si9

. 0.718' 0.628 7.189 17.80.8;12 . 0.711 7:001 ' 19.9.0.875 0.766 13 •.875. 2L3:

160. 0.906 0.793. 6.813 22.0"' :'. :" ·····1 ,.'.' -',', •• :".;:•.•.•'.',,-•.•J:. 1".".:.... ,'.t :Xj:..r; I. • ~>. '"".\',:,',.'-: -1 ,,::.[ i ~0.1?4.0.1l71Ms2 4~f' ,"~;7 <.i:i.~: ,::.o;O§r, 3.75'\' .. tlm ,'lOS ,O,1~5; 'Q.144 lQ.4?Q5:~lli 1 76.9 '14.3. "'0;071 . 3>14

/:' ,;. 20, 'O.2~QO:~IP, 19;2"9 8.26 };q~:, . '. i 'JI:~'J' r "O~~q9( .. 3.11'i·'·,: ·.:\#JJ.i.J'~~tifl.l"'·'·I: ','.. '.'" I 0'30Z' •0 269 "1O:t'i.6,· :·:,:···.,···I,.;..·l··~'VV,'J... ""'1·38·i,(; .25' 6 ' ." .I,"" 'i3S· '., ·3" 69'.. ' ::~'::J;":~:'r,~) 1. •• " '". 1 0.. U:. ~::~;\'.i61;~~i.:'.~i" :,':', ,,:;.',:"'" .::t:.;.~·t;,i-., L ,~,~,:.,. \,'

'+jl~)ji;~~I~~~;:, J.;Q~ :·~.3t:· ~~:~.lr :Ir~)~,~~' f'~"-,n~!;t·;~~ ';, ~{.r' \j~~:~1~;/ .i ;~&~13, i,,";~':~7..J,CS~" ~OS O.5QO .,0.'43~ 9.'(50 .. ·16~1' '2i2~~r .39.4 < 0.228 3..63'. ~Q,'r/ 0.593. 0.519 .. ~.564' ,. 18.9. '245'< :45.5~· , '0;276 3~60

-'..Q.q~5.0:547 :9.50();· 19.9"" ,~6,.., ,17.~,: t .,9~¥,~;J, ',3~59

.'.. .;:.:;:ieIf l~:;~~:'; &~:~ :~:~:=;. ::<;:;';~j~;~l~~>J: :.~:~;:~~:~~~;:~~;,,::~;~{::;~,;: ~~~~:~:' ;;.::~:;,\,. ·l, '. t'I:'",;'; ~ ",

i~;; ~n~~~~),8~~Oii, 34.0"" ".

o

oo

ooo

()

co

( '\_• ./

C~i

()

{I

(,

CJ

(,

C

(>

Page 74: PIPING DESIGN-PART-I.PDF

CHARTS AND TABLES 339

.' C-I. Properties and Weights of Pipe~ Continued

141".- .,..~9,:,J,;., ..... .'·""'h" ......t~'i':'J ...t ii\6fltf~Y~i':;- :\.:f.~t\i.~(hti·.o. ii

SCC:-Dend

H:lCliuNWei~ht(lr

lionCharno- (,rtcristic

Mod- per UnitGym- Pipe \\'ntcr

ulus Bendtion

Radiusinches3 l./ft inches WI' n'",

Z hIll r, Ib per ft Ib per ft'------

20.3 0.050 4.45 19.6 52.522.0 0.055 4.44 24.2 52.230.0 0.077 4.42 33.4 51.139.0 0.103 4.39 43.8 41"1.7

43.8 0.118 4.38 49.6 4\).0

47.1 0.128 U7 53.5 48.5'56.7 0.160 4.33 65.4 47.062.8 0.182 4.31 73.2 46.0

, 68.8 0.204 4.29 80;9 45.074.5 0.227 4.27 88.S 44.0

80.2 0.250 4.25 96.2 43.088.1 0.285 4.22 107 ·11.690.8 0.298 4021 111 41.1

101 0.348 4:17 125 39.3110 MOO 4.13 140 37.5123 0.481 4.07 160 34.9

36.5 0.064 . 4.86 36.7 62.045.0 0.080 4.84 45.7 60.653.3 0.097 4.82 54.6 59.761.4 0.114 4.80 63.4 S8,669.1 0.132 4.78 72.1 57.5

80.3 0.158 4.74 84.9 5S;984.1 0.168 4;73 89.3 55.398.2 0;205 4.69 106 53.1

112 0.244 4.65 123 5l.1118 0.264 '4.63 131 50.0

133 0.315 4.58 151· 47.5

,.M.7,., ' •• 0.369 4.53', 170 45.0160 :"'0:4211" r;''':48 '189 42.6

j .~,~:,'I",> " If'\:;'" ,'''~ 1'\ '. t, '

".0.048' \:.·5..57 , 42:1 81.7:;O.O~1i: :t: 5.55'; '52.3 ·SO.5.·

O;Ot4 :5.~3 62.6 . 79.1.0.100: '.'5.48'," 82.8 76.50.127 5.44 103 74.1

108 73.4

inches·1

300362401439475

511562571J642701781

255315373429484

129141192249279

562589687781825

MomcnLof

Inertia

6.S27.119.82

12.914.6

25,0 .26.331.2

.36.138.4

CrONll­

Scfliollllll\Icl~ll

Area

~qunrc i",:hes.'l

ImlidcDi:lnl­ctcr

im'hesd

12.~1.

12;·70012.50012;250 .12.125

Avcr~ ~'Iini.'liI;O' iliumW"II "':111

Thiclk- Thi\'k-1Ics.~ 0\'$$

(= %/\inches inchC'$

t: 1m

" :;.•..,'-",'.:fO,:',.:·· " .q.~9.~ ,'. ()i519. y,., ·.'0~62$· r .0.547.0.759 .Q.6Q6'(};f~750:766

~;~7' '0.820

',; WC'i~llt:Deslgn/ltlvll

and/orScheduleNumber

58 0.165 0.144 12.420lOS 0.180 O.lSS 12.390

20 . 0.250 0.219 12.25030 0.330 0.289 12.090

Std~ 408 0.375 0.328 12.000J:4() 0.406 0.355 11.938 15.7

sOS {/.5OO 0.438 11.750' 19.260 0.562. 0.492 11.626 21.S

0.625. 0.547 I1.Soo 23.880. 0.687 0.601 11.376 26.0

, ~.; :•• ~

'0.750 0.655 11.250 28.3100 0.~3 0.738 11.064 31.5

0.875 0.760 11.000 32.6~20 1·009 OOS75 10.750 36.9140 1.125 0.983 10.500' '41.1

,}~: ·l.312 1.149 10.126 47.1

·:10; .O~O ' 0.21\1 13.500 ·10.8"·20 '0.312 0.273' 13.375 13.4

Std. 's6 0.375 0.328 13.250 16.140 0.438 0.382 13.125 18.7

~S O.()OO C).438 13.000 21.2

iu('hesD

:\omillllJSizt'

OutsideDiam­

eUr

o

C)

(i

o

ooooCJ

o

c:

. " .... ,...

Page 75: PIPING DESIGN-PART-I.PDF

(

( .,

284281277

Weight or

Pipo . WlIlC'r

U'p U'\t'

Ib per ft, Ib p.'r ft

47.4 lOt59.0 10370.6 10182.2 99.;93~5 . 98.3 ..

Hi5 96.9116 95,4138 92.6100 89.9171 88.5

208 83.7244 79.1274 75.3309 70.P

52.7 12\)78.6 126

104 123123 120

129 120154 117166 115179 113209 lOll

256 103296 98.3341 92.6379 87.8

ISS184ISO178176

6.286.256.236.21

"6:19"6.17

'. 6.15'6.10'6.066.04

0.031 10.4 1770.035 10.4 1960.012 10.3. 234

0.0380.0480.058(l.0680.078'0.0890.0990.121

.0:1430.155

242'.'278306336

61.075.589.6

.1Q4.117130143 .168·.···192204

376. 415 .

492

564062207380

2180·2500

27503020

l

549679807932

1050117012901520'17301830·' .

. "',

61.2. '71.880.790.8

52.057.668.9

13.917.320.8

. :24~2

27.530.8

. 34.140.6

. 47.150.2 .

.0.219 19,5QO 15.5JI.328: 19~~~ :' . 2a.t'~),4~S 19.009. ',' 3Q.6'.0.5i9 :; 1~8~4:: . .36.2,:

0.250 0.2190.312 0.2730.375 0.3280.438 0.3820.500 0.4380.5\>2 0.4920.625 0.5470;750 0.6560.875 0.766~.937 0.820..:,;. ., .,

,LlS6 1.612 "15.6881.375 l.~ 15.2501.562 1.367 '14.876PSI 1.558 14.438

0.562 0.492 28;8750.625 0.547 28;7500.750 0.655 28.500

O,S!" :i~.150 38.0O,(il)~l&sqq 45;4 .0.711 18.37648.9o,r66 18.250 52.60:902 . iij)~$' 61.~ "

}il:~~t, ::i;l~L ,ii;;?:'; .........,.. \ '.

:~:~~: ·:t~f' ti~I-1;~~1~ir/~;~:~:.,J;96S1.722··I6:M4~;112:::;;:

. " .-">·,.. ;;.i::'l"

. . : .,~.

:lot)·}::;:.':i2Q;/.. (to· .

ItlO

340 DESIGN OF PIPING SYSTEMS~.J' \, ~':>::::" ':> i;:>~ ,;\ \i' ..'.: : ~'J t' ;.: " .. "':' ,,' •. : .: ~ ;' .: / " j' ,", .:'~. -: ~ j' ; :",' .,." " •

.} •.......'••(i.::, .. l ••::, .~';l.',.P~~rt.ies,D:~d W~igll~ of ripe:::Cont~~ued.~i

(\

o

('1\

co

(/

(;

n

()

o()

o

ooo(.)

0 .._

V

0·:,/;,..)oo

;~ ; .'., ','.'. ':.i:'·:·:'!"·':':·'~1 f,,} .• ,t.':..,'."'\;A.dn{iY,.,.d·I:;ii;{,\f~*i~';.~Ii:d· ~~1St;~. j';~~~l;t~~* l~;,;\.02;3432,OSQ,; {"I.g.~3JA:T';' 15$·,." ijl':' "."'.,9100.\. ., 788 . . .0.240. 7;10 ' . 542

·.. ·,;'ri'.3i~:·O:~7?·::.,-~i~%~!;,!,Y\\iQ;:t.!.;::ii;·:-·.:Ki:~~(q~i~~J1;!f~:1~:·";~'·'i~.ci.ii,'.",'~~.51i;i) ';':"'98.9,0.375 0.328 29.250.' 34.9 .. :,: 383ej'" ,-! .~:., :,'255 . ~ . O.02,r·~· 10.5 119"0·500 0.438 29.000 46.3 ' .. 50~0 3~6 0,028 .10.4 .157

Page 76: PIPING DESIGN-PART-I.PDF

:l41~HARTS AND TABLES

.... ,:

,;;::U.

........ ~.._.~.:;: ...

a:::"w··Q.

.!i.£

'.q>q;.2:, ....~':i,.'

0...":,.~;::

oo

()

o

ooo

(:

o

C)

.O~ .. ;,< ..i,.;~;~~{;~"""~ .. '."

O::;~::':";";;"~;:f;;,~~J",:H :.: ..... i,'i'~9.p;\~w~O';:~::4'Q.Q:.::.;~'O'O~:;~~ 6oq..;.~ ...tQR;~"'. ~~QOj;;'J. .....O".;.;,t . .j,;,J20.Q';-';'lm,.::lfQ'(,r:"": "'~"''''_''''''!'''''''''''''~_

~:~~~~j\:~~_~~~~~,~i:~;;~;.:.:;;,;·.,;~:.i,:;:t:·4; r~.~.Chrq~um.,a~·'nlCkel' steels; (A:~l?Ittpes' 302,303, 304,321, ~nd 347).

U' Noie~';' Tli.i~' ~his'rep'rod~c<ldCrolll a standard oC The hi, W, Kellogg Company that \vas used in the preparation oC the sampl'l. calculations ill.this book, . Itis not in Cull agr<lement wit.h data in AS:\. B3i.1-1955.

{)I

(I

o

C)

c)

()

·0

Page 77: PIPING DESIGN-PART-I.PDF

(I

'f

C)

o()

(1

()

()

() 1

.:...'

c

342

30

,29

N

!f 28.....IX).J

IIIQ 27~."F'....<3

'26i=(/)<t.JW z:j:'LL.0(f) ,

:::> ',24,.,./ '"

:::>Qo::' 23

l)ESIGN, OF PIPING ~YSTEMS'.1 r,,i

C-3. Modulus of Elasticity, Carbo~ and All~y Sleels

F

'~"

~60::'!lo.90\:i!:110'0',

TEMPERATURElfo~: ',. Tl!is chart is reprC)du~edfr()ma st.nll~rd of The M. W. Kellogg Company that was 'used in the prcparation of the sllimplo

calc\!lAtions in this, book. Itis not inf\Jllngl'ccmcnt with dl\t..dn i\~A B3U.,.lU55.', '

o

o

o

oo0'

oo

"~ii~lt(~~~;S::~~~~;'~~~~

o· ·,;;·':'~;;~;!~;ri~;;·\:!i;~:··':<:·:·· ··'"··"·"~::::.~!;f;~~l:,W·M~· .., ,-,·2~,·." . \"", 1,3, ,o .- ;'~

ooD

()

o

Page 78: PIPING DESIGN-PART-I.PDF

., .. /.J

34.5

F = Force, lb.'

M == l\loment, ft-lb.

FrA == ..;.Frc == -106..1e1e/(1{lJ)2

F.A == -F.c = +J06..hfe.'(f(L)~

,U,A'" lQ6A.lelJ{/~

M.e = _iOethle/KL

L(~.I.·."...'" .' ·.IB

First subscript depotesdirection.

~c~ond subscript denotes location..Signs nre those of forces or moments actingolianchors. '

..,~ . ,"'-"~~._' ..•..•...... '-.

I = Moment of inertia of pipe, in. 4•

e .= Unit lillenr thermal expansion, in,fft.Value of E used =29X 1Q6 psi.

IA

LIFT! Ie'F---.....---i

jF.1l == -F.e == -106Ade/I~~

F.A == -:-p.e = +106:hle/fJ~

)I.A == +106..J. 31e/D

.lfre == -I06J 1le/l,

CHARTS AND TABLES

C-6.:\IOMENTS AND FORCES

TWQ-l\ICIl,bcr Syslclll t Hoth Entls FixedThcrllll.lExpunsion in .·llIIu: of MCIIlLcrg

4

,;<t 3

..,2<t

<i'K>I

C)

()

0

{), "

,0

()

CI

0

00

0

()

()

0()

0() .,.

<t

Page 79: PIPING DESIGN-PART-I.PDF

DESIG~ OF PIPING SYSTEMS

C-5. LE~GTII OF LEG REQUIREDTwo-Member System, Both Ends J~ixcd, Thermal ":xpansion in Plane of Members

.....

L = Lengt.h of leg .18, ft.

'e == Unit linear thermal expansion, 'in. 1ft.

Value of E \I$ed = 29 X l06psi.

S.... = Code allowable stress range(1.25S. + O.25SA), psi.

l

_------1-,l~}

c

IA~

wP­o

WN(f)

Multiply Lby~( to obtain len~thof leg Be required~

20

".1

',',-

c·{,

0 1

, )

V))

Q

oC@.

()(,

(:

r·(~\

p

()

·0(,)

C'\.11

(51

U

of

(;

~

Page 80: PIPING DESIGN-PART-I.PDF

('

c

("''{ ....~

C"

()

( ij

()

oo()

o

QQ)

oQ

Annexure B

Code Extracts

Page 81: PIPING DESIGN-PART-I.PDF

ASME B16.5-1996 PIPE FLANGES AND FLANGED FITIINGS

TABLE 1A LIST OF MATERIAL SPECIFICATIONS

() .

(;)

\1()

fJ·

oQ

()oQ,

it)

o'\D

o'(J

U

Pre..ure- AppliQlble ASTM SpecltlQltlon.'M.t.rl.1 Nomlnll TemperltureGroup D••lgnltlon Rltlng Tlble Forging. Clstlng. Pllte.

1.1 C-SI 2·1.1 A 105 A 216 Gr. WCB A 515 Gr. 70C-Mn-Si A 350 Gr. LF2 A 516 Gr. 70

A 537 Cl. 1

1.2 C-Mn-Si 2·1.2 A 216 Gr. WCCA 352 Gr. LCC

2YzNi A 352 Gr. LC2 A 203 Gr. B3YzNi A 350 Gr. LF3 A 352 Gr. LC3 A 203 Gr; E

1.3 C-Si 2-1.3 A 352 Gr. LCB A515 Gr. 65C-Mn-Si A 516 Gr. 652'1zNi . A 203 Gr. A3'1zNi '. A 203 Gr. D

1.4 e.,.SI 2-1.4 . A 515 Gr. 60C-Mn-Si A 350 Gr. LFl CI. 1 A 516 Gr. 60

1.5 C-YzMo 2·1.5 A 182 Gr. Fl A 217 Gr. WCl A 204 Gr. A.. A 352 Gr. LCl A 204 Gr. B

1.7 C-YzMo 2-1.7 A 204 Gr. CYzCr..;'IzMo A 182 tir. F2Ni-YzCr-YzMo A 217 Gr. WC43/.NI-3/4Cr-l Mo A217 Gr. WC5 .

1.9 lCr-'!zMo 2·1.9 A 182 Gr. F12 CI. 21'14Cr-YzMo A 217 Gr.WC61'14Cr-YzMo-Si A 182 Gr. Fl1 CI. 2 A 387 Gr. 11 CI.2

1.10 2'14Cr"1Mo 2-1.10 A 182 Gr. F22 CI. 3 A 217 Gr. WC9 A 387 Gr. 22 CI. 2

. 1.13 5Cr-'!zMo 2-1.13 .A 182 Gr. F5.... A .182 Gr. F5a A 217 Gr. C5 '.

1.14 .', 9Cr-1Mo 2,1.14 A 182 Gr. F9 A 217 Gr. C12

2.1 laCr-BNI 2-2.1 A 182 Gr. F304 A 351 Gr. CF3 A 240 Gr. 304A 182 Gr. F304H A351 Gr. CF8 A 249 Gr. 304H

2.2 16Cr-12Ni-2Mo 2·2.2 A 182 Gr. F316 '; A351 ·Gr. CF3M A 240 Gr. 316A 162 Gr. F31 SH A351 Gr. CF8M A 240 Gr. 316H

18Cr-13Ni.,.3Mo A240 Gr. 317leCr.,.1ONI-3Mo \ A 351 Gr.CG8M

2.3 lBCt-BNI 2-2.3 A 182 Gr. F304L A 240 Gr. 304L16Cr.,.12Ni-2Mo A 182 Gr. F31SL , .. A 240 Gr. 31SL

2.4 1SCr"l0Ni-Ti 2-2.4 'A 182 Gr,F321 A 240 Gr. 321....

'. '., A 182 Gr. F321H A 240 Gr. 32Ui

,

10

Page 82: PIPING DESIGN-PART-I.PDF

;PIPE FLANGES AND FLANGED FITTINGS

TABLE 1A LIST OF MATERIAL SPECIFICATIONSICONT'O)

ASME616.5-1996

f)(';

(

C)

()

( ',,'. ""t,

Prllsure- Applicable ASTM Specifications'Mlterll' Nominal TemperatureGroup Di"gnltlon Rating Table Forgings elltlngs Plat..

2.5 18Cr-10Ni-Cb 2-2.5 A 182 Gr. F347 A 351 Gr. CF8C A 240 Gr. 347A 1B2 Gr. F347H A 240 Gr.347HA1B2 Gr. F348 A 240 Gr. 34BA 182 Gr. F348H A 240 Gr. 348H

2.6 25Cr-12Ni 2-2.6 A 351 Gr. CHBA 351 Gr. CH20

23Cr-12Ni, A 240 Gr. 309SA,240 Gr. 309H

2.7 25Cr-20Ni 2-2.7 A 182 Gr.F310 A 351 Gr. CK20 A240 Gr. 310S, A 240 Gr. 310H

2.B 20Cr.,.18Ni-6Mo 2-2.8 A 1B2'Gr. F44 A 351 Gr. CK3MCuN A 240 Gr. 53125422Cr-5Ni-3Mo-N A 182 Gr. F51 °A 240 Gr. S31B0325Cr-7Ni-4Mo-N ,', A 1B2 Gr. F53 A 24'0 Gr. 532750

,6 462 Gr. NOB020

'"

6 463 Gr. N080203.1 35NI-35Fe-20Cr-Cb 2-3.128NI-19Cr-Cu-Mo

,A 351 'Gr. CN7M "

3.2 99.0Ni , 2-3.2 8160Gr. N02200 8 162 Gr. N02200.

3.3 99.0Ni-Low C 2;3.3 8 160 Gr. N02201 B 162 Gr. N02201

3.4 67NI-30Cu 2-3.4 6 564 Gr. N04400 B 127 Gr. N0440067NI-30Cu-S 8 164 Gr~ N04405 "

3.5 72NI-15Cr-8Fe 2-3.5 a564 Gr. N06600 8 168 Gr. N06600

3.6 33NI-42Fe-21Cr 2-3.6 6564 Gr. N08800 , 6 409 Gr. NOB800

3.7 65Ni-28Mo...2Fe 2~3.7 6335 Gr. Nl0665 B 333 Gr. N1,0665

3.8 54Ni...16Mo-15Cr ,2-3.8 8 564 Gr. Nl0276 6515 Gr.Nl027660Ni-22Cr.,.9MQ-3.5Cb \, B 554 Gr. N06625 B 443 ,Gr. N0662562Ni-28Mo...5Fe B 335 Gr. N10001 B 333 Gr. N100017ciNI-16Mo-7Cr~5Fe B 5,73 Gr. NI0003 6434 Gr. Nl000361Ni...16Mo-16Cr [ B 574 Gr. N06455 ' 6 575 Gr. N0645542Ni-21.5Cr-3Mo...2,.3Cu B 564 Gr. N08825 B 424 Gr. N08825

3.9 47Ni...22Cr..,.9tv1Q- l8Fe 2-3.9 B572 Gr. N06002 8 435 Gr. N06002'

3.10 26Ni-46Fe.,.21Cr-5Mo :2~3.10 8 672 Gr. N08700 '" B 599 Gr. NOB700

3.11 , 44Fe-25Ni-21Cr-Mo 2·3.11 B 649 Gr. N08904 'B 625 Gr. N08904

3.12 26Ni-43Fe-22Cr-6Mo 2-3.12 B 621 Gr. N08320 8 620 Gr; N08320"

47Ni-22Cr-20Fe-7Mo 8SB1 Gr. N06ge5 B 582 Gr. N06985.

(Table fA continues on next page: Notes folloW at end of Table)

11

Page 83: PIPING DESIGN-PART-I.PDF

Table 2-1.1 Pressure-Temperature Ratings for Group 1.1 MaterialS

,:,:~:~ flANGES AND FtANGED FITTINGS ASME B16.5-2003(

C

(I Nominal Designation Forgings Castings Plates

C-51C-Mn-5iC-Mn-Si-V31h Ni

A 105 (1)A 350 Gr. LF2 (1)A 350 Gr. LF6 el. (4)A 350 Gr. LF3

A 216 Gr. WeB (1) A 515 Gr. 70 (1)A 516 Gr. 70 (1). (2)

A 537 CI. 1 (3)

Working Pressure by Classes, bar

23

ClassTemp.,oC 150 300 400 600 900 1500 2500

-29 ,to 38 19.6 51.1 68.1 102.1 153.2 255.3 425.550 19.2 50.1 66.8 100.2 150.4 250.6 417.7

100 17.7 46.6 62.1 93.2 l39.8 233.0 388.3150 15.8 45.1 60.1 90.2 135.2 225.4 375.6200 13..8 43.8 58.4 87~6 1'31.4 219.0 365.0

250 12.1 41.9 55.9 83.9 125.8 209.7 349.5300 10.2 39.8 53.1 79.6 119.5 199.1 331.8325 9.3 38.7 5:t.6 77.4 116.1 ,193.6 322.6350 8.4 37.6 50.1 75.1 112.7 187.8 313.0375 7.4 36.4 48.5 72.7 109.1 181.8 303.1

400 34.7 46.3 69.4 104.2 173.6 289.3425 28.8 38.4 57.5 86.3 143.8 239.7450 23.0 30.7 46.0 69.0 115.0 ·191.7475 17.4 23.2 34.9 52.3 " 87.2 145.3500 11.8 15.7 23.5 35.3 58~8 97.9538 5.9 7.9 11.8 17.7, 29.5 49.2

NOTES: .(1) Upon prolonged exposure tOlemperaturesabove 425°(, the carbide phase of steel may be converted

to graphite. Permissible bl!t not recommended for prolonged use above 425°C.(2) Not to be l!sedover 455°C.

,(3) Not to be used over 37()OC.(4) Not to be used over 260°(.

o

c(

(J

Q

ooo{)

(;)

c~

()

()

Q

(:i

o

ooo

Page 84: PIPING DESIGN-PART-I.PDF

:{

(,ASME B16.5-2003 PIPE Fl..ANGES ANJ;lFlANGEO ATnllGl

Table 2-2.1 Pressure-Temperature Ratings for Group 2.1 Materials

Working Pressures by Classes, bar

Nominal Designation

18Cr-8NI

forgings

A 182 Gr. F304 (1)

A 182 Gr. F304H

Castings

A 351 Gr. CF3 (2)

A351 Gr. CF8(1)

Plates

A 240 Gr. 304 (1)

A 240 Gr. 304H

()

(i

()

,C)

()

()

oQ

ClassTemp., "C 150 300 400 600 900 1500 2500

-29 to 38 19.0 49.6 66.2 99.3 148.9 248.2 413.750 18.3 47.8 63.8 95.6 143.5 239.1 398.5

100 15.7 40.9 54.5 81.7 122.6 204.3 340.4150 14.2 37.0 49.3 74.0 111.0 185.0 308.4

200 13.2 34.5 46.0 69.0 103.4 172.4 287.3250 12.1 32.5 43.3 65.0 97.5 162.4 270.7300 10.2 30.9 41.2 61.8 92.7 154.6 257.6325 9.3 30.2 40.3 60.4 90.7 .. 151.1 251.9

350 8.4 29.6 39.5 59.3 88.9 148.1 246.9375 7.4 29.0 38.7 58.1 87.1 145.2 24L9400 6.5 28.4 37.9 56.9 85.3 142.2 237.0425 5.5 28.0 37.3 56.0 84.0 140.0 233.3

450 4.6 27;4 36.5 54.8 82.2 137.0 228.4475 3.7 26.9 35.9 53.9 80.8 134.7 2i4.5500 2.8 26.5 35.3 $3.0 79.5 132.4 220.7538 1.4 24.4 32.6 48.9 73.3 122.1 203.6

550 23.6 31.4 47.1 70.7 117.8 196.3575 20.8 27.8 41.7 62.5 104.2 173.7600 16.9 22.5 33.8 50~6 84.4 140.7625 1).8 18.4 27.6 41.4 68.9 114.9

650 11.3 15.0 22.5 33~8 56.3 93;8675 9.3 12.5 18.7 28.0 46.7 77.9700 $.0 10.7 16.1 24.1 40.1 66.9725 6.8 9.0 13.5 20.3 33.8 56.3

7.7 11.6 17.3 28.9· 48.16.2 9;0 13.7 22.8 38.04.8 7.0 10.5 17.4 ·29;23.8 5~9 8.6 14.1 23.8

NOTES:(1) At temperatures aver 538°(, use· ollly when the· carbancontellt(2) Not to be used over 425~C.

Page 85: PIPING DESIGN-PART-I.PDF

(

c(

()

(:

C

C)

ASME 816.5-2003

Threaded

r.X.I.~ote(1

)) --:-1.• ..IJ:Col. 11 ~-r7'.1

.t~k=~CO~13~~1Socket Welding (NPS '/2 to 3 Only)

Blind

PIPE FlANGES AND FLANGED F1TnN

~X(Note(1)1~

IJ::-B-L.I

~ o~Slip-on Welding

t--~--0-----1

Lapped

C.·.')

()

()

()

ooG

Q'

Q

Q'

Q-,i

U'I

()I :~ ;.

tyVI'

Welding Neck

Table 8 Dimensions of Class 150 Flanges

70

Page 86: PIPING DESIGN-PART-I.PDF

e e 0 e c () 0 0 C- O 0 a -~ r-, 1"'\. ,...., ~ I'l .--- ~ .~ -- '--, ---,.•~ ~\ ~ /---. --', ---. ~ , .........:- ~.

~) v {v' ',,---~ -tJ . ,'~/

___J

: ..'.'~~ -

1~/>zG\rn

Table 8 Dimensions of Class 150 Flanges (Cont'd) >z0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ~zlength Through Hub Bore Corner G\

/'T1

Hub Radius0:n

Diameter of ::1-Beginning- Bore z

G\of Thread SUp- Welding of VI

Outside Thickness Chamfer' Threaded/ length on/ Neck/ lappedNominal Diameter of Flange, Thickness Welding SUp-on/ Threaded Socket Socket Flange Depth

Pipe of Min., lap Joint Diameter . Neck, Socket Welding' Min., Welding, Lapped . Welding, and. ofSizl! Flange, . t, Min., of Hub, A Welding, . lapped, Neck, T Min. Min., 8 Pipe, Socket,NPS 0 [Notes (2)-(4)] tf X [Note (5)] y y y [Note (6») 8 B [Note (7») r D

Y2 90 9;6 11.2 30 21.3 14 16 46 16 22.2 22.9 15.8 3 10

% 100 11.2 12.7 38 2£>.7 14 16 51 16 27.7 28.2 20.9 3 111 110 12.7 "14.3 49 33.4 16 17 54 17 34.5 34.9 26.6 3 13

1% 115 14.3 15.9 59 42.2 19 21 56 21 43.2 43.7 35.1 5 14

.'-1 I lh 125 15.9 17.5 65 48.3 21 22 60 22 49.5 50.0 40.9 6 16....2 150 17.5 19.1 78 60.3 24 , 25 62 '25 61.9 62.5 52.5 8 17

21/ 1 180 20.7 22.3 90 73.0 27 29 68 29 74.6 75.4 62.7 8 193 190 22.3 23.9 108 88.9 29 30 68 30 90.7 91.4 77.9 10 21

31h 215 22.3 23.9 122 101.6 30 32 70 32 103.4 104.1 90.1 10·4 230 22.3 23.9 135 114.3 32 33 75 33 116.1 116.8 102.3 11

255 22.3 23.9 164 141.3 3S 36 87 36 143.8 144.4 128.2 116 280 23.9 25.4 192 168.3 38 40 87 40 170.7 171.4 154.1 138 345 27.0 28.6 246 219.1 43 44 100 44 221.5 222.2 202.7 13

10 405 28.6 30.2 305 273~0 48 49 100 49 . 276.2 277.4 254.6 1312 485 30.2 31.8 365 323.8 54 56 113 56 327.0 328.2 304.8 13

14 535 33.4 35.0 400 355.6 56 79 125 57 359.2 360.2 To be 13 . " :-:~-

16 595 35.0 36.6 457 406.4 62 87 125 64 410.5 411.2 Specified 1318 635 38.1 39.7 505 457.0 67 97 138 68 461.8 462.3 by 1320 700 41.3 42.9 559 508.0 71 103 143 73 513.1 514.4 Pur· 13

chaser47.7 663 610.0 81 111 151 83 616.0 616.0 13 >... VI

3:/'T1

CD....0-in.v00w

Page 87: PIPING DESIGN-PART-I.PDF

(

"'~.'.'.'.'>1\, .~1, ..

(\

(

()

(,

{\I

(I

c'()

()

PIPE flANGES AND RANGED AmNGS

~==r==~R....-----0----1 1

Threaded

r· 0 I I

~}Blind

ASME 816.5-2003

r-XINote (11J-:1

LJ::~--B-LI• ~I! 0 IISlip-on Welding

~~---'-0 ----+

Lapped

f)

()

()

Oi

oo

ooQ

()

Q

eo

Welding Neck

Table 11 Dimensions of Class 300 Flanges

79

Page 88: PIPING DESIGN-PART-I.PDF

e(j, eeccotJ Co co c o 0 c !"""\\_J

r-, ,.-., ~"--~

,""\ -', "-, ~~

-., ~ ,....-.... ---, -\

:>tils:I'T1til...!t'V1

NDimensions of Class 300 Flang&s(Conttd)

0Table 11 0

""4 5 6 7 8 9 10 11 12 13 14 15 16

Length Through Hub Bore CornerHub Radius

Diameter ofBeginning Bore

of Thread Slip· Welding . of Counter·Outside Thickness Chamfer Threaded! Length on! Neck! lapped bore

Nominal Diameter . of Range Thickness Welding, SlIp·on! Threaded Socket Socket Flange Threaded DepthPipe of Min." LapJolnt,. Diameter Neck, Socket Welding Min., Welding Lapped Welding, and Flange, ofSize Flange, t, Min., of Hub, A Welding. Lapped, Neck, T Min., Min., B Pipe, Min., Socket,NP$ 0 (Notes (2). (3)) t, X [Note (4») y y y (Note (5») B 8 [Note (6)] r Q D

1)2 95 12.7 14.3 38 21.3 21 22 51 16 22.2 22.9 15.8 3 23.6 10% 115 14.3 15.9 48 16.7 24 25 56 16 27.7 28.2 20.9 3 29.0 111 125 15.9 17.5 54 33.4 25 27 60 18 34.5 34.9 26.6 3 35.8 13

1% 135 17.5 19.1 64 42.2 25 27 64 21 43.2 43.7 35.1 5 44.4 141\4 155 19.1 20.7 70 48.3 29 30 67 23 49.5 50.0 40.9 6 50.3 16

2 165 20.7 22.3 84 60.3 32 33 68 29 61.9 62.5 52.5 8 63.5 1721)2 190 23.9 25.4 100 73.0 37 38 75 32 74.6 75.4 62.7 8 76.2 19

3 210 27.0 28.6 117 88.9 41 43 78 32 90.7 91.4 77.9 10 92.2 2131

/ 2 230 28.6 30.2 133 101.6 43 44 79 37 103.4 104.1 90.1 10 104.94 . 255 30.2 31.8 146 114.3 46 48 84 37 116.1 116.8 102.3 11 117.6

5 280 33.4 35.0 178 141.3 49 51 97 43 143.8 144.4 128.2 11 144.46 320 35.0 36.6 206 168.3 51 52 97 47 170.7 171.4 154.1 13 171.48 380 39.7 41.3 260 219.1 60 62 110 51 221.5 222.2 202.7 13 122.2

10 445 46;1 47.7 321 273.0 65 95 116 56 276.2 277.4 254.6 13 276.212 520 49.3 50.8 375 323.8 71 102 . 129 61 327.0 328.2 304.8 13 328.6 "0... :0

'"14 52.4 54.0 355.6 75 111 141 64 359.2 360;2 To."585 425 13 360.4 ... r;;:

16 650 55.6 57.2 483 406.4 81 121 144 69 410.5 411.2 be 13 411.2 z... C'l18 710 58.8 60.4 533. 457.0 87 130 157 70 461.8 462.3 specified 13 462.0 '"... til20 775 62;0 63.5 587 508.0 94 140 160 74 513.1 514.4 by 13 512.8 ... :>z24 915 68.3 69.9 702 610.0 105 152 167 83 . 616.0 616.0 Pur· 13 614.4 ... 0

chaser."

r;;:ZC'l

'"0.....~

i!!!!

Page 89: PIPING DESIGN-PART-I.PDF

() . Table A·I ASME 831,3-1999 Edition

(ggl TABLE A-I (CO NT/D)BASIC ALLOWABLE STRESSES IN TENSION FOR METALS 1

\

Numbers in Parentheses Refer to Notes for Appendix ATables; Specifications Are ASTM Unless Otherwise. Indicated

16:

Specified Min.P-No.or Min. Strength, ksi Min.

S·No, Temp" Temp.

Material Spec. No, (5) Grade NOl~ . of (6) Tensile Yield to 100 200 300

Carbon Steel (Conl'd)Pipes and Tubes (2) (Cont'd)

A53 5 (57)(591 }A 106 B (571

-5:IA 333 }A 33<; 1 6 (57) be 35 20.0 20.0 20.0A 369 1 FPB (57) -20 -A 381 5·1 Y35 AAPI5L 5·1 B (57)(59)(77) B

A 139 5·1 C (Bb)

I~60 42 }

A 139 5·1 0 (8b) 60 46 20.0 20.0 20.0API5L 5,1 X42 (55)(77) A 60 42 20.0 20.0 20.0A 381 5·1 Y42 A bO 42 20.0 20;0 20.0 .

. A 381 5·1 Y48 A 62 48 20.6 19.7 18.7

APISL 5-1 X46 (55)(77) A 63 46 21.0 21.0 21.0A 381 5·1 Y46 A b3 46 21.0 21.0 21.0

A 381 5·1 Y50 A 64 50 21.3 20.3 19.3

A SIb Gr. 65 A 671 . 1 CCb5 (57)(b71 e b5 35 21.7 21.3 20.7A 515 Gr. 65 A 671 1 CB65 }A 515 Gr. 65 A b72 1 665 (57)(671

~r65 35 21.7 21,3 20,7

A 516 Gr. 65 A 672 1 C65 (57)(671

A 139 5·1 E (ab) I A 66 52 22.C 22.0 22.0API 5L 5-1 X52 (55)(77) A 66 52 22.0 22.0 '22.0A 381 5·1 Y52 A 66 52 22.0 22.0· 22.0

.A 5H ;;r. 70 A.67l CC70 (57)[67) B 70 38 23.3 23.1 2:1.5A 51S"r. 70 A 6il C670 }A51SGr.70 Abn 1)70 (57 )(67)

~r'10 3S 23,) 23.1 22.5

ASH (;r.70 A 672 C70 (57)(" 71A 106 C (57) 6 . ;0 q 2.3.3 23.3 23.3

AS37CI. 1 A ~"!1 CQ7iJ(5 ::/lln,.thick)

A 53-::1.1 f, 672 '" r (671 0 :"J 5:' 23 ..J 23.3 22.9(5::/1 in, thick)

A 5:.7:1. " A 691 '~1,1SH70(5: :/,io. lhi;;k)

API 5t. S·l >:56 (51 ),:: H7! H7i A .. ;.: 23.7 23.7 23.7

\':·6 (.51H:~\~7U A -- 23,7 23.7 :i3."

o

o

(,

Cj

CI'

(;

(.

C)

c\l't

( ..... '!.',',

o

oQ

oQ

Q

()

o

().()

oc

o()

()

o---~. - .-..,-------....._--....-

Page 90: PIPING DESIGN-PART-I.PDF

(

( JASME 831.3-1999 Edition Table A-I

(

(

TABLE A-I (CONT'O)BASIC ALLOWABLE STRESSES IN TENSION FOR METALS1

Numbers In parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

Basic Allowable Stress S ~sl (1), at Metal Temperature, of m---..,-..,-----...,-' .----_.__. ---............_.-.....--

16.4 18.3 14.8 12.0 9.3 b.5 4,5. 2.5

18.4 18.3 14.8 12.0 9.3 6,5 4.5 2.5 1.6

19.4 19.2 14.8 12.0

no 21,4 , "

15.5

...16.0

17.0 10.8 13.9 11.41 9.0 6.5 4.5 2.5

17.0 1b.8 i3.9 11.4 9.0 6,5 4.5 2.5 1.6

No.

Carbon Steel (Cont'd) ,Pipes and Tubes (2) (Cont'd>

"ifA ~3

A'10bA 333A 334

FPB A 3b9Y35 A 381B APl5L

~gA 139A 139

X42 API5LY42 A 381

Y4B A 381

X4b API5LY4b A 381

Y50 A 381

CCb5 Ab71

{CBb5 Ab711.0 865 A 672

C65 A, 672

E A 139X52 API5LY52 A 381

CC70 A 071i C870 A 6711.0 B70 A 072

C70 A 072C A lOb

r

co

"

A b71

- 070 AbP

l CMSH'iO A 091

X56 API5L

Y56 A 381

1.62.54.5b.5

800 850 900 950

17.3 17.0 16.5 13.0 10.8 I 8.7

400 500 600 650 706

(....J

• \.{

(.~i

-'

(

{i

(>

()

Ci

(~)

C" I

, ) ,

oooo

()

II

163

()

o

Page 91: PIPING DESIGN-PART-I.PDF

(

( )

(;

TlIble A·I ASME 831.3·1999 Edition

CJ

(!

eli

c>c.(Ii

(j

()

o()

()

oooooo

o(}

()

VQ

1991AOO

TABLE A-I (CaNT/D)BASIC ALLOWABLE STRESSES IN TENSION FOR METALSI

.Numbers In Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

,'i';::,jSpecified Min.

P-Na. Or Min•. Strength, ksi Min.S·No. Temp., Temp.

Material Spec. No. (5) Grade Noles OF (6) Tensile Yield 10100 200 300

Carbon Steel (Cont'd)~ipesand Tubes (2) (Conl'd)

A~99 A 671 CK75

}(~ 1. in. thick)A 672 N75 (57)(67) A 75 40 25.0 2404 23.7A.• 2~9···.· ••••·.·,

(>1 in. thick)A 299 A 691 CMS75

(> 1 In. thick)

A 299 A 671 CK75

}(:!i1 In. thick)

A 299 A 672 N75 (57)(67) A 75 42 25.0 25.0 24.8(:!il In. thick)

A 299 A 691 CMS75(:!i 1,1n.. thlck)

API5L 5-1 X60 (51)(55lC71)(77) A 75 60 25.0 25.0 25.0API5L 5-1 X65 (51)(55lC7ll A 77 65 25.7 25.7 25.7API5L 5·1 X70 (51)(55)(7ll A 82 70 27.3 27.3 27.3API.5L 5·1 X80 (51)(55)(7ll A 90 80 30.0 30.0 30.0

A 381 5-1 Y60 (51 )(7ll A 75 60 25.0 25.0 25.0

Pipes (Structural Grade) (2)

A .283 Gr. A A 134 (8a)(8c) -20 45 24 13.7 13.0 12.4

A 570 Gr. 30 A 134 5·1 18a)(8c) -20 49 30 15.0 15.0 15.0

A 283 Gr. 8 A 134 (8a)'(8c) -20 50 27 15.3 1404 13.9

A 570 Gr. 33 A 134 5.1 (8a)(8c) . ...20 52 33 15.9 15.9 15.9

A 570 Gr. 36 A 134 5·1 (8a)(8c) -20 53 36 16.3 16.3 16.3

A 570 Gr. 40 A 134 18a lCOc) ;"20 55 40 16.9 16.9 16.9

.A36 A 134 (SalCSc) -20 58 36 17.6 16.S 16.S

A283 Gr. 0 A 134 1 (Sa)(8c) -20 bO 33 18.4 17.4 16.6A570Gr.45 A 134 5·1 (SalC8c) -20 60 45 18.4 18.4 18.4

A570 Gr. 50 A 134 (Sa)(8c) -20 65 50 19.9 19.9 19.9

164

Page 92: PIPING DESIGN-PART-I.PDF

(:

ASMF. .83 1.3.-1999 F.dililln Table A-I

( TABLE A-I (CaNT/D)BASIC ALLOWABLE STRESSES IN TENSION FOR METALS1

Numbers In Parentheses Ref;r to Notes (or Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

AOO

Bule AII~Aible Stress S, ksi (l), ill Metal Temperature, 'F (7)

400 500 bOO b50 700 750 800 850 900 950 1000 1050 1100 Grade Spec. No.

Carbon Steel (Cont'd)Pipes and Tubei (2) (Cont'd)

f" A 6.71

.... 22.9 21.6 19.7 19.4 ;9.2 15.7 12.61 9.5 6.5 4.5 2.5 1.6 1.0 N75 . A 672

CMS75 A 691

24.0 22.7 20.7' 20.4 20.2

25.0

['''' A 671

.. N75 A 672

CMS75 A 691

XbO API SLXbS API5LX70 API 5Lxeo API 5L

Y60 A 381

... J

to, •

,......._.,:.r~~l'l'.~ .., ---- ".

25.025.7

~-_·-,,··_·,,27·.·3··

1.. 30.0II .-'

(/

e,(i

(

(.Ii

(

(

(

Ie't... _,I

()

()

()

o()

oo~o

ooo

()

()

o

Pipes (Structural Gradel (2)

A 134

A 134

A 134

A 134

A 134

A 134

,.\ 1)~

A 1J~

Page 93: PIPING DESIGN-PART-I.PDF

(

t I

(\

Table A·I ASME B31.3·2002

TABLE A·l (CONT/D)BASIC ALLOWABLE STRESSES IN TENSION FOR METALS 1

Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

( Min.Specified Min.

Min.P-No. or Strength, kslS-No. Temp., Temp.

( Material Spec. No. (S) Grade Not.es OF (6) Tensile Yield to 100 200

( Low and Intermediate Alloy Steel (Cont'd)Pipes (2) (Cont'd)

(, 2Y4Cr-1Mo A 691 SA 21/ 4Cr (11)(67)

}A 387 Gr. 22CI. 1 (72)(75)

(\ 2~Cr-1M() A369 SA FP22 (72)(75) -20 60 30 20.0 18.521/4Cr-1Mo A 335 SA P22 (72)(75)

.( 2Ni-1Cu A 333 1-2Ni-1Cu A 334 9A 9 -100 63 46 21.0

( \

21~NI A 333 1-(, 21/ 4Nf A 334 9A 7 -100 65 35 21.7 19.6

jl/zNI A 333 }

C' 31/zNI A 334 . 98 3 -150 65 35 21.7 19.6

C' Cc!;zMo A 426 3 CP1 (10)(58) -?O 65 35 21.7 21.7

C:CoMo A 204 Gr. A A 672 3 LoS 1-CoMo A204 Gr. A A691 3 CM65 (11)(58)(67) .,..20 65 37 21.7 21.7

() 2~Ni A 203 Gr. 8 A 671 9A CF70

1-31/ zNi A 203 Gr. E A 671 98 CF71 (11)(65)(67) -20 70 40 23.3

0 A 672 3 L70 1-A 691 3 CM70 (1)(58)(67) -20 70 40 23.,3 23.3

()A 426 4 CP11 (10) -20 70 40 23.3 23.3

0 A 426 SA CP22 (10)(72) -20 70 40 23.3 23.3

A 672 3 L75 ~0 A 691 3 CM75 (11)(58)(67) -20 75 43 25.0 25.0

C A 335 10 58 P91 -20 85 60 28.3 28.3

0 58 CPS (10) ;",20 90 60 30.0 28.058 CP9 (10) -20 90 00 30.0 22.5

0llA

~.~~) J-8

0llA 8 -320 100. 75 31.7 31.7

0 I

Gr. 2 C/. 1 -20 55 33 18.3 18.3

(;I Gr. 12 CI. 1 -20 55 33 18.3 18:3Gr. 9 CI.l -20 60 30 20.0 18..1

() (continlledJ

0166

0

U

(;

Page 94: PIPING DESIGN-PART-I.PDF

(

(i ASME .B31.3·2002 Table A·I

( , TABLE A-l (CONT'O);',,:'

BASIC ALLOWABLE STRESSES IN TENSION FOR METALS l:f",

(, Numbers In Parentheses Refer to Notes for Appendix ATables; Specifications Are ASTM Unless Otherwise Indicated

(, Basic Allowable StressS, ksl (1), at Metal Temperature, of (7)

(300 400 500 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 Grade Spec. No.

Low and Intermediate Alloy Steel (Cont'd)Pipes (2) (Cont'd)

r'c' A691

( " 18.0 17.9 17.9 17.9 17.9 17.9 17.9 17.8 14.5 12.8 10.8 7.8 5.1 3.2 2.0 1.6 FP22 A 369P22 A 335

{I,~ A 3.33

CI. 9 A 334}

«, 19.6 18.7 17.6 16.8 16.3 15.5 13.9 11.4 9.0 6.5 4.5 2.5 1.6 1.0 7.~. A 333

A 334

C' { A33319.6 18.7 17.8 16.8 16.3 15.5 13.9 11.4 9.0 6.5 4.5 2.5 1.6 1.0 3 A 334

C 21.7 21.7 21.3 20.7 20.4 20.0 16.3 15.7 14.4 12.5 10.0 6.3 4.0 2.4 CPl A 426

() [L65 A 67221.7 20.7 20.0 19.3 19.0 18.6 16.3 15.8 15.3 13.7 8.2 4.8 4.0 2.4 ... - CM65 A691

C)[CF70 A 671

... ... - CF71 A 671C)

j

[L70 A 672

0 23.3 22.5 21.7 . 20.9. 20~5 . 20.1 17.5 17.5 17.1 1 13.7 8.2 4.8 4.0 2.4 ... - CM70 A 691

()23.3 23.3 22.9 22.3 21.6 20.9 15.5 15.0 14.4 13.7 9.3 603 4.2 2.8 1.9 1.2 CPU A 42623;3 23.3 22,«1 . 22.3 21.6 20.9 17.5 17.5 16.0 14.0 11.0 7.8 5.1 3.2 2.0 1.2 CP22 A 426

0 [L75 A 67218.8 18.8 18.3 /13.7 8.2 4.8 4.0 2.4 ... - CM75 A 691

0jA 335

0 25.9 20,724.9 23.7 22.3 18.0 14.0 10.3 7.0 4.3 P91 A 691

()16.0 14.5 12.8 10.4 7.6 5.6 4.2 3.1 1.6 1.0 CPS A 426

021.0 19.4 17.3 15.0 10.7 8.5 5.5 3.3 2.2 1.5 CP9 A 4,6

[8A 333

0 ... '" -8 A334

0 Plates

18.3 18.3. 17.9 17.3 16.9 16.6 13.8, 13.8 13.4 12.8 9.2 5.9 Gr.2 CI. 1 A 3870 18.3 18.3 17-9 17.3 1.6.9 16.6 16.3 15.9 15.4 14.0 11.3 7.2 4.5 2.8 1.8 1.1 Gr. 12CI. 1 A 3S7

17.4 17.2.17.1 16.8 16.6 16.3 13.2 12.8 12.1 11.4 10.6 7.4 5.0 3.3 2.2 1.5 Gr. 9 CI. 1 A 387

() {conlfnuedJ

()

() 167

V

V

Page 95: PIPING DESIGN-PART-I.PDF

(

(

( ) TllWe A·I ASME 831.3·1999 Edition

bOO400 . 500300200

Mill.Temp.10 100

Specirled Min.Slrenglh, ksl

Tensile Yield

Min.Temp.,of (b)

1114

Noles

(14 )(21))(28)(31)(36) -425

}(2&)(28) -425(2&)(28)(31)(3&)

-"'I75 30 20.0 20.0 20.0 18.7 17.5 Ib.4

(20)(26)(28)(31 )(3&) -425(2&)(3\.)(31» -325(21))(28)(Jl)(36) -425(21)) -325 75 30 20.0 20.0 20.0 18.7 17.5 Ib.4(26)(28) -425 70 30 20.0 20.0 ' 20.0 19.4 18.1 17.:,

05) -20: 70 40 23.3 23.3 21.4 20.4 1'1.4 lB.4

(5)0'1) 003251

80 40 2&.7 2b.2 24.'1 23.3 22.0 21.4

(25) -00 87 58 2'1.0 27,'1 21>.3 25,) 24.'1 24,5 ~

no)()s) -20 '10 &5 30.0

(25) -bO '10 65 30.0 )0.0 28.'1 27.'1 27.2 , 21>.'1 ~

(25) -20 '10 70 30.0 • .. 1

-bO 10'1 80 3b.3 34.4 34.0 34.0 34.0

-20 11& 80 38.7 35.0 33.1 31.'1 31.4 31.2

-325 70 25 11>.7

-20 bO 25 lb.7 15.3 14.8 14.5 14.3 14.0

16.7 15.b 14.8 14.0

16.7 15.5 14.4 13.5

20.0 18.7 17.4 Ib.4

20.0 18.7 17.4 Ib.4

TABLE A-I (CaNT/D)BASIC ALLOWABLE STRESSES IN TENSION FOR METAlS l

N,umbersIn Pal'entheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

P·No, orSpec. S·No.

Malerial No. (5) Grade

Slalnless Steel (3) (4) (Conl'd)Pipes and Tubes (2) (Cont'd)

18Cr-8NI.tube A 2b'1 8 TP30418Cr·8Ni pipoe . A 312 8 TP304

.Type 304 A 240 A.358 ~ 30418Cr·8Ni plpoe : ..' A 3.76 8 TP304l8Cr.8Nlpipe A 37b 8 TP304H18Cr-8NI.pipe A 40'1 8 TP30418Cr.8Niplpe A 312 8 TP304H18Cr-l0NI·Mo A 451 8 CPF8M

20Cr'Cu tube A 21>8 10 TP443~27Cr lube A 2b8 101 TP44&

25·10Ni·N A 451 8 CPE20N

2'Cr·4NI·N A 189 ~23Cr·4NI·N A r90 "'10H 532304

12 1/.Cr A 421> . & CPCA·1S

22Cr-SNi-,3Mo A 78'1 ~22Cr-5Ni-,3Mo A 7'10 10H SJlB03

2I>Cr-4NI-Mo A 78'1 ~2I>Cr-4Ni·Mo A 7'10 10H 532'1.00

oo

oo

o

(\

e}i

Ci'

()

()

()

()

C

Page 96: PIPING DESIGN-PART-I.PDF

(

'.

ASME 831.3·1999 F.dition Table A·I

() ,

( .. /

TABLE A·I (CONT/D)BASIC ALLOWABLE STRESSES IN TENSION FOR METALS l

Nurnbers In Parenlheses Refer lo Noles for Appendix A Tables; Specifications Are ASTM UnlessOlherwlse Indlcaled

Basic Allowable Stress S, ksl lll, at Metal TemPerature, .oF (7)

A(

Y',

650 700 750' 800 850 'lOO 950 1000 1050 1100 1150 1200 ·1250 1300 1350 1400 1450 1500 GradeSpec,'No.

oc)

(),

o()

·CJ"

(\

oooo

,,'

10.2 16;0" "15.6 "15.2 14.9 14.6 14.4 H.8 J2.2 q.7 7.7 6.0 4.7 3.7 2.'/ 2.3 1.8,

16.2 16.0 15:6 15.2 14.9 14.6 14.4 H.S 12.2 q.7 7.7 6.0 4.7 3.7 .2.q 2.3 1.816.7 . 16.2 15.8 15.5 14.1 14.4 14.0 lJ.4 11.4 Q.3 s.o 6.S 5.l 4.0 3.0 2.3 l.q

18.0 1J.O o.Q 4.5

21.3 20.5

." 111

13.8 13.5 11.0 11.1 10.~ Q.O 8.~ ~.O

13.7 13.5 13.3 13.0 12.8 11.9 9.9 7.8 0.3 5.1 ~.O 3.2 2.0 2.1 1.7 1.1 1.0

13,2 12.9 12.6 12.4 ' 12.1 11.8 11.5 11.2 10.8 10,2 8.'1 o.~ ~.7 3.5 2.5 I.S 1.3

16.1 15.9 15.6 15.2 14.9 14.3 lJ.1

16,1 15.9 15.6 15.2 14.9 14.6 14.3 lJ.l

Stainless Steel (3) (4) (Cont'd)Pipes and Tubes (2) (Cont'd)

r" A 26QTP304 A 312

1. '"A 358

TP304 A 376·TP304H A 316TP304 A 40q

1.4 TP304H A 3121.4 CPF8M A ~51

~ TP~43 A 26STP~~6 A 26S

CPE'20N A 451

~Am532304 A 7QO

CPCA·15 A ~26

~Am531803 A 7QO

4A 7SQ5nQOO A.7QO

rm

532760 A.7QO

~A78Q532750 A NO

Plates and Sheets

)05 A ?40

405 . A 2~0

O,Q 30~L A 240

1.0 310l A 240

XSM A 240

3028 A 107

302 A 240

()

Vi

oC

185

Page 97: PIPING DESIGN-PART-I.PDF

(i'

(

(,

(,,

c Nominal Thid-.nc~~ r. in. (Notn IGIl

ASME I1Jl.3·19~<) Edition

0,394 0.5

r

1.0

I1.5

I2.0 2.5 J,O

- 130

Ci,

50

. .. .

FIG.323.2.2A MINIMUM TEMPERATURES WlTHOUTIMP/\CT TESTING FOR CARBON STEELMATERIALS .

(See Table A·lfor Designated Curve fora Listed Matcri<lll

~'nrcc'. .

!; ~-.\7\~'cnrbonst~el material mOYl;le used to a minimum lc::nperotureof -29' C HOoFI.for CategcryQ Fluid Service,,2, .'0, Gradr::;of API :iL, and ASTM A381 materiols,. may lVJ lIsed in accordan( J ".,ith Curve f3 if norn1olized or qU~l'r.!l()d JI"llullli:;L':':l~.

1:~1 111(1 following materials may be used. in accordance with Curve 0 if norm.Jiized: '(a) ASTM AS16Plate. allg.'rodes; ...'...1(0) ASTMA671 Pipe, Grades CE55,CE60, ond allgradf:srnadewith A 51£1 plate;iclASTM t... 672Pipe, Grades E55, E60, and all grades mode ...... ith AS 16 plote.

(':'\ A welcJingpr?cedureforthemanulactureof pipe or components shall include impact testing of welcJsd(1d HAZ for (Illy lh.::;il)"

minimuiTltemperaturebelow.,.290C (-20°Fl. except as provided in Table 323.2.2, A·3(b).!~'ilrnpacttllsting'inaccprdancewith para. 323.3 .is required for any cJesign minimum temperature below -4Soc {-55°F I, excel)t as

permitted b.,,<Note (3) in Table 323.2.2.ItJ)For blind)langes and blanks, rsh~11 be 1/4 orthe flnn~IClhickncss~

90

SO

70 ~JL

.;60

f~SO .:,

"L:40 ,':.'

t:30 '"c:

'i:20 :i

c:10 ,~

t>

0 0

"'40

- -30

_ 100

-

70so4030

Nomin~1 ThickneH f. mn\ :Note (Gil

I

20

Note III

10o

- 411-SO

()

oo

oo()

o

c>

()

ooooo

I

do

II

~too

~4)

~4 .. '

.JJ'

Page 98: PIPING DESIGN-PART-I.PDF

{)

C)

( ASME D31.3-1999 Edition 323.35-323.4.2

TAtiLE 323.3.5MINIMUM REQUIRED CHARPY V-NOTCH IMPACT VALUES

Non:s:'>' ii>< . . .'. . .' .(l) Energ)'values In this Table are· for st,lndard size specimens. Forsubsize specimens, these values shall be multiplied by the .ratio of the actual

speclm~r width to that of a full-size specimen, 10 I'!1m (0.394 in.>.(2l Seepara.p3.3.5(d) for permissible retests.(J) Forb()l~ing.?fthis strength levelln nominal s;zes M 52 (2 In.> and under, the impact requirements of ASTM A no may be applied. For

bolting over .M S'2/requlrements of this Table shall apply.

()

()

()

()

Ci

C·I

oc)()

( ')

Specified MinimumTensile Strength

(a) Carbon and Low Alloy Steels

448 MPa (65 ksl) and less

Over 448 to 517MPa (75ksl>

Over 517 but not Inct. 656 MPa (95 ksll

656 MPaandovcr [Note (3)J

(b)' Steels hI P.Nos.6, 7, and 8

No. of .Specimens[Note (2)]

Average for 3 specimensMinimum for 1 specimen.

Average for 3 specimensMinimum for 1 specimen

Ayerage for 3 specimensMinimum for 1 specimen

Minimum for :3 specimens

Minimum for 3 specimens

Energy (Note Ol]

Fully Deoxidized Other Than FullySteels Deoxidized Steels

Joules ft-Ibf Joules ft-Ibr

18 13 14 101& 10 10 7

20 15 18 1316 . 12 14 10

27 2020 15

LCiteral Expar)sion

0.38 mm (0.015 in.)

O.38mm (O.ol5 In.!

0'

ooCI

C>

ooJ-.~'\~I

o0'

()

oov()

specimen ..is below. the mlmmum value permitted fora singles~imet).aretest ofthree additional specimensshall be made. The value for each of these retestspecime~s<~ha.llequal or exceed the required averagevalue..... :....

(2).F~rJ~wal Expansion Criterion. If the valueoJlateral~~pansio.~ for:onespecimen in a group ofthreeis~IdWO.~8mrn(O.OI5 in.lput not~low 0.25mm(O.P.l:'ii.n')'alldif . the average value for threespccirnerj~~;e'lJ,l~J~orexceeds 0.38mm(0.015 in.). aretestp(~.~re~.~.~<:\itiollalspecimens may'be. made. eachoJw~.ichrtlust/~ual or exceed the spccifi(':d minimumv~1~e8f;ip.3~'~(O.OI5in.).lnthe case ofhcattr7at$(tw~.~~ri~J~.ifthereq~iredvalueS are not obtainedi.n(th~Te~~~tpr·if.the(·Yalucs .•. in .the. in'itial test arclX:l(l~.t'Jgh~t~.il~·lll1l.~lIQw~d forrctc~t, tllc material may~reh$~F~ge~~~lll~· .•r~tcsted •••• Aftcr reheat trcal.inclll. ase.t'()ft6~~iS~~irn~~s.s~~1 ~.made.. For acc~fltance.the •.lat~.r~.1!~~Rp,.?sipn.ofeach.of the' s~cimens mustequal.·.Ql',e~ge~~tl)e.specified •..• minill1urn .. valueC':f 0.38mIJlW~~:l~}ir·);)/·. .•.....•..•...•." .... .•••.•..•••• ' '. .....•. '.!

....... (~~5:~q!i·~ml,tif.T'e$.t .... Results.... Whenan!crraticrr~~lti~;i~Il~s,~.~ib~a.def~Qtivespecimen.or there. isun~~l'ti!i"tyinYle!~~tprocedtHe, ar~test will.bea.llQwed.

53

323.4 Fluid Service Requirements fQr Materials

323.4.1 General. Requirements in para. 323.4 applyto pressure containing parts. Toey do not apply tomaterials usedJor supports, gaskets, packing. or bolting.See also Appendix, f. para.F323.4.

~23.4.2 Sp~ific :Requirements(a) Ductile Iron. .Ductile iron shall not be used for

prcssurecontainingpnrts ilt temperatures. below -29°<;(~20°F) (exceptaustenitic ductile iron) or above 343°C(650°F). Austenitic ductile iron conforming to ASTMAS?I .may_ be. used at temperatures below -29°C(-20°F) down to the temperature of the impact testconductcdillac~()rd~ncewith that specification but notbclow-19.6°C(..:320°F). .

"'/lIves havingJ)(Xiicsand bonnets or coversm"dcqf lIl11tcrialsCdpfonningto ASTM A 395 and meetingthe' requireme~ts ofASMEBI6A2, undaddilion,ll rc­quir~mentsofASMEB19.MStandard Class,. API 594, •

.API599.orAPI609rnay~usedwithin the pressure­ternperature.rlltin$sgiyenillASME. B16.42.

\Vel~i~giSh~llllotbe~l"formed .in the. fabricationorrepair·of~lJ.~tile iron. coillponents nor inasscrnblyor such components in a piping system.

Page 99: PIPING DESIGN-PART-I.PDF

o() ASME B31.3·1999 Edition 330.2.4-j~ • .1.1

para; 331 ,are basic practices which are suitable formost welding, bending. and forming operations, butnot necessarily appropriate for all service conditions.

331.1.1 Hellt Trcatmcnt Rcquiremcnts

(a) Heat treallnentshall be in accordance with the

33 LtG encral

67

TABLE 330.1.1PREHEAT TEMPERATURES

Base Specified Min. Min. TemperatureMetal Weld Metal Nomihal Wall Tensile Strength,

P·No. or Analysis Thickness .Base Metal Required Recommended

S·No. A·No.[Note (1)) (Note (2)J Base Metal Group mm in. MPa ksi °C of °C of

Carban steel < 25 < 1 :5 490 :571 10 50~ 25 ~ 1 All All 79 175All All > 490 >71 79 175

2, 11 Alloy steels, . <13 < 111 ::; 490 :571 10 50Cr :5 1/2 0/0 ~13 ~1/2 All All 79 175

All All > 490 > 71 79 175

.3 Alloy steels, All All All All 149 300 .. '.1/20/0 < Cr:5 20/0

SA, 5B, 4, 5 Alloy steels, All "'II All All 177 3505C 21/.0;. :5 Cr :5 10%

E> High alloy steels All I,ll All All 14') I JOO'

marlensltlc

7 High alloy steels All I,ll All (All 10 50(erritie

.' 8,9 High alloy steels All 1\11 All All 10 50austenitic

qA,98 10 Nickel alloy steels All i A.II All All 93 200

10 Cr-Cu steel Ail ,ldl All All 149-204 300--400

10[ 27Cr steel All r t,lI All All 1494 . 300'

11A SG 1 8Ni, 9Nisteel All All All All 10 50

UA SG 2 5Ni steel All /11' All All 10 50

21-52 All All 10 50

NOTES:(l) P·tlumbcr or S·NumberfrC)m BPV Codc, Section IX, QW/Q[H22.(2) A-Number from Section IX, QW-442.(,3) Maximum Interpass temperature 310°C (oOO°Fl.(4) Maintain Interpass temperature between 177°-232°C D50'F --4 SO°Fl.

the piping. The preheat specified in the WPS shad beapplied before welding is resumed.

Beal treatmcritisused to avert or relieve the dctrirnen·tal effects ofhigh temperllture and Scycrc temperaturegrlldients inherent in welding,and .to rclieve residualstresSeS create(jby bending and forming. ProvisiClnsin

. 331 HEAT TR.EATMENT

oo

c>o

ooooo<:>

()

Q

oe()

oi '\V'

C/o

()

()

()

()

()

()

Page 100: PIPING DESIGN-PART-I.PDF

o c ~QCO.O cC Q CO 6 000 C 0~ o. o~-- 0" r1~"""U . . v '-J-.--'. 'v v

OH_() ~o 1[)~3!() v-~6 Ot-_/

TABLE 3~1.1.1

REQUIREMENTS FOR HEAT TREATMENT

All N-~r.e None

All 593-1>35 1100-1175 1.2 '/z

All 7bO-:-Slb 1400-1500 1.2 V, V2Wc:e (5)] (Note (5)]

MeLli Temperature Range

All N.onc:All 70<:-760All 704-760

All 732-788

All 621-(,&3

All Nor~

All Ncne

>-C/)

[;j~

:='t'

~Holding TIme

~Nominal Wall Brine II 0-

<>[Note (3)] Min. Hardness,

TIme, [Note (4))mlnlmm hrlin. hr Max.

'" ... . ..'"

2.4

...2.4 01 1 2252.4 1 1 225

--.- 0"0 .-... '" ...2.4 1 2 2252.4 1 2 .- 225

... .., . "

2.4 1 2 2412.4 1 2 241

2.4 1 2 24~

2.4 1 2 241

None

None

CF

135<r-1450

1150-1225

None1300-13751300-1375

None1300-14001300-1400

None1100-1200

None

1100-13251100~1325

None5'H-b49

CC

:4.cne

!:cn~

593-718593-718

70~7.q6

70':;-]41&

Specified Mfn.Tensile

Nominal Wall Strength, BaseThickness MeLli

mm in. MPa ksi

519 5~ All All>H '>-]/4 All All

519 S '/, 5490 571> 19 > '/, All AllAll All > 490 >71

513 5 '12 5490 571

>13 > 1/2 All AllAll All' > 490 >71

513 5'/2 All> 13 > '12 All"All All All

All All All

All All All

All All All

An- All "All

519 5 )/, All> 19 > )/" All

All All All

Nickel alloy!:e-=Is

High alloy s:eet,austenitic

Cr'Cu ,:e.1

High alley steelsferritic.

High alloy s:""lsmartensiti::

A 240 Gr. 429

Al1o)' $leet~. r;.!l/.. :)/~ S Cr S 10"0;';)

53% Cr a"j 5 0.15% C05 3% Cr ax 050.15% C> 30/0 Cr· cr:> 0.15Yo.-C

Alloy" >teelo,

II] ~~_ < Cr S-2~'~

BaseMeLli

. Group

Alloy steels,Cr s- 1/2 0;';;;'

Carbon steel

4,.5

10

8; 9

Weld MeLliAnalysis ". o.

A-Num~r

(Note(2n

2,11

&

8

9A,98

10

5A '0;50 '0~CIO '

BaseMeLlipeNo.

or S-No.[Note un

3

.,--.-'. 'I ~., .

C''-0

o-i'"C";;-w:=

Page 101: PIPING DESIGN-PART-I.PDF

:-.rc- e: o o ···C,C'&·~b tj ;e..b .() u C ~.• 'b 0 1""~ 0 \'\ (j .--. .~':'-" /""1 1"\ ,-:r '0 ;-., ,~ -;. ......., )...,

.~.. J .~/ ./ J '~~

( / J -~ .~ --J -' J

>-oj..0­;;-..............;...

-.Jo

BaseMetalP-No.

or S-No.[Note un

10H

101

llA SG 1

lASG 2

t.2

NOTES:

Weld MetalAnalysis

A-Number[Note (~)]

BaseMetalGroup

Duple" stainless steel

27Cr steel

SNi, 9N; ~teel

SNI steel

Zr Rb070S

TABLE 331.1,1 (CONT/O)REQUIREMENTS FOR HEAT TREATMENT

Specified Min. Holding TimeTensile

Nominal Wall Strength, Base Nominal Wall . Brinell

Thickness Metal Metal Temperature Range [Note 0)) Min. Hardness,Time, (Note (4)]

mm in. /.IPa k~1 ·C OF min/mm hr/in. hr f',~ax.

All All All All Note :7) Note (7) 1.2 '/2 '/2

All All All All 66~704 1225--1300 2.4 1

O,ote (6)] [Note (6)]

:s: 51 :S:2 All All None None> 51 > 2 All All 552-Se5 1025-1085 2.4

(Note (B)) (Note (B))

> 51 >2 All All 552-565 1025-10B 2.4r-f~ote (8» {Note (8)]

All All All All 535-593 1000-1100 Note Note(Note (9ll [Note (91J ('II (91

(11

(21(J~

('II(5)

(bl(7)

(6)

(9J

flO)

P·Number Or S-Number from BPV Code, Section IX,QW/QB-422.A~Number from Section IX, QW-442.For h"lding time In SI metric units use mln/mm (minutes per mmthlcknessl. FOr U.S. units, use hr/in. thic"ne~s.See para. 331.1.7.Cool as rapidly as pos~lble after the hold period.Cooling rate to t,49°C1120JoFI shall be less than 56°C llOO°FJlhr; thereafter, the cooling rate shall be last enough to prevent embrlttlement.Postweldheat treatment Is neither required nor prohibited, but any heat treatment applied shall be as required in the materlal specification.Cooling rate shallbe > 167"C OOO°FJlhr to Jl6°C (bOO°FI.Heat treat within 14 days after welding. Hotdtl~ ~hall be Increased by \'z hr for each 25 mm (I In.1 o,.er 25 mm thickness. Cool to427°C (SOO°FI ala raleS 27S"C (SOO°FJlhr, per 25 mm (I In. I nominal thickness, 27BoC (SOO°FI!hr max. C<>olln ~tlll air from 427°CIIlOO°FI.Se" App"",JI. r, para. F jj 1.1.

C;"7-

~

~

i;:::§~c.g

Page 102: PIPING DESIGN-PART-I.PDF

I I

..

I I

_.._ _. -- ...• - - '" - _. ' .

(\

i;"- i;"-f- ~... ...:-.- :~- '- ~.

oCJ I;) I- i;"_ ..,0.,. roO _ I- ~_

" r->:; I- "_:::_ :::-1---:::-.. II nil II

g). t5 I- .~- ~- ~_I---.n_

i;" ~o_f-.I;) f<>~ _ o~...... ..... ......

11- :-t-~ Mr- II

Q-H-f"'-+-H-"':...rl-l-"'·+-t,.."ti

o FIG. G GEOMETRIC CHART FOR'COMPONENTSUNDEH EXTERNAL OR COMPRESSIVE LOADINGS (for· All Materials)

9

.01

. _... _._.-t--_ ..

.001

I I'IC ron A

- ---I- ...

\ \\\ \

1\ \ 1\ \\

.oe)()1.00000l

\)

()'

1)­

()

,(A

C)

oo.<J

Q

C

~

~oo

G"\~

()

(:

(:

Page 103: PIPING DESIGN-PART-I.PDF

Fig. CS·} 1998 SECTION II Fig. CS·2

6.000

4.000

3500

3..000

17.000

34567891

I- .,...---.,......... -_.....-VV -I--

V....... 10-:"'-

V .........,.,V" ..... f-'"

........V

"

3456789

.001

'ACTOR A

Iii/:t--+--t-+-+--+--+-+-++++--t-;-t-h~-+-,/7"'f+++-:::...-;:.-'-t-+-+--+-+-t+-t+b--+-'-t-+-+--+--+-+-++H5.000t---+--+-+-+--+--+ E • 29.0 x 10 £ II.t---+--+-+-+---+' c. 27.0 x 10£ ............

'1/ V

~. 24.5 x 10£............ 1J.'/,/ !

t--+--t--+-t-~i' -+ e • 22.8 xl 0 6 r---..). IJ. 1

t---+--+-+-+--+-I -+ e • 20.8 x 10 6 ........, '" 'I ii hZ '

t--+---t-t-~I-+-+-++++--t@-H1(l.fj'lfl-+--I-+-~1+t-+---+,--.f-+-+--+-+-t+-t+t--+-'1-t-t-+-+-H+H 7.500

..................................~o\..,....u...........J".-l-..l..-l-..L..:....I.J..l-.....l.................-J",._.......!-J,..w...I.--,.....l.......,J......l.,...L.,-J........J...J...J.,.U ,.0003 l 56789

oo1סס.0001.

(I

(~

()

(,

C

C'()

FIG. CS-1CHART FOR DETERMINING SHELL THICKNESS OF COMPONENTS UNDER EXTERNAL PRESSUREWHEN CONSTRUCTED OF CARBON OR LOW ALLOY STEELS (Specified Minimum Yield Strength 24,000 psi to,

but hot Including, 30,000 psi) [Note (1)]

.... '.

I i. I I ' , '. II I .' I Ii· '. I I : I i ii IGENERAL NOTE: See Table CS-2 for tabular values. !I , up 10300 F_

, , i '500 F_I

! ; - !-,V I I

I : .......10- ~- /700 F-

800 F_i ,

,// --- k-v / I I: - ..-- 900 FI V· ~ -'"V ./ .......- "" ..... I.-- ~

il .......- I,--" ......- H"'""''I ......-./ ...... i--'"

......-/j ~ V .....v-/'

'/,1':/ 1/ 1/II v

e • 29.0 x 10 6

r---. [Iiie • 27.0 x 10 6 ......e- 24.5 x 10 6 ........~III/e-22.8xl0 6 k 'FINe -20.8 x 10£

rt,

1:1 III ~~ V I

2 3 4 5 67 89 2 3 4 56789 i 3 4 56 789 2 3 4 6 789

[)

()

()

Q

()

~dro oo1סס. .0001 .001

'ACTOR A

,01 .1

;:.1)00

,0000

18,000

16.000.

14.000

11,000

10.000

9.000

8.000

/.000

6,000

5.000

4.000

3.500

3.000

2.500

c{)

()

~IQ

./

d;1

FIG. CS-2 CHART FOR' DETERMINING SHELL THICI<NESS OF COMPqN~NTS UNDER EXTERNAL PRESSUREWHEN CONSTRUCTED OF CARBON OR LOW ALLOY STEELS (Specified Minimum Yield Strength 30,000 psi andOver Except for rv1aterials Within This. Range Where OtherSpecjfjc Charts Are Referenced) AND TYPE 405 AND

TYPE 410 STAINLESS STEELS [Note (1)]

616

Page 104: PIPING DESIGN-PART-I.PDF

()

Fig. HA·l 1998 SECTION II Fig. HA·2

FIG. HA-l:HART FOR DETERMINING. SHEll THICKNESS OF COMPONENTS UNDER EXTERNAL PRESSUREWHEN CONSTRUCTE,oOF AUSTENITIC STEEl (18Cr...SNi, Type 304) [Note (1)]

25.000

?O.OOO·

IS,OOli

Hi,OOO:

14.000

12.0001

10.000'

9.000 (I)

a:6.000 0

l-t

7.000

6.000

5.000

20.00018.000

16.000

3456789.1

!

... - 1,200 F

.UP~~i

400 Fu..__r---T........ _:- -'700 I F'

3456789,01

l.-k----

·····v

vv

I. ',,' ..•.

23456789,001

FACTOR A

. ~.-

I

.-.

.. ,

2 3. 4 5 S 7 89,0001

.

II II I I I I I I I I. I I I 11.\ IIGENERAL NOTE: See Table HA·2 for tabular values:

I I I I -, I I I I I I I 1 I I I II 11 IIIT -r I I I I I I \ I I I T T -T 1 I I I

~M-'lrI- GENERAL NOTE: See Table HA·' for tabular values. ----~

1..-1- IV I--~ 4,00, i

V L.,.....- . ~O(U.10- ',.v'·1l.of'"

II ...., L;,1-' .... 10- 900' F

- 1,200 F,.J" l-'" I--t-.--- ~

1/ './' ~P

II V '" l/fJ/ V V

E - 28.0. 106............. Ih'l/ i-"E co 25.,9. 106~

~ Ve -23.8 .106 ." •....E .. 22,4 • 106_

~VE .. 20.3 • 106.......

I II ~ ~

a-.--1--4--I--I-..j..;.,+,;.j ~: ~:}: J~:..L;::;I....""J,.1-o~rl/l.,/)r:-++4+I+-......j,.,..-H-'+-.,....f--+-+-+++t---+-+-++-++-i-rt+t 4.000"E" 23.8~. 106 .1 .. l.f.j r~~ 3.500

I-~;...j--+-r-I-I--+-I ~ •. :~~:; :J~:~V 3.000

L-...l·......1...··.u....J-..J...J..J.,L.u.,.I......l.··-'J~·!!iJ~~..J.;...L-l...J-U.,L.......J.....J-.w..,;-,l.;..J..J....J.,J;.J.J---l.~-I-~:-:-..l;:-+~2.500'2 5 6789 2 4 5 6789;'4 56789 2 3 4 5678.9

oo1סס. .0001 .001 . .01 .1

FACTOR A.

oo1סס,

o

()

()

(~)

c)C)

()

C'

o

('

c:

c)Ci()

(j

FIG·HA·aCHARTfOR DEn:RMININGSHELl THICKNtSS OF. COMPONENTSUNDEREXTERNAL PRESSUREWHE~CONSTRqCTI;D or AqSTENITIC.STEEL fl9Cr-12Ni-2Mo, Type 3I£,; 16Gr-12Ni-2Mo, Type :321; 18Cr­lONi-Cb> TYpe347;~5Cr:"1~Ni! Type 30~<ThrouQh ~100·F Only); 25Cr..,20Ni, .Type 310; and 17Cr, .Type 4306

StainlessSte.el (T~rough}OO·F Only»)CNote (1»)

t>20

Page 105: PIPING DESIGN-PART-I.PDF

(\

•Fig. HA·3 PART D - PROPERTIES Fig. HA·4

Ci

C'\(i

C

()

T I I I I I1II I I II I II , I II I"'"GENERAL NOTE: See Table HA·3 for tabular values. ! III

I .......,. UP to 100 F

""' I---

v I.o- V......r' I.--'" I-" 400 ,F

~ I-" 600 F

II" i--' "" ----~

800 F,.."... ..-

I I ..... .... ......I ......- t-

/ ..-t" ........ '""/,..~ I i-""'" I.--'

'/ ...... i--" I......... .- i

'iI"" .... l.-- Ie • 28.0 x 105

l7tt~ Ie • 25.9 x 105-...e • 24.5 x 106-...

~ I Ie • 23.1 x iCe-.....!

III ~ i II

20.000

18.000

10.000

Cl

oo1סס.

2 3 456789.0001

3456789.001

FACTOR A

3456789.01

2· 3456789,1

621

FIG. HA-3CHART FOR DETERMINING SHELL THICKNESS OF COMPONENTS UNDER EXTERNAL PRESSUREWHEN CONSTRUCTED OF AUSTENITIC STEEL (18Cr-8Ni-O.035 Maximum Carbon, Type 304U [Note (1)]

FIG. J-jA-4CHART FOR DETERMININGSHELLTHIC/(NESSOFGOMPONENTSUNDER EXTERNAL PRESSUREVVHEN CONSTRUCTED OF AU5TENITIC STEEL (l8Cr-8Ni-Mo-O.035 Maximum Carbon, Types 316L<and 317L)

. (Note (In

I I '.' , . .' . .'. J 1"",111~GENE8ALNOTE:SeeTableHA·4 for :abular values. up to ioo F

, --l-t- II

..... "J,..:

~3od)I ~, 1.--',.....:' ;.,...- ..- 1·1I :./

~ :.-- 400 ·F

! I,..,;"" ~...... .,..:--- ~ool F

1-i i--' .j;."'" 'J''' ~p-c- I -I II II V ...... i--"' ..... kl.--I-- ~:.--I--~OO F-...... L/ :--

II .... IV! ....... I-"'" .... 1.0""

.... ,) '.' ....1/ I,..- ...,...

.' '(If 1..-1--10-

I [t~b'"E •. 28.0 106 l'--~~e "26.4

106_

e • 24.5 106_

r-, ~:e." 23.1105_

I

I '11 1& I2 3 4 5 67 89 2 3 4 567 B9 2 3 4 56 789 2 '3 5 6 789

20.000

18.000

16.000

14.000

12.000

10.000

9000

8.000ell

7,000 a:

6,000i2u<l:u..

5.000

4.000

3,500

3,000

2,500

2.000

.1.01.001

FACTOR A

oo1סס.0001.

0'

Cl

~)

oooo()

o()

()

()

()

()

()

()

()

Page 106: PIPING DESIGN-PART-I.PDF

I

ASME 831.3-2004 302.3.1/-302.3.5

Table 302.3.30 Acceptance Levels for Castings

AcceptableDiscontin·

uitles

AcceptanceLevel

(or Class)Material Examined Applicable

thickness, T StandardFactor,

fc

Table 302.3.3C Increased CastingQuality Factors, Ec

Supplementary ExaminationIn Accordance With Note(s)

Ci

()

. GENERAL NOTE: TItles of standards referenced in this Table's Notesare as follows:

ASTM E 114, Practice for Ultrasonic Pulse.Echo Straight·BeamTesting by the Contact Method

ASTM E 125, Reference Photographs for Magnetic Particle Indica­tions on Ferrous Castings

ASTM E 142, Method for Controlling Quality of RadiographicTesting.

ASTM E 165, Practice for Liquid Penetrant Inspection MethodASTM E 709, Practict:! for Magnetic Particle ExaminationASME B46.1, Surface Texture (:lurfate Roughness, Waviness and

Lay)MSS SP'53, Quality Standard for Steel Castings for Valves,

Flanges and FIttings and Other Piping Components-Magnetic Part I·de Examination Method

NOTES:(1) Machine all surfaces to a finish of6.3 J.Lm R.(250J.Lin. R. perASME

B46.1), thus increasing the effectiveness of surface examination.(2) (a) Examine all surfaces of each casting (magnetic material

only) by the magnetic particle method in accordance with ASTME 709. Judge acceptability in accordance with MSS SP'53, usingreference photos In ASTM E 125.

(b) Examine all surfaces ofeach casting by the liqUid penetrantmethod, in accordance withASTM E 165. Judge acceptability offlaws and weld repairs In accordance with Jable 1 of MSS SP'53,using ASTM E 125 as a reference for surface flaws.

(3) (a) Fully examine each casting ultrasonically in accordancewith ASTM E114, accepting a casting only Ifthere is no evidenceoJ depth of defects in excess of 5"(0 of wall thickness.

(b) fully radiograph each casting in accordance with ASTM E142. Judge In accordance with the stated acceptance levels inTable 302.3.30.

II,

{')-

-Codes A, Ba, Bb

Codes A and B

Categories A, B, C

Shown in referenceradiographs

Categories A, B, C

Types A, 0, C

Types A, B, C

2

2

2

2

2

ASTM E 155

ASTM E 310

ASTM E 272

ASTME 280

ASTM E 186

ASTM E 4116

ASTM E 446

SteelT>114rnm,:=; 305 mm(12 in.)

Copper, Ni-Cu

Bronze

Aluminum &

magnesium

SteelT$ 25 mm(1 in.)

SteelT> 25 mm,S 51 mm(2 in.)

Steel ,T> 51 mm,$114 mm(4 1h in.)

GENERAL NOTE: TItles of ASTM standards referenced' in this Tableare as follows:ASTM

.E 155 Reference Radiographs for Inspection of Aluminum andMagnesium Castings .

E186 Reference Radiographs for Heavy·Walled [2 to 4.Jh-in. (51to 114·mm)] Steel Castings

E 272 Reference Radiographs for High·Strength Copper·Baseand Nickel'c:opper Castings

E 280 Reference Radiographs for HeaVY-Walled [4-~ to 12-in.(114 to 305'mm)] Stee(Castings

E310 Reference Radiographs' for TIn Bronze CastingsE 446 Reference Radiographs for Steel Castings Up to 2 in. (51

mm)ln Thickness

0.8S0.850.950.901.001.00

(l)(2)(a) or (2)(b)(3)(a) or (3)(b)(1) and (2)(a) or (2)(b)(1) and (3)(a) or (3)(b)(2)(a) or (2)(b) and (3)(a) or (3)(b)

C

(J

()

()

()

()

C)

Ci

('

(,

()

()

o(04)oooQ

()

()

o()

D

if additional examination is performed beyond thatrequired by the product specification.

302.3.5 Llmlts of Calculated Stresses Due to Sus­tained Loads and Displacement Strains

(a) Internal PressureStresses. Stresses due to in~ernal

pressure shall be cOnsjdere(lsafe when the wall thic~­

ness of the piping component, iIlcludi.ng any Jeinforce­ment, meets the reqUiremenl:$of para. 304.

(b) ExternalPressure Stresses. Stresses due to externalpressure shaUb~ COnsidered safe when the wall thick­ness of the piping component, and its me<UlS of stiffen­ing, meetthereq~J;X\entsofpara. ~04.

(c) Longitu~iI'ltl15tresses51.' Th~sumof the'longitudi­nalstresses Sf. in anycomponeritinapipingsystem,due to. sustained loacis such as pJ:csS\.1rc and weight,

14

shall not exceed the product ShW; Sh and Ware definedin (d) and (e)below. The weld joint strength reductionfactor, W, maybe takenas 1.0 for longitudinal welds.Thethi<:kness of pi~ used in calculating SI. shall-be thenontinal thi<:~ess, T,mjnus mechanical, corrosion, anderosion. allqwllJ\ce, c, for the location. under co~ider­

ation. The loads due to weight should b~ based on thenominal thickness of all system components unlessotherwise Justifjed in a mpre rigorqus analysis.

(d)Allowable Displacement Stress Range SA' The com­puteddisplaceInent stress range SEin a piping system(see .p~a.31~.4.4) sh~ll not exceed the allowable dis­place~entstressrange S.... (see parlls.319.2.3 and 319.3.4)calculilted byEq. (1a):

(In)

I

Page 107: PIPING DESIGN-PART-I.PDF

0.90

0.80

0.85

1.00

0.90

factor,[/

0.95

0.60INote (1))

0.85[Note (l)J

Additionally 100%radiographed perpara. 344.5.1 andTable 341.3.2

As required bylisted specification

As required bylisted specification

Additionally spotradiographed perpara. 341.5.1'

Additionally spotradiographed perpara. 341.5.1

As required byspecification

As required bylisted specificationor this Code

As. required bylisted specificationot this Code

Straight orspiral

Straight

Straight orspiral

Straight or spiralI [except as

provided in (I(a)below]

Straight With oneor two seams

Spirill

15

Submerged .'HC weld(SAW)

Gas metal arc weld(GMAW)

, Combined GMAW,SAW

Type ofType of lolnt Seam Examination

Additionally 100% 1.00radiographed perpara. 344.5.1 andTable 3/11.3.2

Table 302.3.4 Longitudinal Weld Joint Quality Factor, EJ

Electric resistanceweld

(a) Single butt weld

ASME 831.3·2004

Electric fusion weld

(b) Double butt weld

(a) API 5L

furnace butt weld,continuous weld

(with or without filler. metal)

(With or without fillermetal)

4 Per specific specification

2

3

No.

NOTE:(1) It is not permltted.to Increase theloint qualityJilctor b{additional examination for joint 10r 2. I

obfo

~!

'l()

P,

~[)

Page 108: PIPING DESIGN-PART-I.PDF

(

( ,

(,

(

C,

c

C(04)

()

ASME 831.3-2004

1.2

1.1

1.0

0.9

0.8

0.7....

0.6

0.5

0.4

0.3

0.2

0.1

,

"-~

i'.. t'"

~ r-...............

I""

106

N(cycles)

••••• Ferrous materials, specified minimum tensile strength :::;;517 MPa (15 ksi),and at design metal temperatures :S371·C (700·F)

-- All other materials

Fig.302.3.5 Stress Range Reduction Factor,.,

302.3.5I

:~

I~j

I

I

~;(.7-'~1';';",;'/

I

I

N()

()

()

oooo

()

Q

()

o()

()

()

oV

When Sh is greater~an Sf." the 'difference betWeenthem may be added to the term O.25Sh in Eg. (1'1). Intha tease, the allowable stress range is· calculated byEg. (lb):

(lb)

For Eqs. (la) and (lb):f = stress range fador,3 calculated byEq; (lc)4. In

Equations (la) and (lb), Sc and Sh shall be lim- .ited toa maximum of 138 MP<i (20 ksi) whenusing a value ofI> 1.0.

f (see Fig. 302.3.5) = 6.0(1'1)-0.2 ~fm (Ie)

1m = maximum value of stress range {<ictor; 1.2 forferrous materialS with specified m.ini.murn ten­sile strengths ::;; 517 MPa (75ksi) and at metaltemperatures ::;; 371°C .(700°F); otheIwise 1m =1.0

3 Applies to essentially noneorrcided piping. Corrosion cansharply decrease cyclic life; therefore, corrosion resistant materials'should be consic;lered where a large nurnberof major stress cyclesis i1nticipated.

4 The nUniInurnvalue for/is 0.15, which results in an allowabledisplacement stress range 5... for an indefinitely large number ofcycles.

16

equivalent number of full displacement cyclesduring the expected s.ervice We of the pipingsystemS . ..... ..basic allowa1;llestress6 at minimum metal tem­perature expected during the displacementcycle under analysisbasic <iUowable stress6 at maximum metal tem­perature expected during the displacementcycle under analysis

When the computed stress range varies, whether fromthermal expansion or other conditions, SE is defined asthe greatest computed displacement stress range.• TIlevalue of N in such cases can be calculated by Eq. (1d):

whereNE - number of cycles of maximum computed dis­

placement stress range, SfN j = numbel' ofcyd.es associated With displacement

stress rMge Sj

5 The designer is cautioned tha~ the fatigue life of materialsoperated at elevated temperature maY,be reduced.

6 For Cll,$tings, the basic al,lO\Vllble stress shall bemultipliecl bythe applicablecasting 'luality factor E.c• For longitudinal welds, theqasic allowable stress need not be multiplied by the wele! qualityfactor Ej'

I

Page 109: PIPING DESIGN-PART-I.PDF

:;; 0.5 1.00.5 < (T,.. e) <0.88 2{T - e)

~O.88 [2{T - e)t3J + 1.17

304.2.4 Curved and Mitered Segments of Pipe UnderExternal Pressure. The wall thickness of curved andmitered segments of pipe subjected to external pressuremay be detenninedas specified for straight pipe in para.304.1.3.

304.3 Branch Connections

304.3.1 General(a) Except as provided in (b) below, the requirements

in paras. 304.3.2 through 304.3.4 are applicable to branchconnections made in accordance with the followingmethods:

(1) fittings (tees, extruded outlets, branch outlet fit­tings per MSS SP-97, laterals, crosses)

(2) unlisted cast or forged branch· connection fit­tings .(see para. 300.2), and couplings not over DN 8Q(NPS3),al;tached to the run pipe by welding

(3) welding the branch pipe directly to the run pipe,with or withoutaddedreinforcement, as covered in para.328.5.4

(b) The rules in paras. 304.3.2 through 304.3.4 are min­imwn requirements, valid only for branch connectionsin which (using the nomenclature ofFig. 304.3.3):

m the runpipe diameter-to-thickness ratio (Dh/Th) ,is less than 100 and the branch-to-run diameter ratio(Db/.Dh) is not greater than 1.0

(2)' for run pipe with (DhfI'h) ~ 100,the branch diam- i

eter Db is less than one-half the run diameter Dh;(3) angle f3 is' at least 45 qeg(4) the axis of the branch intersects the axis of

the run(c) Where the provisions of (a)and (b) above are not

met, pressure. designsh;lU be qualified· as required bypara.. 304.7.2.'. (d) Other designconsideratkmsrelating to branchconnections are stated in para. 304.3.5.

.. ', :, ,;" ;:, .', .,, 304.3.2 Strength of Branch (pnl1ectIQns. Apipe hav­

ing, a branch cOnnection is weakened by the openingthat must be IIladein it and, unless the w:all thicknessof tllepipe,is~ufficientlyjnex~~ss oft~iltr~'I~ired tosustaint~epressllr~,it Jsne5e~Saryto prqvide ;ldded'reihforce~ent:Th~amountofreinf()rcementre'luired toslls,tain ,th~pressureshaUbe det~rmine,ci in accqrdancewith para. 304.3.3 or 304.3.4. There al'e, however, certain'

(

()

(:

(.,

n(i

c'()

C

c'oo()

()

oooooooQ

oC

t)

()

o{)

o

ASME 631.3·2004

(T- e), mm

:;; 1313 <(T - e) <22

~22

(2) for U.S. customary units:

(T - e), in.

A

252{T - e)

[2{T - e)t3J +30

A

20

304.2.3-304.3.3

branch connections which have adequate pressurestrength or reinforcement as constructed. It may beassumed without calculation that a branch connectionhas adequate strength to sustain the internal and exter­nal pressure which will be applied to it if:

(a) the branch connection utilizes a listed fitting inaccordance with para. 303; .

(b) the branch connection is made by welding athreaded or socket welding coupling or half couplingdirectly to the run in accordance with para. 328.5.4, pro­vided the size of the branch does not exceed DN 50(NPS 2) nor one-fourth the nominal size of the nul. Theminimum wall thickness of the coupling anywhere inthe reinforcement zone (if threads are in the zone, wallthiCkness is measured from root of thread to minimumoutside diameter) shall be not less than that of theunthreaded branch pipe. In no case shall a coupling orhalf· coupling have a rating less than Class 2000 perASME B16.11.

(c) the branch connection utilizes an unlisted branchconnection fitting (see para. 3QO.2), provided the fittingis made from materials listed in Table A-I and providedthat the branch connection is qualified as required bypara~ 304.7.2.

304.3.3 Reinforcement of Welded Branch Connec­tions. Added reinforcement is required to meet the crite­na in paras. 304.3.3(b) and (c) when it is not inherentin the components of the branch connection. Sampleproblems illustrating the calculations for branch rein­forcement are shown in AppendixH.

(a) Nomenclature. The nomenclature below is used inthe pressure design ofbranch connections. It is illus­trated in Fig. 304.3.3, which does not indicate details forconstruction or welding. Some of the terms defined in 'Appendix J are subject to further definitions or varia­tions, as follows:

b = subscript referring tobnlnchd1 = effective length removed from pipe atbranch.

For branch intersections where the branchopening 4;a projection of the branch pipe insidediameter (e.g., pipe-~o-pipe fabricated branch),d1 =[D~- 2(Tb- C )ysin f3 '

d2 = "half widtp." of reinforcement zone= dl or(Tb - c) +(Th'" ,c) + dd2, whiChever is

greater, but in any case not more than Dhh = subscript referring to run or header

L4 height of reinforcement zone outside of runpipe

= 2.5(T".,. c)or2.5(Tb - c) + Tr, Whichever. is lessTb = bran.ch pipethic\<hess (measllred orIriinirnum

per purchase. specification) except for branchcOnn~ction fittings (see .para.3QO.2)..For.suchcOIUlectio~theY~peofTbforuse in calculatingL4, d2l •a.nd A3,is the.thicknessofthe reinfor<:ingbarrel (minimumperJ,urchascspecificiltion)providecithat the ,barrel thickness i~ tlniform

~(04) I

Ii'?1.j

tI

I

Page 110: PIPING DESIGN-PART-I.PDF

e~ e e.c~ Q---t:J-(;'-C~.,o {'j'-..-,./

r-,"'I.J

,......., /"""I'-) \ __J

r""l. [),j~- o ~

"~ - j() ,.--.,

/ """" ,j'-/'. ') .--,.~/

') --.,, l '1\-.--/

~

'1,,,-,'

'--,

N......

Db

L.~~! { ~.. . - :/" dl I I . ~ . Run pipe • ,{

1 d2 I, d 2 -

kI 'fJ

--'----~t Pipe -.-------f-1~-------.----------GENERAL NOTE: This Figure illustrates the nomenclature of para. 304.3_3. It does not indicate complete welding details or a preferred method'of construction. For typical weld details. see Fig. 328.5.40,

Fig. 304.3.3·. Branch·Connection Nomenclature

:>V1:s:"'C::Jw...WNoo

""

Page 111: PIPING DESIGN-PART-I.PDF

ASME 831.3·2004 . 304.3.3-30/1.3.4

I

dimensions may be used if the welder has been specifi­cally instructed to make the welds to those dimensions.

(d). Reinforcement· Zone. The reinforcement zone is aparallelogram whose length extends a distance of elzoneach side ofthe centerline of the branch pipe and whosewidth starts at the inside surface of the run pipl~ (in itscorroded condition) and extends beyond the outsidesurface of the run pipe a perpendicular distance L4•

(e) Multiple Branches. When two or more branch con­nectionsare so closely spaced that their reinforcementzones overlap, the distance between Centers of the open­ings should be at least11~ times their average diameter,and the area of reinforcement between any two openingsshall be not less than 50% of the total that both require.Each opening shall have adequate reinforcement inaccordance with paras. 304.3.3(b) and, (c). No part of themetal cross section may apply to more than one openingor be evaluated more than once in any combined area.(Consult PFI Standard ES-7 for detailed recommenda­tions on spacing of welded nozzles.)

if) A4ded Reinforcement(l) Reinforcement added in the form of a ring or

s<iddle as part ofarea A 4 shall be of reasonably constantwidth.

(2) Material used for reinforcement may differ from'that of the run pipe prOVided it iscompatible :with runandbranch pipeswith respect to weldability,heat treat­ment requirements, galVanic corrosion, thermal expan-sion, etc. .

(3J!f the allowable stress for the reinforcementmaterial is less than that for the run pipe, its calculatedarea must be reduced in the ratio of allowable stressvalues in determining its contribution to area A4-

(4) Nq additiona.l credit maybe taken for a materialhaving higher allowable stress value than the ron pipe.

304.3..4 .R~ir1forcement (If Extruded Outlet Headers(a) The principles of reinforcement stated in.para.

304.3.3 areessentiallyapplicableJo extrucl.ed outletheaciers. An ~xtruded outlet header is· a length of pipoin which one or more outlets for branch corm.ection havobeen formed by extrusion, using a die ordics to controlthe radii of theextrtlSion.·The extruded outlet projects

.above the s\.lrf<\ceof the header a .distance hxat leasteqtJ.a.l to the external radius of the outlet rx (Le.,hx~ rxl·

(b) The rules in para. 304.3.4 areminimUlllreq1.1ire­ments, valid onlywithin the limitspf ge()1l1etry shoWl1lin Fig. 304.3.4, and 0I1lY where the axis of the outletintersectsandis perpeI\dicular to the axis of the header.Where these reqtJ.ireIl)entsar~ not met, ()r wherenoninte~gral material.such as a rlng, pad, or saddle has been

. added to the put1et, pres~ure design shall be qualified.as required by pa,ni. 304.7~2.

(c). Nom~nclature. Th~nomenclature used herein istlIustrated .inFig. 304.3.4. Note the use ofsubscript x$lgnifyi,ngext11lcied.Refer tapara. 304.3.3(a) for nomen­c1atqrenot listed here.

(7)

(6)

(8)

(6a)

(2) Area A3 is the area resulting froin excess thick­ness in the branch pipe wall:

These areas are all within the reinforcement zone andare further defined below. .

(1) Area A2 is the area resulting from excess thick-.ness in the nm pipe wall:

22

(see Fig. K328.5.4) and extends· at least to theL4 limit (see Fig. 304.3.3).

1',. minimum thickness of reinforcing ring or sad­dle made from pipe (use nominal thickness ifmade from plate)

= 0, if there is no reinforcing ring or saddle= pressure design thickness of pipe, according

to the appropriate wall thickness equatiqn orprocedure in para. 304.1. For welded pipe,when the branch does not intersect the longitu­dinal weld of the run, the basic allowable stressS for the pipe may be used in determining th forthe purpose of reinforcement ca.lculation only.When the branch does intersect the longitudi­nal weld of the run, the product SEW (o(thestress value S and the appropriate weld jointquality factor Ej from Table A-IB), and the weldjointstrength reduction factor, W (see para.302.3.5) for the run pipe shall be used in thecalculation. The product SEW of the branchshall be used in calculating tb.

f3 = smaller aI)gle between axes of branch and nm

(b) Required Reinforcement Area. The reinforcementarea Al required fora branch connection under internalpressure is

If the allowable stress for the branch pipe \}Tall is less. than that for the run pipe, its calc1.dated area must be

reduced in the ratio of allowable stress values of thebranch to the run in determining its· contributions. toarea A3.

(3)A~a Ads the area Of other metal pl'ovidedbywelds and properly attached<reinforcemeI)t, [~e para.304.3.3(f).JWeldareasshall be ba~ed on .the minhnuindbnensionsspedfied in para. 328.5.4r except tbnt larger

For a branch connection under external- pressure, area. Al is one-half the area calculated by Eq. (6), using as th

the thickness required for external presstJ.re.(c) Available Area. The area available for reinforcement

is defined as .

,,0

o

o

Page 112: PIPING DESIGN-PART-I.PDF

I( ,

(

Is \ ASME 831.3';2004

()

nL(,

APPENDIX HSAMPLE CALCULATIONS FOR BRANCH

REINFORCEMENT

The reinforcement area in run wall

H301 EXAMPLE 1 A2 = 4.286' (0.282 - 0.08 - 0.10) = 0.437 sq in.

H300 INTRODUCTION of fillet weld = 0.16M).707 = 0.235 in.

The following examples are intended to illustrate the Thus, the required areaapplication of the rules and definitions in para. 304.3.3for welded branch connections. (No metric equivalents AI = 0.080 (4.286) (2 - sin 90 deg) = 0.343 sq in.are given.)

Leg dimensions of welds

A3 = 2(0.268) [(0.207 - 0.042) - 0.10] = 0.035 sq in.

H302 EXAMPLE 2

This is more than 0.343 sq in. ,so that no additionalreinforcement is required to sustain the int ernalpressure.

A 4 = 2(~) (0.235)2= 0.055 sq in.

, The total'reinforcement area = 0.527 sq in.

in branch welds

There is an NPS 8 branch at right angles to amNPS12 header (Fig. H301). Both run and branch are,of aJumi­nt1.Q1alloy Sc1)edule 80 ASTM B 2416061-T6 seamlesspipe. The connection is reinforced by a ring 14in. O.D.(measurecj alorig the run) cut froma piece of NIPS 12Schedule 80 ASTM B 2416063-T6 seamless pipe andopened slightly to fit over the run pipe. AJlolWilblcstresses for, welded construction, apply' in accorclJancewithAppendix A; Note (33). The fillet weldshave theminimum dimensions permitted in para. 328.5:4. A zerocorrosion allowance is specified. What is themaxirnumperrnissible design pressure if the design temperi3tureis -3209F?

Solution

From Table A-I, $ = 8.0 ksi for Grade 606:D-T6(welded) pipe and S = 5.7 ksi for Grade 606Bl-T6(welc:led)paq, both at -320°F. From Table A-IB, IE1.00 for ASTMB 241.

in branch wall

243

An NPS 8 run (header) in an oil piping system hasanNPS 4 branch at right angles (see Fig. H301). Bothpipes are Schedule 40 API 5L Grade A seamless. Thedesign conditions are 300 psig at 400°F. The fillet weldsat the crotchare minimum size in accordance withpara.328.5.4. A corrosion allowance of 0.10 in. is specified. Isadditional reinforcement necessary?

Use d1 or d2t whichever is· greater.

dj = 4.286 in.

',300 (8.625) ,. ,', , , O't" = 2(16,000) (1.00) +2(0,4) (300) = 0;08 , m~

300 (4.500) ,',', '.' '.tb :: 2(16,000) (1.00)+ 2(0.4)(300)= 0.042 m.

tc =0.7(0.237) =0.166 in;, or 0.25, whichever is less, =, 0.166 in~

Minimum leg dimension

SolutionFrom Appendix A, S = 16.0 ksifor API 5L Grade A

- (Table A-I); E = 1.00 for API 5L seamless (Table A-IB).

Th = 0.322 (0.875) = 0.282 in;

Tb = 0.237 (0.875) =0.207 in.

L4 = 2.5 (0.282- 0.1) = 0.455 in.or 2.5 (0~207 - 0.1) + 0 = 0.268 in.,whichever is less

= 0.268 in.'

dl =:: [4.5 - 2 (0.207 - 0.1 )J!sin 90 deg = 4.286 t~.

d2 = (0.207 -: 0.1) + (0.282 - 0.1)

+4.28612 =,2.432 in.

'''~ ..,., "" .."."~,, .. '"'''~'''''V_'''''''V''''''''''' , , ,.,.;. ", ...•.

Page 113: PIPING DESIGN-PART-I.PDF

,r'

ASME 631.3-2004 APPENDIX H

:~

(\

c:()

r '·'·I,,'-, .

H3G1 Example 1

C = 0.10 In. 1---_- 4.286 in.-~-~~--.'---

0.237 In. nom.0.207ln. min.

Reinforcementzone

()

0.500 in. nom.

1---- 7.749 In. ----10\0----

0.500 In. nom.0,438 i(1. min.

C-O.OOin.

H303 Exam~le 3

H302 Example 2

'0

oo

o

o()

()

c)c:

\~

lIlustratlonsfor Examples In Appendl,xH

--:lr--O.~88 in.

......:'r'~------+~-----."I"ii:r 0.23? in. nom.

0.207 In. min.

Flg~H301

C .. 0.189 in.

O.32~ In. nOm.0.282 in. min.

H304Exampie ..

0.0935 In.

±..~~~~~.

"- .:.,.- 4.387 in. -..,.,....~......-,--..,.,....-

o();

oooOJ

oQ

o

ootilo

244

J

Page 114: PIPING DESIGN-PART-I.PDF

APPENDIX H

in fillet welds

The reinforcement area in nul wall

in ring

ASME 831.3-2004

98.80q = 8.638 - 124.73q

223.53q = 8.638

q ::;: 0.0386

SolutionFrom Appendix At S = 14.4ksi for API 5L Gracle A

andASlM A285 Grade C (Table A·l); E = 1.00 for APr5L seamless (Table A-IB).

Th = 0.500 (0.875) = 0.438 in.

Tb = 0.280 (0.875) = 0.245 in.

q = 16,000 + 0.8PP

0.961P = -618.3

p= 0.0386 (16,000 + 0.8P) = 618.3 + O.0309P

P = 643.1 psig

which is the maximum permissible design pressure.

Tr = 0.500 in.

L. = 2.5 (0.245 - 0.10) + 0.500 = 0.8625

This is greater than 2.5 (0.438 -0.10) = 0.845 in.

t _ . 500(16).... _., .h - 2(14,400) (1.00) + 2(0.4) (500) - 0.274 m.

t _ 5{)() (6.625) _ .b - 2(14,400Hl.l)()) + 2(0.4) (5{)()) - 0.113 m.

d2 =dt =6.625~~(~:; 0.10)= ~::~ = 7~315 in.

Thereq~darea

A I = (0.274) (7.315) (2 - 0.866) = 2.27 sq in.

H303 EXAMPLE 3

An NPS 6 Schedule 40 branch has its axis at a 60 degangle to the axis of an NPS 16 Schedule 40 run (header)in an oil piping system (Fig. H301). Both pipes are API5L Grade A seamless. The connection is reinforced witha ring 12 in. 0.0. (measured. along the nm) made from~ in. ASlM A 285 Grade C plate. All fillet welds ateequivalent to 45 deg fillet welds with %in. legs. Corro­sion allowance = 0.10 in. The design pressure is 500psig at 700°F. Is the design. adequate for the internalpressure?

But also

Thus

th = 2(8000) (1.00) + 2(0.4) (p)

8.625P

The required area

we can briefly write

th = 12.75q andtb = 8.625q

Pq = ~~--z-;:-;::

16,000 + 0.8P

te 0.250 0 354 .0.707 = [707 = .m.

0.5 (0.687) _ 0486 .0.707 -. In.

Th = 0.687 (0.875)= 0.601 in.

A2 = 7.749(0.601 - 12.75q - 0.00)

in branch wall

A3 = 2(1.503) (0.438 -8.625q - 0.(0)

A. = 0.601 (14 - 8.625) (57000000) ~ 2.302

At = 7.749th = 98.80q

= 1.317 ... is.93q

Tb =0.500 (0.875) = 0.438 in.

= 4.657 - 98.80q

Tr = 0,687 (0.875) = 0.601 in.

L. = 2.5 (0.601 - 0.00) = 1.503 in.

[This is smaller than 2.5 (0.438 - 0.00) + 0.601 = 1.695 in.]

d2 = d t = 8.625 - 2(0.438 - 0.(0) = 7.749 in.

12.75P

A. =2(Y~ (0.354)2+ 2(YJ(0.486)2 = 0.362

'l'lletotaJ.reinfo~menfarea =$.638 - 124.73q

At t1)ernllJdJriUnlpermissiblenonn~operatingpres·.sure,th.e required area and the .reinforcenwnt area areequal; thUS:

\' ()o

10

1,'9oooQ

o

~.".

Y'I ',I

~c

()

IeC)

1("If)c\

I'<Y

I·f )()

Ie,'(

l~

~~

\(1C)

1(>(~i

n

\~:o()

245

Page 115: PIPING DESIGN-PART-I.PDF

ASME 831.3·2004 APPENDIX H

() The reinforcement area in run wall

C; A2 = 7.315 (0.438 - 0.274 - 0.10) = 0.468 sq in.

n in branch wall

C) A3 = 2(~::) (0.245 - 0.113 - 0.10) = 0.062 sqin.

reinforcement area; therefore, the connection must befurther reinforced. Try a 6J~ in. O.D. reinforcing ring(measured' along the run). Assume the ring to be cutfrom a piece of NPS 8 Schedule 40 API 5L Grade Aseamless pipe and welded to the connection with mini­mum size fillet welds.

Minimum ring thickness

Solution

.I

]

J

(:~...... ,l

.... ~ '"

]!.<..~

J1"""-r. _:"f

j.f.

Use 0.234 in.Reinforcement area in the ring (considering only the

thickness within L4)

Solutl9"

A. == Xl + X2 = 0.462 sq in.

Reinforcement area in fillet welds

Total reinforcement area

Xl == 0.234 (6.25 - 4.5) = 0.410 sq in.

.. 0.5(0.322).Leg dunenslOn of weld == '0.707 == 0.228 m.

Tr == 0.322(0.875) == 0.282 in.

New L. == 2.5(0.0488) + 0.282 = 0.404 in.,

or2.5(0.Q935) = 0.234 in.

This total reinforcement area is greater than therequired area; therefore, a reinforcing ring 6~ in.·O.D.,cut from a piece of NPS8 .Schedule 40 API 5L GradeA seamless pipe and welded to the connection withminimurnsizefillet welds would provide adequate rein­forcement for this connection.

j'

No. Accordin!Sto para.3Q4.3.2(b) the design is ade-qllate t?s.ustain theintemalpressw:e and n()cakwationsare necessary; ItisPresumed,of course, thatcalcuIationshave shownthe 11J.ilF'ipe t() be sa.tisfactoryfor the servicecondition$according to Egs. (2) and (3).

H30S EXAMPLES (Not Illustrated) .

An NPS 1~ 3000 lb forged steel socket weldingcou­'plinghas been welded at right angles to an NPS8Sched­ule40 run (header)in oil service, using a weldconionning to sketCh (1) of Fig. 328.5AD, The run isASTM A 53 Grade BseamlesspipE!' The design pressureis400 psi and the design temperatUre is 450°F. The corro­sion allowance is 0.10 in. Is additional reinforcementrequired?

2.46

or2.5(0.0488) = 0,122 in.

I .... .., .•.... '. <.';Required reinforcement area

At '= O;Q935(4'4()2)= 0.412 sq in.

Try fillet weldS only.

L. = 2.5(0.0935) ::: 0;234 in.,

H304 EXAMPLE 4

The tota\ re~orcement area == 2.986 sq in.

lhis total is greater than 2.27 sq in., so that noaddi­tional reinforcement is required.

A. = 0.500 (12 .,. ~::~). == 2.175 sq in.

in fillet welds

in ring

o

From Appendix A, S == 1(l.0 ksi for Al'I SL Grade A(Table A-I); E ==J.oo forAfI 5Lseamless{TabJe A-IB).

()359 (8.625) . ".o th = 2(16,()()()(tOO)+ 2(0.4) (350) == 0.0935 m.

350 (4.500) .• .t~= 2(16,000)(1.00)+2(0.4) (350)= 0.0488 m.

d1.=4:SOO-2(0.Q4&8) = 4.402 in.

An NPS 8 nul (header) in an oil piping system has

o :~e~~~t~~E~tG:~:slF~~~~~'~e~~~f;c conditions are 350 psig at 400°P, It is assumed that the~) piping system is to rem~inin service until all metal() thickness, inboth.branchand r\ln, in.excess of that

required by Eq.• (3a);of para.. 304.1.2 has corroded away

0.' so. that area Az as defined in. para. 304.3:3(c)(1) is zero.

:What reinforcementiS required for this connection?

c)C~

.0

()

c·()

()

oc

Page 116: PIPING DESIGN-PART-I.PDF

( ,\' .!

( )

( .

('

(I

(

( I

( \

( )

{

( )

(:

(

L

U

()

u

cc'()

Annexure C

Diagrams, -Tables of Steel Metallurgy

Page 117: PIPING DESIGN-PART-I.PDF

c'(

C)

(;

('I

o

()

(l

()

('1

Cl

c'oooo

(AI

IBI IRONl",)CHROMIUMTUNGSTENMOLYBDENUM

IRON IYICOPPERALUMINIUM

. LEADGOLD

ZINCCADMIUMMAGNESIUMBERYLLIUM

oo

oooo

o4)

Fig.j ..-The principal types of lattice structlJreoccurring in metals.(A) indicates the positions of the centres of atoms only, in the simplest unit of the

structure; whilst (B) shows how these units occur in a continuous crystal structureviewed in 'plan'. (In ea,ch case the letters A, B, C, etc. ipdicate the appropriate atomsin both dia$rams.) Although the atoms here are shOWn black or white, to indicatein which layer they are situated, they are, ofcourse, aU of the same type.

...

Page 118: PIPING DESIGN-PART-I.PDF

Fig, ·:2..:-Th~ .two maio.types of solid solution:(i) a substitutional solid solution,

(ii) an interStitial solid solution. .

Fig.,3.1 -'-The iron-carbon equilibrium diai:ram.The small do.ts ill the diagrams representing. structures cDntaininl::austenite d? not

represent ~isi9le particlesofcementite__they are m~anttoshowthe actual.concentra_tionor carbon dissolved in the austenite, alld in the real structure they.would be in~isibJe.

()

()

o()

C.J

ooooooooo(J

ooooooo

oQ

()

o

(i) SUBSTI TUTIONAL

160j'"

0<0

(ii) INTERSTITIAL

b ALL LIQUID,I b.__!;

I ,'-~- _I f

AUSTENITEI +

LIQUID

Page 119: PIPING DESIGN-PART-I.PDF

r­.L,

i.:J.. ..0

'I..,,,:/

'60

Liquid

•1147 C

'50

.C4stiron

'40

Austenite. Cementite

2.06 '/.C

'~

IIII

IIIIII;III

t;:r}4

Pearlite + Cementite

Figure 3-1: Fe-Fe3C Phase piagram

-------'-~------------'/.IIr-'"'-~

'20

Hy~::r

EutectbidSteel

• i,·

Steel

..... ••.... I

iHypo ......•. ::EtJt~ctoid .:: Sleel IIIC'

l~:-

: Feuife·_' . -• '. .... I '0

. .....:t '.; ""... .' ' '; ~

2... 1~;I-p.~.•. -.. -.~I:,I.~;-t.. ~-.·..·.---. __!l{J.•_._ .._-7_.-...•.-.~-. ------.--.. -.--. --. -''-'.:~---.-. -----.. a.-6 .' , .' I ••...• r . -' '. I '. . .. ! I· ~.. I' "

Q.CXJ25'I.C .1 '2 . '3 '4 :V) '6 I

70'\t rJa·

iI,I

iu• 910:

.t!.J'-:J-~76Bt-'r-·~

" /a. I A1 723 CE 723: r--~~--------=--------'---->1:....J.......------'~-_:41./ O.l8'/.C rJ- /. "'.. II ap25'/~C

I .\Fe rrite:!

(:

(

()--'

{~

CJ

(J

9C:

oQ

t~

C

o: ,)

oQ

I .

cDo

()

c-(

(,

cc

,.I.

Page 120: PIPING DESIGN-PART-I.PDF

1,51.00.5

1250 -

Te-rrc~·lurl!

·r ·c2000-

1100

" CarbOl',l :NI, XtFigure.', Iron-carbon equilibrium diagram showing temperatureregions for various heat-treatment operations

(.

,.'(

If)

Q

()

.(~,f

ooo(IQ

{)

ooo~

()

wc:::>t­o«a:w...::wt-

TIME

M-MARTENSITE. 'HARD~ BRlnLEB.£iAINITE. STRONGER THAN PEAnUTE

F .. p. FERRITE AND rEARL/TE

AUSTENI.TEWlTH OISSOLVEOCARBON

TEMP:ER (SOFTER, MORE DUCTILEI.' .. r-··-.... ----.

TEMPER (MOOERATE STRENGTHI,---"'\ \

TEMPER !HIGHER STRENGTHI

\ \\ \

SNAP' ...•. , ... ,'.. . \...... .-- '"\ (HIGHEST STRENGTlil

TEMPEF\. \ •...,•. ,., , .\

EFFECT OF TEMPERING

Page 121: PIPING DESIGN-PART-I.PDF

c .(') c: -~ Q ~) 0 6 C (l1li*.. a () ~ (""'., U )1"\ .,.,.." ,,-.. M -"'" .-., (' '~ ;'"' .-:::; /~, ...-". ' i~j~j "=.-/ ~::'-,Y "j *) " , . ~- J

'-

'\

Plate 1 -This series of photomicrographs depicts steels of varying carbon-content, inthe normalised condition. Asthecarbon-content increases, so does the relative pro­portion oLpearlile (dar!;), until with 0'8% carboJ:l the structure is almost entirelypcarlitic. The light areas consist of primary ferrite. The magnification (x 100) is nothigh enough to revc;t1 the laminated nature of the pearlite. In a similar waY,craters on.the surface of the 11100n are not visible unless the laller is viewed through a low-powertelescope.

1.4

REAMERSKNIVESBROACHES

'"'"UlzaI I 2001~ i'

:r

SHEARBLACE:S

COLDCHISELSSOME

HAND TOOLS

I I I 100

AXLESGEARSSHAFTSTYRES

CHAINSTAMPINGSRIVETSWIRENAILSCAR BOOIES

~

·.-£.1 I ~I I \~<0

'"....JII:~Ul...

Fig.. 12. -A diagram showing thc relationship bctween carbon content, mechanicalpropertics, microstructure, and uscs of plain-carbon steels which have been slowlycooled from above their upper critical temperatures.

0.65 % CARBON

0.45 % CARBON

0.15% CARBON

PURE IRON,'" ,::!.?S~~~j~~i". . '. .: .~~.•t'.!:'-~ ',-.

.-'

,,.

.~ :. { .

'~r

/~ ..:~~~.;~ .. /

'-"'-/ - ,

.... :,.

." - :--- -~-~ .-

Page 122: PIPING DESIGN-PART-I.PDF

e c, o e (i.

....

() ot) co r-.-"j c r,

~/~';'cJ

.-.. 1"'\(j \J

~'.,1'-- ./ (~ f"" e:",

--\ . ...!.~ - :~.., ..;..;--.,

..,." -,

"~.

TUEEFFECTOF AI.LOYINC ·EI.E~II·:;,\TS ()X"rnE I'IWI'ERTIES OF STEEI.Sl.Iech~nic~1 propcl1ies Magnellc propcl1Jes

.2 CI

&2:- it J C>

~ E £! ... 0 uAlloying ..

~;; ~ .E fI I:

C c s'i ~CI :.: ., ..

~C ;: 0 g "ii u c g

ele/Tl~nt .c '& ,~ 0 > ...E " - 'li ... ,~

~~'w; :0 .. ~., c. ;; "::, It ~Q ~ '::; go ., ..

" c r ::BCI .. ~ ! '0c C 0> -~;~ U " ... .,

e~

~.. u ..'E- .. " c .. .. -g,-~ '8 ".e 0> l! .~o € ~ ~ "<;.

~.:: 0-.;; u .. " l: (;" >: 52 !

.. .. .. 0 '" u ~.. 0 >. CIL" '" ::: 0 W :.2 u u a: .... ~ Vl a: u x: 0. U c:: ...J

:

, S.licon I I I I II I J i-, I : I i I i I ! !!l I 1 : I 1 - !l it I! -I"..Manganese inpe,lit. steels 1 1 I I - i -- 1 - I - II 1 I - - -Manganese in avstenit. sleels I! r 1 \ I \11 J\ - - - - 11 - - 111 11\ II - - not'magnehc

Chromium -- II 11 II !-1~I~

1 111 11 1 I - III 11 111 1 11-

I-;ic\.elin perli\. steels t I 1 - I II - J1 1 1 I - - 11 11Nickel in austenite sleels II t I 111 11 11\ - III 11 - - III III II - 11 not magnetic

AI~mlnium - - - - I I - - - - - 11 - II lit - If 11Tungsten 1 1 I 1 I - - 111 II 11 111 II II II 1 - 111 III

Vanad;um I 1 J 1 - I - I 1 1 11 IJ 1111 11 \ - .1 I ICoball 1 1 1 \ I ! I 1 - 1\ It - 111 I - I - - 1\ 11\ }l\

Moly.bdenum I 1 1 \ ! I \ - 11 II 111 11 I I II 11 - 1Copper 1 \ \\ - - - - 1 - - - III - - - 1

Sulohur -1- - I 1 I - - -1- - 111 111 - - I.-Phosphorous I II I I ! !!l - - ..:.\- - J 1\ - - - I

1 .. Increase I .. Reduction - e conSlant - • not characteiislic or unlnown Several arrows "more intensive etiect '"

Page 123: PIPING DESIGN-PART-I.PDF

(

(

CO/TlpOsitiohalc1ndproperty link,lgesin lhestainless steel fami Iy of Jlloys

Precipitation­hardeningstainless

steels

Duplexstainless steels

Increase Cr,lower Ni for

higher strength

Add S or Seformachinability

(303~ 303 Se)

/

Add Cu, TI, AI,lower Ni for ~""Iprecipitationhardening

Add Mn and N, lower Ni'for higher strength

No Ni addition,~ ( 201, 20Dlower Cr,

martensitic

~( 4P3, 410, 420· )

tNi-Cr-Fealloys

Add Cr and Nifor strength and

oxidationresistance

Add Ni for corrosionAdd Cr, Mo resistance in high-temperature

""430 environments

~. 309,310,314,330

, 'tNoNi,ferritic

\. Superferriticstainless steels

(347)~

Add Nb+Tato reduce

sensitization

AddTI@ ....l(I-·----to.reciuce---I

sensitization

Add Mo for(304l) ..' pitting resistance

.~. l.9'verC ~ ..•.

(31Gt)>r;~~$~~~n --------t(3171.)

c

CJ

c>

()

Ci

(~

()

()

oo()

Q

u()

oooo()

()

c(

Page 124: PIPING DESIGN-PART-I.PDF

~~~~C·~~~~~C~~~~~~~~0~-~~~L·- 'l--_~ \...:) "'-_/ .,.! 'Z-,../ K!/""-"/ v' '-----...J. _) \_.i 'L-!- U ,J "" \! :J { , ;,' I 1'\ I~~- "~ . / - ...._-_. ~

\ 0 ~"'j ~~ --., '-''', ~ ,..-...,:-.

TIIE.EffECT·· Of···N1CKElOiN·ilHE·.TRANSITI.ONTEm}PE~AiIIRE·llfit~iORMAlIIED:CARBON···STlEElS

- 3-1/2% Nil·- 50/0 Ni- 8-1/2 % Ni-. 130/0 Ni

-20/0 Ni ,_. 0% Ni J

o I I I I I I I I I !

-350 -300 -250 -200 -150-100 -50 0 50 100

TEIVIPERATURE QF

~ I.... I ......... IU . I I I,-< 60 ·1 I I IP-e:?;-~ 50 I i I I 1 ........-1= Y I /1

~

!~::J "~M\~.\··X·F I

oz:s.20 I I / l I I / I 1/ I I I

o=t>< 10~~

Page 125: PIPING DESIGN-PART-I.PDF

(.tMe!:!1~Jv1etallurgy .__. ..... - -----'-----'----- - .-'-. -

I

.... "

/

J.O 1,.0

LIQUID

2.0

)- ::>L.;._-'-. _

, ,

i.a

f~WTE -:- CE.,Ir\ENTJiEIII

I1

I~CN-:P.CN CAREIDE D/AGRAlr\

o.~

o~o ~. C.STUI,.IA.S~Mer~ ...

I

='h~_____', --;:r--1'-:--'... j .1 ('

: iOCNj :%,'~---- ---~2

I I /

1-:-~---- - -'-11;;: JhC{)i\,W

4 r';-:'--t>--r---;~ "I-I.US·'L ~ __ '!'" 7..:O!.!:.... r.----~1;-:5-:-,-=-r,-.C::'::>'~If-~-r:.';':J"':'" ~';..-":"',':..:.,.;.::):...:....-~-----------

, I I : ! I

1 I I I ,/

I J :! 100J VI

I ~l

J glI, 6 1

III

c'C)

c>

c(

(

()

C;

()

Ci

(;

r

(,

(

(

('

------ ~----.....:---'-o------....-_---_--"~_, _

Figure 5-3: Relation between the peaktemperaturesexperienc~dby variousregions in a Weld, and howthesecorrelat~with the iron carbide phase diagram

c()

oo()

ooo ',-'oo()

V

, , ..

Page 126: PIPING DESIGN-PART-I.PDF

(

()

(I

f

r,.,c:C)

()

(,

(

o()

()

()

()

(J-f

oo()

oQ

Q

oo()

()

()

()

•.~

o., ........,.'~

..~

~",'",',","'f.:\'"",.,'~

,.<t),.~

~.<f)00.

~coN

V~~ ,

.{>-~

V"-,,,t

, "'1:,...-

~

or

-<-'o~

..t:::,

Page 127: PIPING DESIGN-PART-I.PDF

e e e e c (') c~ t) co c} r; c' o o ;-.,-""/'

r"'i\, j o """, .-, i) ::1 .;.;.., -, .-,

/ -:J ---:,>'

~ ". '1 "\

14.200-94

A 299/A·299 M-90'

A 250 I A 2'0 M-9S

. A2U/A2i,M-90

A 193/ A 193 M-96a

A 194/ A 194 M.,.96

A 2141 A 214 M-90A2I3/ 4213M~93a

A202/A202 M~93

A271-96

A 199/ A 199 M-900'

A 270-95a

A 2491 A 2049 M-96a

A 240-960

A 269-96

A 203 / 4.203 M-93

A 2141 A.214 M-900

A 2161 A 216 M-93

A 213/ A 213 M-9Sa

A·204/·4'204 M-93' .

A 209/ A 209 M-9S

-ASTM

A 2341 A 234 'M-96a

41~1A'l~-M':-~;

AlIl'AlItM-:"b

A17./417•.M:-9,·

A·.l06:-9'410'"(A.l0'M-96.A·'3-;96.-

.A-1I2/A 1I2M-96.

A 192/A 192M,-9t

ASTM standardsSCOPE

-.~-_._.!.~·:.~:~r.ti"~:,~:,::~L~ ..<~::·: .~"'.

SoomIouloriic and <JUIIon!Ii< cloy'"1>oI/or.lUpOlboaror.andb~"",",. .

SOciml.u corI>onlllOl,Ilde ..... aI/oy-'1toi/oranJ ,."eilleotor1Uf»,.p,.,.........,~inof,f>JM.....tINI.

"",Mg filling 01 WfO<I(I!JIawbon ..,and alloy 1IlNI. lot 1IIOdOta,.onJbl9h....".,.".,.-. .

~cN-iwn and dwomllJlJWfldolllaItJ.u ....' p/aIo• .b.... ana ./rip.lot",.uute ...uob.

WolcloJ _iIiC _, hOifor. wpod>oaIor.~ and concIonIOr IUbo,.

ho_ ..,,",'**'. oIoy-fiMI;c/wmI.......ong--ilicon.

EI.aK...Ii-....ltloG f-"i!ic alloy lIHI""iIoranJ .uporMoJ.r Iuf»,.

s-Jou ............ oforoIooIlIiI tv/to,lorrol/Mry_.

EI.aK<fOii.-...JcWcarlJon ..,ItooI uchongoranJ~_Iuf»I.

SoomIollanJ woJdod 0CIII0IIIIic llalnlou llHI....iIaIy"""og. .

/Di-.linw,H995."topIocod&yA 200.1. 213.)

P,.lIvre .."U.I""'. nid., oIIoj 1M/.

Carbon anJcloy'"_lotho/h.1ot bigh prou'" anJ bl9h Iompo",,",.lOrvic•.

l<lW OMJin~-....a;Jhogill awbon.llHlp/aIo•.lDi_uod 1992.NpliiiMI;,yA 283J

Prouute ..1101",...,. -Don IIHI./owand InIotmoCI_,;;" ,Irong/JI.

p,.IIUfO ..i..lpioIu. corbOn -.J:iOitngonolHlt.-.

Soanil.u and woJdod 4IVIIIfIi6c IlaWilu <iHI1U0I1If1; lot go.-iIlO..ice.

Cotl>On ..,casIingI wiIabIo lot fusion woIding./oilligh lomporalvto lO..ice.

s.amI.u ou_iIic~1doI-' IIiI tube,. for roflllOty IOrvico.

-Alloy.,..,and~"'bo/(lIlf1 11l"""iciJ,10<bltilllompMalut.lOrYice·

s-Jou awbon .., loolIorluf»olot bigIlpro__•

CcIiIiOn..,"'pi.. tor",..raI,...""... piping.

Fctgodortolocl-,..,,.,,,. ..... foIsIo<ll1ll/ll/P• ...m. anJ patIsIotblg/llo.....-_.

$oam/Ou .......,...wli/sll....".,."... ,.,.,...EIocIi'-IbIan..... '1« ..~.., and-""""""'JI"'......hoilerand~""

Cod.o..~ki"'''''''''' ... 'b....

s-Iou~lOWClIrilOlI,;,.,/lOCIf;.o1Icrngorand......IMIuf»'.

.P1poi'''-tfofacl:_~zlttcCG*J.-wo1dMI.anilIOOII,01oU.

.,~~~;~n 1-J9~t~~;_~i~i\~i~:.·~·~.~f.~b~,_~:~,;~~.~~~· :.~

Tube"oudO. par rili.lanc. oloctrique... aciot all. '.rique.pOurcha\oi!tire .,.Urchauffour.

8ricIe'" acIer. GlliiIotg6e• oti ......... pour~.ra=rd./orgf ••~ 01 p......lmlIa..... pour.uliIiac>lion c;hauIo 1empiraIur••

J...... IGIIiac;;;cl...""'.cI !!oid... cxiIr bosawbon.pour~oICOIldon..ur.Plbt.IoigM" .ftaCierou..m-.. pour~ c1'....&,"'raI.

P..... IOOUIH•••-acierau cGtboM.~ a-r..,:c;-pOWutijl;d~ IempefClll!re.

;f?"<~t1:~~~~!~t:ti:J~ ~.=on~xtl:;::.=:.:t;'0rg6··ifit~;?~·.~~~~~~aa.:.~o':':,.,~~et- oIauchr_rd.l;

Tube.lOIidi... aciot _li"lique pour cbaudiOrw••urchaulfour.

~"canden"""·

; ,4269.;;,96··.,;,);·:f.-?(,.;;·,~,:lubo. _ .o'l'!~oIaOudoi .. Ociof~OUI""IIIquo.pau;u.osei!'••Iiil.:·~j~~~~i~\6;_;.<;:<~t~:'".:.;':;t~'::':h::.~iooqocIoble~.liftlfiq..;

~~i¥t;;~~;-.:rtdN:~Y:::.ut~~ma;=r~.;.. cxiIr ouIIin~ou chron-ld.l.

;·.4213;f:~~.~.1!':!~3q;',"i:::T6Ie... adoraucarbono. a.folblo <II -ro_ri.bla_ clla lradlon.'."'-2..rt'A;214)\~~;'<"":(AIUl"""1992. ',.nipIClcO parA283~'

:·~~~Kff?l~:~~~~(~.·,::~:a:~:.:a:=~.fo~ Of aooyonno ,.IiIla_cI~ ~ocIlon.··.'A'299TA'299.'1it-:.90.,.-:.o·. 161o••ft acto, au CarbonlHllClnganO-.lliciurn. pour "MNOir IOU. p,,"Ion.

~~~':1~7f!("~ ::·"f.....dlCRdiife-aaoi.ooucI.......ocier ou eOrbooe. pourUilitatlonclhaute preulon.·:,?A;.i',t~;Z'Al1'~~.~§oCi.. 8oulonMlle .ft aciotalli' or aciot iooqocIoble. pour <lIlIhalioftcl ..........,..,....,..

&0<;... Clclorau ai<bono .laI•• pour bouIona dedi"'. clune UtililOlioft

clhtMepreulon oIc1ltaule Iemp._.

f~~~:~:~~~de-;.::;:~..=.~:~.:L-oNaU~.pOurwill.... .aff~.....ic~A'~2;;t!A'202~I!'~'3'iO~~ikJ6Ie aciotall. au c:Ivomo manga"o • aiUcio.... pour ................ prellion.·;,\K203.1l'/i~2031o\~~~<;T6Ie ador alt.. ou.ickeI.pour riM""'" IOUI preulon.•;W20.UA~''''~'J:~ii·· T6Ie aciotalliOou moIybdene.pour ............... prellion.

':\A.:.,1,A.;209;iI\£'9'$'{T lO<Iclute .. acierol1U ""coobo.. lIIC>Iybd pour chaudlire.' aurchaufleur.

:\f.i:a1Jii~~~-;.tram.'~ ..~m'q pourchaud;er••

Tube. """". par r••lalaftce .locIri'I.... on cxiIr ou carbone.pour echanS- .,condo...ur.

'.2 7-3

Page 128: PIPING DESIGN-PART-I.PDF

ee c e c ceo C' 0 ~, ('> 00 ("\ t1 () () ~~;,,--,

~ . " ) \~_,),J

""""\ "--\ - ,--, ,.-" ') "\ ...--, I~ ~ .-."

normes ASTMDOMAINED'APPLlCATlON

ASTM standardsSCOPE

A 662 1A 662 MolJ3

A691-93

A'611-94

A 190 1 A 190 M·95

A 731 1 A 73& M·90

A612-9.

A 7361 A 736 M-II

A 5731 A 513 M-93a

A 531 1 A 531 MolJ5

A 533./ A 533 M-93

A517/A517MolJ3

AS16/A516M~0

A51S/A51SM·92

A 409 1 A 409 MolJ5a

A 3531 A 353 MolJ3

A 403 1 A .03 M·96A 317 1A 317 MolJ2

.ASTM

A334 I.A334M-96

4:333/ A 333 MolJ4

.A 420 1 A 420M·96

",·3201:A.32O M.,....

A302I"'~2M~3

,A~12'/ A312M""S.

'. Am / A'U5 M-95a

A UO fA'350 M-96c

Spoc1'~~.:-;"'.-.:. :~..

PIe pIato•• hooIl(ooIoc1. COI!>o>n-mangan....ilicon ,,001, far mod''''10and Io r le"'flOlO*lro ..rvi«.

Cathan and Joy IlHI pipe o1ocIricMioil-wolrlocl, far high ;,rOIl.,• ..rvico

01 high IotriporaMo.

P,..,... .....pIatos; low eamon. ago hordoning. nickokoppor.cltramium<na/ybd.num­cOlumbium and nid:oI<:apj>.r"'""ngano.....~um<alumbium alloyi,..,.

EIoaric.fu~_Iplpefor Itigh-pr.,,,,,...me. aI mccJ.rato lompe",~,.

EJodrio./wior-elclod*"' pipe for llIInoJphoric and lower "mporaturo.

PIe...........,P/c*s caobos..."',go".... far mocI.raIo and10_10m""""'" ..mu.

SIrucIuIaI can- ....,p/aIo. 01 improwd Iaughno...

.Soam/o.. and -.IdocI f."ilie/OII....iIi<: slainlo......, pipe

p,............P/c*s,~tocI.car!>on-<ftang.n.'........ llool.

P,....... ...,",P/C*S. oIIay ....~ quond>od andlompororJ.mangano~ and manganoso<no/ybdonUIIHIId:.I.

P,...",. vo,", ,.... corDon .,001. far inlonn.dial. and hig,,"r lon)poIOlur. lOIYiu.

p,...",• ......,.... corDon ....1. lor mocI.rat. and lower Iomporoluro ••IYic••

P,...... ...."' P/C*S. aBoy.tooI. high_glh. quOndlocl and toinperod.

Piping filling, 0I-....ght eamon .l0oiand alloy ....~Ior low Iomperalu" ..1Yic••

Pre."". _"''''', clIoy IINI. 9".....", nid:.', JoublHoorrnoJlZMI and Iomper.d.

P,...... ...'soiPi*s. clIoy ....I. duomi""""aIy/xIonum.

W.1Joc/ Iatg. cIiosoow au....Uic.,.., pipe. lor CDIfOIiw or high 1_"'1uro ••"*-.

s-.Iou forme: cloy #HIplpe.far IIigb tompo_ sorvi<o.

W""'flot__ ......,..••l0oi piping 8Witlfll·

Carhan anJ low cloy*"' lorging'.1OqlIirIng noId\ laugh.... "'i6ng.lorplping-..-.,

AIt¥y ....'~-w..farlow....".,.".,.....wc..

$oaIrIIou otId woIdod cadIan otIdaIoy #HI tube•• fat low lompotalulO ..IYI...

$oaIrIIouOnd woIdod #HI pIpe,farJowlomporolvro sorvi<o.

s-iIou otIdwoldodaislMlJ/c ...... #HI pipe.

p,._......,,,,,... cIoy#HI.~... rnoJy/>dltnumatttl~ I }It. MlftH\kbl.

". ".< .•,:";'~poIII'

A790 IA:790 M~5.

~!-t~~~~i'~~;;i~=::;.~~I~A~t'fl~Ji·2)\i.$,",§);~"'"-icIUcIcn"'''''''"'........~ ausNnlfique.

1;::.~:~::·:[:~~=::.:a:==-..:.~=~.~"T..... _lOudure 01 souclOs: ......aucarbono 01 oDie.;:;; poIII' utlIiIGllon66a ~

'it~u""s""v~.i",·~~'i·3~-S"'i.·j{~·~5sf:iI:;oi·r7.,~~~~:· Tw....... icIUcIcn lIcier.......... poIII'uIitosation a....... II""""".'.".'. «._.0'«'_'" ~< ;' AcculOlN.do IuyauIorie f0rg4s • aciot au carbono .J faiblomanl Ollie.

. .xIgoanIdonssal"l.lloxioll par...

T6lo. onllcier, oIli4 cl9 %do Ndrol Ooot>lo traH....nld. nonnahsallon oIre_u.pour " ..Mllr IOU1 pr...lon.

.A'uFlA'i'7::M:.92·{2f~T6Ie.on odoralli4 au clvom. m""b ~io.. pour ....rvoIr lOUI.,..uIon.

'A'<I03'f":A'403'M:?6'~#'\} .Racco«Is de lUyautorie .nodor~ audinhique.

~;~i)jf,~~$~~~:J;;.~~7";C:~===-_Ulq ... pourooMcoCOllO

•lf

._-;.'. _:~ ~ ~. :;~: :: ~f~;..~~_~{<·.:~<~.;;':::._~ -Ro=ords de~ .n oc.... a.CCIIbOne-et oci.r oflie.A 420 J ~ 4~"M-~~., ., ':,:.pourutllisafton cll>o... ,.,""",*"".

. _. '.' r~,_'.. TOielenod.toucOrbon•• pour"~JOU'pr.lSionA~lS I. A 5~~ ~:~;.: '.- ., utltlsatloncl'••roIur._ of plus ,1M..

A516!'\~~i~J:t;~:L ~a:i:..o..~:'';:';~=--::'''b:::''~'A'S17'lA5l7'M~3';"',,",~· T6Ie. on ad.. alli46 haute ri_.1nionpe ., .._u,poui .....voIr IOU• .,....Ion.

~53:i"A~~~~~~;.:.:.:';'· ~::~-::::'~~";'==~' mongoMlO<ftOIybcU...,icUl.

.AS~iA:!i¥i;~~!~:;Y' .•:;::'::;Z:::'0I9= '. ,1iO... kG»H. d.ormlquomonl.

A573 l'A 573·M~3it· ~;;;: T6Io. on Cldor do ci>nlfnlcf_ au caRoco.o 6 ","lone. au chac: aNtI",H.c ;, ":. ' ,," .:'. •.::~;:::;::':;~;_: ~~',~.~.~ , 'y6lti, CKf carbonHnangonese. pour~1OU. pression

A 662/'A, 66~.~"93.. :'. : 01 u1U1sallon cllompWturo~ of plus 1>0 .

A 671 ~94 ..... '01 ·Tubo... odorsaucU.cl"J'arc.pour amblonl bcn..." .'. .":, t:ubo. on aclorsoUdO..i """'. __ uIIiIatian cl haute .,.. Ion

A 672 ,- 94 ;....". '. :;, 6 dosllm"'""ure. mayonne•.

lw.•.~. cll'"",.n acior au caRoco.o"~. paur ufttosation cl hauIo p<elllanA 691- 93 . ..hauIo """""'Iuro.

.J-6le-.-...-'aclo-=-rall-ie-"6-1>o-.-CQl-rbono-"'-a...a.--.·--nl-.IIruduIal--au-n1-ckoku--.;..iwo<Iuomo---

A736"/.736 ';',1.' . ma!-rbd'...,labIum ., nicUku;.. u <noly!>cUn...iabium,. ·c,:: '. '. poui tftorvolr IOU. "'....ion.

---.---"'"._'.-....-.~..-.-',. T6Ie,,~noderou cOrbo';" mo"gOll . I.ilicium.lrailie. tfMfmiquemenJ.A.~I/ A 731 M·90 pour r,..Mllr sau. ",...Ion 6 Iomp«alur.mayon...1ba....

Tube'lonl aoucIur••f saudi, oc:iw inoitoustinoftrrifique.

~.'.;.. ~;.::~~~,::::- .. , .

7..1 7.S

Page 129: PIPING DESIGN-PART-I.PDF

ee 0 e, C () 0 () 0 c ~ 0 ~ !""": () r-, ,,,,\ ,~ .-., ,-., /"\ '"" I-.. '-', '"\ ~ /\ -, ,'"'\

"---_/ ~"' \

\.--- \"'--'; .... " '-' '~/,_._~) '-

~

~ "'" .""'\ ~.

normesASTM ASTM standards

rF347 ' 5-34700 17,0 ·20,0<F348 . 53~800· 17;0.20.0

A 193/A 193 M-9.6o

A 194/A 194"'·96

A 192/A 192M-91

A 112/A II2M-96

A 111/A 111 M-95b

Al79/A 179 M-9Oa

A 171/1.17''''-95

1.106-95

2HTA6'7i

flf2F5Fs;;19~m:a2Fi"i"""Fffi:iJ

F304f30i"lmoFmm6l:mrFWmem­F51

f55

J.Cl6011-070

asi6V

sial816

CHEMICAL REQUIREMENTS

't::I ASTM

T JL II

N~O,IO%

NSO,10%

N~O,10%

NSO,10%

AiiIie./OtIiOri

N:O,08'.0;20%

5C Sn~ 0,70%

N:o,n-0,22 %.

IOC~Cb+Tc'-s 1.10%"

N : 0,20 -0,30 %'~ W : 0,50 -1,00 %c, + 3.3 Mo+16 N2:40

IOC~Cb+TQ~ 1;10%-To:O,10 %moxi

I AiC­

Ac­D

~.,..

-

.,-.;-

>";

0,25.0.35

1',,"",;':''-.'

0;15'.0,25

-.0,40"0;65

0,50:0;65 ,.

0;20;0,30

0,15.0,25

0,87\;;:'1;13

2.00,"3,00::,;

~Ali65

2,00/3;00

...~.:,..,;:.::::;.

.:::'~ ;-,::."~,,,

;'::-:', .~.~~.. :~

0,40'-0;65

6.W:,,6!501o,S0.I,OOr'2;50.•3;50

0,80';-1.06

,;:.;.J.;;::..{;,;:i;:r

'3.w';~;~1 0,50- 1.00

.. -:~:;{.,::~:~~,,:",:;

.0;,«>:0;65-0,90:;::1-;·10'"

'O:~'''O;65

..... ,,"C;lJ!I!ri;cD,,~ir.."'"" ""rcent

:OJA;41itOi65:

'. -i';',;: {":- ,.,,":

i'O'~~i6'S!

cO;t;S~ OA<!-.i I"ll~'

'J),ili4R'O;63':

:~;'~)'~ o...o.a.r~~~A 0.02 maxi

.'O~]. 0,40"""';' ~oa-JllG.1"

.·;:~.<,:.J~';·CV;.. l<,:·~:_ ',. tJilb/~ I

f

'0,06. 0.181~;pi:O,~3·t0.035 1.~~~1O.~maxi

~ 'K~ 1) 05 .0,15 0,30:0,60 0,0400.040'·0,50 maxi 2,7.3,3~,)(21590"005-01S030';0600;o.co0040 O,50maxi .2.0.2,5

1.112/ ~ 530400',0,08'_ '2,00.....1' O,CW50.030 1.00maxi 8-0"11 018,0.20,0A 112M-96~ S30403 .. O,035maxi2.00..-1-..0.CW50;030 I,OOmaxi 8.0.13,0 18.0.20,0~ '531000'O,15..-iZ;00,inciitC O,CW5 0,030 1,00maxi 19'0.22'0.24,0.26,0~5-31600" O.08maxi 2;00.·inQxj' 0,CW5 0.030' I,OOmaxi \00',14;0 16.0.18,0~ 53l'603 003511lC1lCi2'OOniind O,CW5 0~030 I,OOmaxi .100.15016,0.18,0

f321. 532100~ O,08moxi , 2;OO.IIlCIlCi.: O,CW50.030,1,00inaxi 9,0.'12,0 17,0 mini

~51 .' 210.230

. . F55 532760 24:0.26,0

1.192/ .,A 192M-9.1

::w,~ ;0,06.0.18 @J1:':.:~~:0.035 '*~:AI~ll-' 035maxi ;1;;10'_'" 0,05 Omoi 0,10'-0;35A llfM-95b 03511lC1lCi ')¢10-:mcooc~0 05'tlO5O'. 010.035

IU2822' 028maxi :0'60"'090, 0.CW5 'OjW5; .0,15·0,35 ;-.K'12In"0,05. 0,21 W;;lO?:.O;80'0.040 '0;040; 0.10.0.60 ."." 0,50.0;81

, )(~1545,'0 15..-; :O:OO§.o·60:0.0300..w0· 050moxi 'O'50,iliiOO, ~0.6,O

K425U'; 025 maxi·O'60:iiIOlci': O.o.co ·0;030, 0,50 maxiOiSO nicOO ..1;0.6,0)(90941 '.0,15_. ·0)30:".();6() 0.030 -0:030 0,50-1,00 8,0.10,0KU572,; 010'0,20030'''0;80 0,040 0,040" 0;50-1.00 '-' 1.0- 1,5K'115~' 0;10-0,20 ·0,30'.-:0;80 0,0"-0,0.040. 0,10'0,60. 0,80.1.25

-85 010';;;;- lOO,inaxj. T~ O.030,1,00.niaxi 4,0.6,01.193/ B6 . 0.15.maxi ,1 00_ .. 0,040 0,030 J,OO maxi 11,5.13,51.193",-960 87 037.0,49065,·1.100,035 0040.0,15·035 0,75.120

'8~1 008maxi 2 00maxi' .O,CW50030 l,OOmaxlS,O.105 18,0.20,0___....,+.:;8::;;16;:- 036;000';l5';O,70 0.035 0;040' 0.15-035 080;.115.

, 2H. 040mini .~·OOlilciilr:: O.o.co .0.050' O,40maxl3 O,10ll\inl ,1;OO:iIiQid. O.o.co 00;030' 1.00maxi . 40.6,0

A 194/ 4 040.050070"0,90 0,035 '0,040 0,15-0;35A 194M·96 6 015.maxi 'I ,00.maxi' , 0,040 0,030 l,OOmaxi 11,5.13,5

7 037 •.0;490;65 - I,ll} O,o.co O,~ 0,15: 0,35 0;75.1,20____-'-_=-8_ 0:08 maxi 2·00 maxi 0.CW5 -0.030 I,OOmaxi S.0-10.5 18.0:20.0

A,106~-:9~ 8 030 maxi 'O'29:"'1'!06' .0.035-o~ 010 minlO·jOO'maici. O.~maxi

_:'"'-=-......+-_.C~,....... 0 35maxi· i(l;29'''''<1;~O.035 :O.il3S 0,10 mini O'<tO'inCiXi. 0 ~O maxiAI',.} ., A :006.018 lli'27,"",0i63iO.035 "0':03$<".t71'M.t5~C , 035 maxi :Ojll~, 0035 :O~i, '" <0;;'''.'.'0 0.27 maxi ' ,:fi00':'1;50,. 0,030, '.'0,015, 0,10 mini

COMPOSITION CHIMIQUE

A$T~ I~ ~L, .'e,:" ;/+:0~,; J".~f~;'I, Ni I, Cr

. ,'02511lC1lCi ~9.5;iIiCixl,;OO5O ~;OU" ,0'~0'liiDci O~maxi

o301llCllCi il020"iia.r'0.050 !b:OU' '0:40 maio 040 maxi

__ O.3511lC1lCi &~~i.~~0.03s ~Wi 0.10'0.35%<i~, 0.30maxi

A , 0.25 _ 'OW.Qit);9.30.035eO;tI35l O,I~mini ,0AO:maxi 0.40 maxi

7~ 7-7

Page 130: PIPING DESIGN-PART-I.PDF

e e ceccoo u o c o 0 0 c: 0,.....,"-..) n .-.,' r--.,

-' . .""\ ,J--,....., ,.-.., '\ ..-'"'\ -\ ..-., ~

A214/A 214M'90a

A 2161A216M·93

A2341A 234 M·96a

WP8WPCWPi'WPSWP9

WCAwaWCC

.~TlA2091TloTlb . A 209 M·95

~A2041~A204M'93

1215T9TilmillT22

"J!CJA213 1~A213M'95alP304lTPi"iOS""'iffi6TP3i6T.TP32 ITPWirn8

.-

,," .....:::-: :",:::: ..:":'''i.:..

T~",i+Cr+MO+c~lsr,,'

IOC,S·Cb + TqS'l ,00 "

TatallNi+Cr+M.>+Cu+V\s 1%

"sc'Sn S 0.60 "

. .: ,.

"0"-

..

~.:.~ • to': •

.~'.-:::: ".>!:~:

IOCsCb+Ta'sl.00,..-Tci:0.10 %maxi

.. .-·N ::0.03 ':0.07" ;;'AI 0.04.niool

:-~. ·tf.n~.;"':·:. ~,:":--' ...... ---: .-.

0.02 maxi

O.03inaicl·0.03 mcixI

O.03mcixl

O.08iriGxl

0.J8.• 0.25 10.06.0.101· :N: 0.03·0.07" .. AI 0.04 maxi

O.3otnaJii

0.40_0.40_

0.30_

'0.30-';

'2;00-.3,00

O.20fIlOXI'

O.lSiriaxI'

O;20.niaXI .

0.«-0.65

0.87,-;;1:13

0.20inOxl

'O:IS,ini:iliJ"

'2;00:;3,00

0......·0.65

'0.85:1.05

0;90.1.10

;O;U~O,65

·0..... ;0.65

'0.90'''1:10

;0.80.'1.06

.O,;r5ri1aXi'

;0-;:'.5;:'0.60

·0;U~0.65

·0:45~0.6O

;O:U·;:O.65

~:;:"-'~i:' ;/"

;0"'S-o.o.o5

:0.45 •.0;60

:0'«::'.0.65'

·0......0.65

':'i:;"::~F

'~:?J?:5>: ~

ASTM standardsCHEMICAL REQUIREMENTS

a_it:tJr'*1~itiiJMIlI' percelll Nuanc:t I. :MO~,~Cu~-r vi Nb/Cb I ·,.",../Othor. .God. ASTM

.0.....:.0;65 u I

0A5'~0 65 -ys0A5'~:0'65 17

·0:9Q::;·1·10· --w0 .......065 -m---'A 200 ·94

:o~P·:I.lllS .. , .. :. . .,.. T210.81;,..Fl3 .,.... T22 ..0 85·;105 018.•0:2$ 006·010 '; N;.0;03:;o.o7~';'A10;04"mOxl ~

. "'. ;,.-: ......,-..,. . --A- A·202/"':;;:;"'.c· . .. .. i:'....'. .. , .• ',':. . :. •.... . • ·8 A 202 M·93~':",i'" .••...,.('.;.: ......':." A'

8 A2031~ A·203M·93

f

4.00.6.008.00·10.0

Compo<Iticirt c/limique"·.,C.t.In S; I Ni I' .~

2.15.2.854.00·6.00

A292I. '. ·.'::.k:7. ~f:iOlimOld iIOS~:I;;CO. 0035 :0:035;0.60':'090 .7T"~;:1 035~060A202M-93~, ,8:":/ ,:,,~);;'."::;:: 0 25 maxi ]:·05';;,1,"0.0035 ..0035:060'090',: :..<>. 035.060

.,".:A' :c.'. ·:;;~':='t:,,,·.;'. 0 17 maxl 0:70:liiOxi·;. 0,035'. :0:03$:015', 040 ·2:l0~:2·50,

A2031 '8 ',~;",:;.\·.;<;·021maxlO,70;iiIOol:' 0035 :0,035 015.040. :2'10,2'50.

A203:M-93,:;~·'::;::;;~:':.?:;2::~~~:::~i~=,~ ~:; .~::~~:~:~~~ :::~~;>;,·F; "::~C·".:: ,SO 0.20nioxlO:70:iiKix!' 0.005~;cl35; 0.15. 0;40 '3;2S~375,

v: ".." ;,:", .','. ~15mald~"0:30;0600025 :01ltt 0;50.100 600.800A 200 ;94 19. "-. 0;15maxi 0,30;10;60 0,025 0025 0.25.1,00 800.10,0

. . Til ... , 005,015 0'30"0'60 0025 .0.025 0.50, I 00 ..., 100·150·T2E 0,':',.- '" 005.015 0·30~0600025:O025.,050maxl 12,65.335

··:T22·i ·.'<,-.-.,···"005;0150;30;,0;60 0;025 .:O.o2,5,.O.50moxi '. '.,. 190·260···J9Ii , 70"~~':;::;';' 0.08"0.12 '.0:30•.0.60 0.020 ''0,010. 0.20'0,50 O,.cO.maid·; 8.00.9.00

:~::~~3'.•~:~:;,;,~;~ ~~I=~:=?~':~ ~~~T~~ .. ~~':A209/. .• ~.::'~:':'>"',.' 0 10·0,20 0.30.0.80 0,025 '0,025: 0,10.0.50A·209M.95. ~. ,.····-:·;.'.015.0.25 0.30'0.80 0.025 .0,025.0.10.0,50

.' .:. lib"·· , ...··f;;.,'··:··· o14 maxi .'0'30,080 0,025 0025. 0.10.050 ....:7,~ •. '''C

o

0.10.0;20 030;'0.61 0.0250;025' 0.10.0.30 . 0.50.0.81.~.""'.,.<; 0 15moxI0.30'0.60 0.025 ·002,5:, O.50fIlOXI ....., 4.00.6,00~::,;·/.,c 0 15·maxlO·30:0.60 0,025 00025025.1 OO'~ 8'00.100~>:.,:;<> 005.0.15' 0.30::.0.60 0,025 0,025. 0.50.1,00 ... : 1.00.1.50

.~ :.:--, ••..• 005·015030:0.61 0.025 0025·.050maxl 080.125~ '.:<:'005.015:030"060 0,025 0025.0.50maxl 265.335

. ~ .:'''~:'''': 0,05.0.150.30;0.60 0.0250'025 O.somaxll.90:2.60A2U r --'Tn'.'.' .::,C '-':-;' 008.012030'0.600;020~.o10 0.20 .O.soO.40 moor: 800.950A213M'95a~·',U0400;O.08maxJ ··.200nioxl: 00400030 075 nioxI 8.0nI0· 180.20.0

. . TP304'L430403: 0005maxl200.nioxI' 0.040 '0,030:. 0.75niox1 8,0;-.130'" 18,0.20.0~:"531008C 008maxJ. 2'OOinoQ, 0.045 ;.0;030 075max1190~220 24.0.260'lPJI6': 'S3'1600, 008maxi 2.00:inQxj· 0.040 '0;030 075moxi 11;0.,140 160.18,0~:-~3.1603'·0035maxJ2.00'inQxj· 0.040 :0,030 0.75niox1 'IO,(),;15;0 160.18.0~ .S32100'008moxi. 2,00_' 0.040' 0030; 075 maxi 90.'13.~" 17.0.20.0~.S34700'. 0 8 maxi 2:00.iliaXl: 0.040 0.030 0,75maJ<i 90;'13'0' 17.0.20.0

...,.~~_+·.:.:TP.:!.3:::48~· '534800 0'08maxl 200nioxi. 0.040 0030 075maxi 9.0:-130 170.200A2141A214M'~ 0,18 mcild ~.27 ·0.63 0.035 0.035

A2161 ~ O.25maxl 070maxi 0.040 0.045 06Oma'" 0,50nioxl 050_A21'M'93 ~." 030maxl 100_ 0.040 004S 0.60_ 050nioxI' 050maxl

. .' wee '. .' ;C'," 025niox1 1'20maxi 0040.0045 0.60 maxi . O.sOmaoL 050 maxi~,.' >, 030 .........029,;'106 0.050' 0.058' 010mlni 04011ii1x1 040maxl

A234/.. ~.. 035maxl029.J.06 0.050 0.0$8 0.10 ..lnI O,40niaicl' 0.40 maxiA234M'96a~ 028_ 030·090 0.045 0.045 010·0.50~ 0 15 maxi 0;30.0.60 0.040 0.030 0.50 nioxI''WP9. 0.15niox1· 0.30.0.60 0.030 0.030 0.25.1.00

normes' ASTM

. 7.8 7·9

Page 131: PIPING DESIGN-PART-I.PDF

e e 00 e ~ 0 ~ u 0 0 0 0 a 0 0 a .-" ~\_,/ ',1

r--, 1"'\ ,-, /--, .-.. ~-'

,.........; '\ ----.---,

,

8C A213/o A2I3M·93a

304I.. 270 - 9SaTP304TP321 IA 27.1 -96TP347

T1no'fib"'i24A250 /m--tA 250 M-95

m122

TP3o.ciPiOi"lTP316

TP316lTP321 IA 269·96

TPW1rn8

TP3o.cTPiiiii:Tii3iOS

TP316 A249/TP316l A 249 M-96aTP321TPW1rn8

CHEMICAL REQUIREMENTS

=1 ASTM... _..

ASTM standards

SCsTis010"

,N:0.180.0.220" .

- IOCsCb. Toil: 1.0"5CSTlSO.6O"

"SCSTI S0.70"

,·lOCsCb. ToSI.O"

:.' :lCC SCb .To S 1.0"

---

:';:':~NlYO:08~0.20"'",aid

"" :::NI:0;1O~1nOxJ

c-'" ,:;Nl'fO;l8:;'0;22." ",axI

lOCSCb.Tos 1.0"-To :0.10" maxi

"IOCi;Cb'.Tos 1.0"-To:0.l0," ..-;

:. ,,:',:,,:':./'11: 0,20. 0,39" maxi6;5sW1i1:0:'Cr~3.3Mo+ 16.0N2<AO

;z.~.<~"?~'::':'i ~~_.:',; ~ .. ";".

'N'i'Oj;lo'~Jribxr;;Stc:+N1STlS070 "e-;:r,~'.;·4~·'''OC-$Cbsl.O'' .

"i1~:~~~~~~~k~;" maxi

t.;;;ij;~~:~:=

:;:' ::'

: '~'.':; .~~;:I

~ ~.#7;\~~

.¢IJe;;i~'i,iiQu;r.~iiIi·/»~(t ,

:,,',..".

.'

;.-?"- ,~~;, ~_:~f'

Mo 1''Cu~r c'·V;:'.'l::I'l!!:WCbf-:1":'·;·::·~· kil..70tltm

~

<':.•.

0.2 mini

0.2 mini0.2.mini

2.00.3,00. • ....2,00·3.00

6.00·6~/ 0.5.1.0

0.44·0.65

0-"4·0.651 I'

0.44.0.651 I' ','

0.44-0.651 -T ,-

0.87-1.13

0.44~0.65

2.00'3.001 I" c",',:'::

0.44.0.651 I

2;50"'3.50

0.75inax1'

6:00. 6,50~ 0.5. 1.04;00'5.001 1.0·2.0

3,OO.~,OOI 0,5.1,0

2;00:'>3;00'2'00,.-'3;()O

'2,00.3.001 ,- '.,

:~::~~: .'L~;~~';;;, 'f::2'~:;i~:':,': :~~~; U34/0!8~'H3' "",,;~'''';;:',t: ~"iz3<···:,,,· ~' WP2201 A2MM-96aOa5·1'05' 0i18"O;25 006.0 10 '.~Nt'O:·03~O;07>""'Af004riiox1 WP'91 .

. - " ,::._,~.~". ';;,...,:";'~:"::";N':O,:JO:%·",ciicr 30A:-;,.:~:<~'';:" 'HiOilOcS'lIlCIXI ' ~

31053i63i6i'm347\A240-96a

348

900

normesASTMCOMPOSITION CHIMIQUE

AsrM: ~~;tl~L, c I: ~ IP~~t7:~\,{ !'i' ( , Gr'

OOS.O 15 0.30;060 0030 ,0:030~ 050.100'.::, :".: .';,100.150:':,.;,. -','": OOS~020 '0<30'.080 0.00 ,O'ou;; 0601llGld:;; ",''',,1'',': 080.• 125'..:," ",,'.•': 005.015 '0'30;0·60 0,040 ,'((~; 0501llGld 100.2,60~<:,.",,;;-:;,O01'012 '0:30;.060 0 020 :l1~CllO, 020·0~0'j(0...axr.:;8 00· 9 50':$:30400,: 008mC1x1 ·,'oo'tIiaXI" 0045 "O'030i075mC1x1 ,e'O;~JO;Sf;: 180·200:;S~0A03~ 00301llGld 2;OO;m\iil 000, ,~1030. ,0751llGld rIiW~.j2'.o'; 180.200

',:$'31008:: .0081llGld 2:OO.liiaxi 000 <0:030; 1501llGld ·l9.~2fO' 240.260,S'3:1~~ '008 ....xI2·:oo..0"F. 0.00 '01)30, 075..-; :.rO:oqj;OI6 0.18 0

-,$'3:1603,' 0030 IllGld :2:00_" 0045 ::0:000; 07SIllGld lO'O"~l~:O 16,0. 180/5f3210ChO 08maxi2:OOmClxl 0045 to'030;:07SmCIxI.\tO:'12:O,i:17 0·19 0'S:3~7oo: 008maxi '2:OO'nKJici 0,045'0:030) 0,75"-; 90~'.13'01~170.190

':sj~!c#.::O,08maxi 2.00 inaxI O.045'#.,§0' l,oolllClXi?;~~'l~;~:';17,0.19.0

'+"--'- ,N08110'!' 002_xl 200..-;' 0;045 "0035. l00_x1 23'0.'28:0' 19.0·230, S312s.c:; 0.02 maxi 1~OOinoxIO,030 "0:010 0.80"-; 17cS~,18:519.5·20.s

, Ii' .5:i~6O:' .O,03max11,OO_xI 0.030 '~,~10.: l,oomaxi 6;~{a:o.t 24.0.26.0-..;........;;...~~,....

.~ S·3o.cOO. 0.08'maxl .. 200maxl 0.040 0030 075..-; 80~H'0:, 180·20.0~ :5,30A03', 0035 _xl :"'00 maxi , 0040 '0030, 075_ 80<':13'0~ 180·200

'. :~ ·531008'" 008 maxi' '200_0.045 ,0030, O,75 ....xi '·190'~·22'0 240.26,0A2491<:"~ 531'600, 0081llGld 2,00 mail OOAD ,0.030', 0;75"-;.10,0'":140 16,0.18,0A249~:?~~'531603 0035maxl2oomCixi O.o.cO '0.030, O,75"'xi .100;;150 160-180

' .. ':~:5'32100'008maxi'2oo ...x1 0.040 (0030 O,75maxi 90~:130" 17,0 •.20.0,~~ ",:5,34700, 008_x12oomalti 0.040 '0030,075maxi 90';:-130' 170.20,0

" ',·'TP34a':.. ,534800~008maxi 200 ....xI, 0040. 0030 075maxi 90';'13.0: 17,0.20.0~ ',010.0200'30"080 0025 0,025' 0,10,0;50~ O,15~025. 030'.080 0.025 :0025" O,10~Oo5O

, ' j ~' 0 U .....I 0'30.0.80 0,025 0025 0,10.0,50~~::M~5~ 010.020,030.061 0025 0020: 0'10.0,30,.",' 050·081~ 0.OS.015 0'30.'060 0025 0020' 050·100 I" "" 1.00.1 sO~L 005·015 0:30:061 0.030. '0020 0.50"-; ,', 080·125

, T22, --' 015 maxI'O;30~060 0,025 0:020 O,50 ....xi ',,; 1.90-260:TP3o.c 530400.' 008....xl,2ooioaxl 0040 '0030. 075maxi 80:·11:0..: 180·200~' 530A03:'0035maltil'oomaxi' 0,040 .0030: 075_'80'13'0' 180·200~531600'008""xL2·ooinal<l 0.040 '0030' 0.75....xl 110.<14:0, 160.18,0

A269'96"~ 531603.0035....xl 200"-; 1)0400030' 0.75maxi ,·100.150 160·180, .~ 5321OO,0081llGld 200'maxi 0.040 ,0030, 075 maxi, 90:130 170·20.0

TP347 S347oo, 008 maxi , 200mClxl 0040 0030 075 maxi' 90:130. 170.20.0~, 534800008010'" 12.00maxi 0040 0030 o75'maxi 90.'130 170·200

-,-,"""-"",..-\",-=-r,',,;,' 531254 '020maxi, looioaxl 1),0300010 080maxi :17S'18CS 195·205A270-95a ITYD03o.c$3o.cOO' 008maxi 200lllOxi 0040 0030" 075 maxi 80.'11'0" 180·200

.. ' '.> ~.S'3o.cOO 008maxi 2001llGld 0040 ,0'030 075 maxi, 80:11'0 110,.200A271-96~ ,,532100" 0,08 maxi ,2'oo'maxi0040.0'030 075maxi'90~'130 ,170·200

, TP347 $34700 008maxi200 ....xI 0040 '0030'075maxi 9.0'.13,0' 17.0,20.0A213/ . ' ,,8 . 017 maxi 090 malti 0,0350 04 '.'0.40 maxiA2UM-9~t--4-- 0.2A....xl O,9Omaxi 0.035 ,0,04 040maxl

, 0' 027 maxi 090 ....xi 0,035 0.04 O-"O ....xI

7·10 7.11

Page 132: PIPING DESIGN-PART-I.PDF

normesASTM ASTM standardsCOMPOSITION CHIMIQUE

..... ····I'~""ni:e De.ignatiOnI eompoSlliOnCliiIilic!tiO %ASlM '.'~J. U~S Cl: :Mo'; lPin'!1!lJ5'~,LJSi I Nil Cr

i. ===:J 0.17 maxI'j'0;90'iiiiiXl':1 0.035 100,035" I' . 1

-,;10,20 maxi U~I$ ..rH50:1 0.035 1:'1>;035'1 ll;15· OAOTo}'':I:o'.·

0,22 maxi IOi90-iiiiixi,:'1 0.035 1;'0;035'

CHEMICAL REQUIREMENTS

NUa~'I''~:, ASlM

.I

'e ;., .:e,i.h;:~~~lCrJ~nb"""".' IN>E5~S~h:::·t;>:Yfr:': J "",YCb::l Mo.! 0Ih0r.

0,75.1,25 ....:.,:<~::. . 90,05 niOlli 0.15 maxi 0;12'iiioX1 0.05 maxi A1~0.06 %maxi --10-

0;50 IIlOll1 - ~:~~,~':. :~ - Co: 0;50" maxi _+...\~1-il~-~--·-.'c'::'·'L ·3 ...~ 6

~ 7",' 8

Cu: 0,75'·1.25 % 9050 mOlli - Cci: 0 SO %maxi _..:,1-:-1--11- '-'0.44.0.65 .. " PIO,U·.0.65 --P2-0.45.0,65 .• , P50.45 ;0.65 P5b0,45:0.65. SCs:CbslOC_/or4CsTis0.70" ~A.3.35... 1 A

0'90, 1.10 ----';94A335 M.."Sa·

0.44·0.65 Pll0.U·.0.65 ~oi44·0.65" ---,P~I~5.....11_,- _

",::,_~::~~~; ~~~i;~~·:·~-· .. ' ., .:.~07S'iliad" ~''''''',?i,"''''i ··TP310S2;00;:3,00 .:"::.J:'''''':;''' "'TP316' .. .'200''300<>'.~,:}i~'';';'' TP316'l .(312/:.:::: .<~. .·,\,,:!>c'·,., , ·$C·sDiS·O,70"...·... ··:,TP321· A'312M'9Sa. ... "~':"~~>}"", ··:IOC sCb':".To sl;OO" '.m47 ., .: ',,,,,t'::''''~ IOCsCb.lo's.IOO%-To',O;IO" moit1 '::TP34B,'6;00.6.50 0,50.1,00",.,,·,,: N:0.1I'O,22%··· - .'4'00'500 100.·200 ·c,':":,:."" . ' .. ' . N,OIO"_ --_-.-0.15"0.25 ,..·".:c<;.;;':::. ";";''':'V:--i'':'A"':3:=20:::'"'J'I.---

~'.' "•.... " B801 A:320 M-94a''.,'"":',' 1".\C:;;:.:' --3-

_. 0.40·075 .... ,.~.,:~:: A1:0.GA.0.30% --4-:.•.•>.: -H6'. A 333/

"'>'~,". . 7·. A333M-94.......,.... --B-

~!'··F";~.:~r~~~

8.00·10,01.00.1,50O,BO.l.25

4.00.6,000.50.0.Bl

'4,00.6.00... 4,00.6,00

0.30 maxi 10,40'.1.06\ 0;025 100.025

O,20maxl.lo.~0'I,061 0.025.10.025\ l1,60··2.240,13 maxi JO.90maxl:1 0.025 Ht025:jO.13.0,32tU.9,6

0.19max1 10;n'o,u-lo.0251-'0.025'lo.IB.O,3713,18;3;B2

0.19 maxi 'j 0.90 IliOllF) 0.025 1'0,025;10,13 •0.32~ 2;03 -2.57

0.10 maxi 10;60 rilolli· '1 0.025 I 0.02540.35 maxi 135.0.37.010,50 llIOlli

0,20 IIlOllI 10;40;'1;06\ 0.025 1'0.025'1 11;60.2.24O,13.maxl I0:90 rilolli \ 0.02510.02510,13.0.3218,4.9,60,19 maxi IO,90'inOirf:1 0,025 1-0.025,'10,13.0.3212.03.2.570,30 maxi 1.0;29·.;"1',061 0.025 1·0;025'\ 0,10 mini0,12 maxi I0;$0';'.1;05 I 0.0251 0.025'1 O;~B '0.3710;47;.O,9B 10.44.1,010.19 maxI~ O;31~O,6A1 0,025 1'0.025'1 O.IB .0.3713i18U·,B2

0,08 maxi !2;oo'lriQiI ~~ 0.0451"0,030'1 (oll'n.<.Xt(i;O, Ill.S' '11 B,O. 20,0O,30maxl·!0:40::1;061 0,025 10.0257

.• 0,30 maxi 10,29':1;06\ 0.025 1'0,025;\0.10 mini

., 0.10 maxi \0;60rilOxi·\·0.025!-0.025'1 0.35 maxi 135.0'.'37,010.50 moxi"0.20maxl 1·j:)i5il.50\ o,03slo,OIS'10.l0.0.3510,25iiloxi ·IO,15mOlli

K1159710.05.0.15\0;30;.0.6010.025 \,0,025'10;50'.1.00

K51545 10,15 maxi 10;30;0.60.10.0251'0.025,11,00.2,001

K1I57B 10.05.0.151'0.30,0,6010,0251'0.025'11.15.1.65K1156210.05.0,1510.30.0.611 0,0251 0,02510,50_

K·41245 10,12 maxi 10;30'0.601'0.02510,025\0,50_

K1152210,10. 0,20 IO,30~ 0.80 I 0.025 10,025·10.1.0.0,50

KA 15AS 10,15 maxi 10,30.0;60 10.02510;025\ 0,50 IIIClllI

S 5Q,400 10.15 maxi 'I Mo .0.60 1 0,02S1'0,025 10.25; 1.00

K11547>10,10.0,2010;30'.0.6110.025\,0,02510,10.0,30

.-: "I 0.20 ...a.JT1~j 5:~;1;5010.035 l:O;03Sil 0,15 .0.4010:14 .'O,7.:c;

_. •0.20 maxi 10;95"':1;30~ 0.035 100;035,10,15.0.40 1..'

0,30 inaxl 1~;i~~}#:1 0.035 l1~l<i3j~1 0,15 .0.40 I,: .0;28 maxi 10,91)"",00;,1 0,035 1!O)03S,

0,20 maxi Mns.•:h50!0.03SI:iO»J$;J O.IS·.O.~ I·.. ·, .-'

5.3~00; O,OB maxi :2:00ftiCDd~ 0 GAO ,0,030:0.75 _ ·BO;"n;o··180.20.0S.3GA03" 0035 maxi '2'00._> O,GAO:0;03.0' 0,75_ '8;'0':"13'0" 180·20.0531'008', 0 08max11'OO'moicF 0;GA5 :0;03OcO,75_ ·19;0~'22,o 24.0·26,0

.S316OO" O,OBmaxi 2oo'mallF- OGAO '.0,030; 075_ JI,O;·14,OI6,O.18,O. S,31603':' 0035 maxl2'OO'malll'- O,GAO '0030Y0,75 _ :10;0 '15'0 16,0. 18.0$·32100· 0,08 maxi 2'OO:niaXI'> O.GAO "0;030-: 075 _ 9,0.13,0" 17.0·20.0

. S'34700' 008 maxi' 2;OOmCJicl£ 'O,GAO '0;030: 0,75 _ 9;0"-13;0 17.0.20.0.$34800' 0.08 maxi '2;OO1\iiiJd.,: O.GAO -.0.030'0,75_ 9,0•. 13'0': 17,0·20.0531254· O,20maxl J;OOinaxl". 0.030 :~.010: 0.80_ '17;5;18;5.19,5'20.5N089GA 020maxl '2oo'niOx!" OGA5 '~U)35. 100_ 23'00280 190·230

0.38.0.48 0,75.•:1,00 0.035 .O,GAO·: 0,15.0.35 .,':"C" " 0.80·1.10

1.335/A.33SM,9Sa

:';::~'9(k

7·12 7.13

L· L-,r'" ~-- ~ (---\ r'-, /---'\ 00 0 ,----.

0 00 00\.- '-- -' \.-c \,....- '......- '-- '-- "I-~ V I..-; '-' \-I 'w" \...; Q f) 0 0 :~ 0 0

Page 133: PIPING DESIGN-PART-I.PDF

c c eo e (} c··o () C C Oe· 0 0 C () 0 '0 G .r;'- "

,-., 1"'\.-..., 1 OJ '\ -., "1 ~i

~1

ASTM standardsCHEMICAL REQUIREMENTS

NuaoCO\~. ASTM

; ..:"''..':~':;-

•... "',, .\., .. "."...::' :a.-.;./Cijt~~~~"p.,..iit·.....

6;00;'6.SOI0.SO-1,oo

."".. '")-' ~ ... ~.. ;

"".-"'";'",:"-

.~;:.:; ;;: :;' .~,

;;~1~';j;~<p,~::.l.. v I Nli{~ : :·.'AIIk,osI9!II'ts:Oifo.~06i ::. :...:; . . ;Z"':"::,."-=:-"~ \ .. ;" P21

;i~i~ ;~}t~:; :::~::: ··:,g~;i.iii~~;a~i·::· t::~~-95a,0:-l2(1iIGX'C OAO maxl <o,M;:mGxl' 0,02 -.I ·,·C;;'+'N14:;Ci'~.:v:~~Mo's,l,oo",·; .' .' tFl"0)12$lfiil'i;' OAO maxl itr.OS;iii<zxI' 002 -.I ..': Ofa.....J~Ii;:f,CI'·+- V.·.;MO·~I:OO~. IF2 A 350./:0'·12'iiiiilii.OAOmaxl .:O,'03"1iiiW 0,02-.1 '·:'·:·"Ci.·H.Ii>SO,32'%'.:·.: '. tF3 A~50M·96c'1Y:12'iiiciillh 015.1?5 ;'O'03'inGid. 002-.1 .i·' ·:·'·.'Cf:+'MO·SO:32'''''~··''... _lF9::':"4__~_

::$~f;'~t~ 1s:7·", 7G~37. .'.. :..~:~ ~'93;.0;A5"~·O·6O r7 ; . ".'·0.,.,."" .. . 2.O.~5;0;65' '.' --5-.'0;90,';,'1'10 .,.... "7 ". '. "'.;" --9-

..0.'45.~.~'O. ''6.5 -;c . '," • -31811 1.317/'0.~';0;6O. . . c;: . "'. 12 . A 317 M-9Oa"f9Od'10 .. " 21 Cia.. 1'O,-90"HO· : :. -2-2-

'~~8~i,~..~~ 0 1..~:~~25 0,06.0,10 'N:.0.~:~~~";;A1.:..0,OA~ maxi ~wp;-=9-:c~-~;"'If-----

',..].",:<::'..' ,", ~

...,;•. ':o~-. '. -c. ""WP3iO200'3'00 "WP3i62.oo;3,ooWP316l!A403/

.·5C$11$010,., WP321 A403M-96.IOCsCb·.lll$'I,IO~ ""WP3O'"

lOC$Cb':HlI$'l,10%;;11l:OJO~ _ WP3~8

N·:0,18'0,22 ' .....,,;;WP~-ll _

~:'~~'.- .', . £l~;:200..;:3,00 .. ' '. . '. . . 1P3i6'2,00.'3,00 .... .... lP316lIA409/

.5CsTIs010%, lP321 A409M·9511IOCsCb·.11lS'l;·10% lP3A7.

lOCsCb,+11lSI;10%"'TlI':0;10%inaxI~.N:0,180'0,220"· ====

WPl3O,12-.naxtl O,AO _ 'O,OS"""'I. 0,02 maxi WPl6 1.410/

'. ,.-1 . WPl8 A420M·96015' 1,25 WPl9

. ~ 1.515170 0\ 515 M·92

5560 1.516165 A516M-9O

--ro-

.. '6;0C):'6;5~i O,SO. 100

55· -_"_'. 0,20-.10,60.1';201.516/ 600,23-.10,85.1,201.516 M·9Q 65 0,26-.1 0,85.1,20_-.,.__..........:7..:0_ 0,28 maxl 085.1;20

normes.•·ASTMCOMPOSITION CHIMIQUE

ASTM 1~·\l~~\~tff>.f';Mn ;I,p'::j;~im~".1 ~ Ie; ',.~.·,K;31U$I 005 .0,15 <O,30:~0'6O 0,0250025' O,SO -.I I 265.335.

11.33.51 ... ' ~".,Ki2mO~ OOS'0;15:0130;,.Oo600,025 ::0'025: o.so-.l·- .". 1,90.2,60. A.33SM'9sa~ .. K91560,: 0,08.012'0,30·0,60 0,020.0;010· 0,20.0.50 0;40maiO 8,00.9,50

.' '. ~:.~~;~~~:,::3 ~~·i~!~:::; ;~::::~;:o:::::': :~:=1.'3.501 .•.... ,tF2':-. ' .. :.;.'.'7.< '035-.1 O'6Q'>"1C35' 0;035 "0.0:.0. O,15.0,300;~~:mllxh· O,30maxl1.350 M-96C. ~::<::::,-.O,2O-.I l)'90'mGid~: .0,035 'O;~O,. O,20"O,353;:l0~3;10·O,3O-.I

... '.lF9i'..: .<·:·..~··",/:,·02O maxl '0)10;:'1';06' 0,035' ,O;~'; 1"60.1'2~· O,30maxl

:::~'~3" .• :;. ·":h.i,~~i: O,13~ .~il~~;i .(),035 $,~~~:O,15.0,AO ~¥:;~~~~,:::'''''·.':O,05.0,21.0;S5:;:O,80 0:035 :0,035' O,15-0,AO .... O,SO·O,80~'·".';~:O 15~ 0?0:;'0;600.0350,030.0,SO-.l·A,OO. 6,00

1.3171 ~:':"'::":~ 0,15"""" .0,30.0.60 M300,030, 1.00-.1 .. ,,·8,00.10,0.. . . . '.~ '.,' "-".".,,,.O,OS.O,17 0,"0·:0;650,035 0,035; O,SO·O,80 I,· .1,00.1,50

:~&71M'~P48·:?''F··7.'ii,O,05~0;17,0;"0~.O,65· 0,035 '0,035' 0;15.0;AO·;···: .".' , 0,80.1,15II .~. ';;,";;,:: 0,05-0,15 030"0,60' 0,035 '0,035,0,50""",1 .. , 215.3,25

,22~ "":'''':',:0,05'0;150;30.0,60 0,035 0;035·. 0,50-.1 2,00- 2,SO__-.,._+-:",,9:,:1:':;:'-i-- .•.....•. ,·.,,,.008 -0,120,30.0,60 0.0200'010 0,20 ;O.so 0;~Oinaicr:·8.00. 9,50~••·"".·",oc, O,08maxl2,oo""",1' 0.~5 0.030:1,00-.l8;0;U,O:.18,O-2O,O~ ·.··'i~j···'}, 0.035maxl :2.llOmCi.L·O,~5 0,030.· I.OO-.l8,O~13,O .• 18,0.20,0

/ ~ . _.:'~,:::O,15-.1 2;oomaxl'O,~5 0.030: 1,50~19,O;22;0 2",0.26.0 .1.403/ ~ " O,08maxi 2;00_· O,~5 0,030 1,00_10,0.1",0 16,0.18,0o\403M-96~ ,,~·,;·>,~'035maxl 200_" 0;~5 0.030 .1.00-.1.100.160 16,0.18,0~ -·.,'·,·""'.O,08ma'" 2oo_·0;~5 0,030 1,00-.1 9.0·130:-< 170·20,0

.. ~'.'~;;:::.> 008_xl 2,00_, O,~50~0301.OO-.l 90'.13:0. 17,0.200~"'"''",-" 0,08 -.I . 2,00 maxl., O,~5 0;030 1,00 maxi 9,0"13'0. 17 O· 20,0

......__--+.-::.. ~WP;:,.".~ -eS312~' O,020maxl .100'-.1'" 0,030' 0,010 0,80-.1 17;5" 185 195.20,5~ ..,530A00;, O,08.maxl .. 12;oomaxl. O,~5 0.0300,75-.18.0.11,0' 18,0.20,0~ .S'3~03~O,035maxl2,oomaxl'; O,~5 '0.030 0,75-.1 8,0.;13;0" 18,0.20,0~ ":S;I1008)O,08maxl '2;oomaxl; O,~5 0.030,0,75maxl 19,0:22,0 2~,O.26,O

1.409/' ~ .531.600,'0.08_ 2'00_; 0.~5 0,030' 0,75-.1 .100,1";0.16,0.18,0.1.409 "\-9",~ ,531603' 0,035 maxl 2;00 maxl ': O,~5 '0.030' 0,75-.I ,10;0'.15,016,0. 18,0

.~ ..532100'0,08_., 2,oo maxll'· O,~5 0;030, 0,75-.190:13;0'.. 17,0.20,0~" 530'00:,0,08-.1 2;00_", 0.~5, .0.0300,75-.1 9;0.13,0; lM·20,O~, ''$';1..800:: O,08maxl·.· 200 maxi,'. 0.0AS0,0300,75 -.I 9 0:~13 0.: 17.0· 20.0

~ -~;;,.'-,:,'·.:;·,_·· ..'S·312~·, 0020-.1 '1;oomeiXl"':0;Q30' '(l.010·' 0.10-.1 17:5"'185'195;20,5'. ·.WPl3 ...... ">7,.0;2Oinaxl 0,31'.0,6>1: 0,050 .0.OSOO,13 •.0,37:3,20.3;10

1.420 / ~. ··0.3Omaxl060~l,35 0.035 O.~ .0;15 ·0;30 0,"0 maxI' 0,30 mqxlA42()M·96~ O,13..naxJ· O,90.maxJ: 0.030 0.030. 0,13.0.37 8;AO~9,6O

.. WPl9 ... ·'·;-.-:.. 0,20'-.1' OAO.'106 0,0300,030: - ·I,60.2;2A1.5151 ~ 0,27-.1 0,90"0'1'; 0,035 0.035 0.15.0,~0

A51SM-92 ~' ." Q,3·I-.1 0.90_ .. 0,035 0.035 O,'15.0.AO7.0 "' 0,33-.1' ,l,20maxr 0.035 '0.035 0.15.0;~0

7.U 7.15

Page 134: PIPING DESIGN-PART-I.PDF

co Cd 0- e, 0 e (j (JOOO 0 0 0 """" 0 0 I""', (1 ,r., ':J ,") .- '1 --- : ---,~1 r) ~ -; ~ ~

l.___~ ,I ; i"--.;/- J '.-/ .:~ """-;~

,?

normes,ASTM ASTM standards

790179OM·95

7381738 M·90

5371537 M·95

5171517 M·93

533/A533 M·93

5731IA 573 M'93-a

A6621'A 662 M·93

,A 7361736M·as

c

A

A

8

586s70

A·CIlA,C12

A"C13C·OlC-Ci3

N : 0,08 . 0,20 %

.; Cb.VO,08%maxi

N:O,20·0,30%-WO,50.I,OO%Cr.o3,3Ma+ 16N~40

0,35 maxi

3,00.4,0010,50.1.00

0,15.0,2511,00-1,301 1 0,02 miniO,I~.0.2511,00.1.301 I O,02rnlni

2,50.3,50

0.08 maxi I 0.35 maxi 1 0,07 maxi I 0,04 maxi

0,15 ·0,25 11,00 .1,301 J 0;02 mini0,15.0,251'1,00.1,301 10,02 mini

0,15.0,2511,00.1,301 I O,02mlni

0.08 maxi

CHEMICAL REQUIREMENTS

Chemica/reaui"..."" per..'" N<.anco\ ASTMMa I Cu I V 1 Nb'Cb I Auk.s' Other. Gtacle

0,18' 0,28 8 :0,0025 %moxi'.Zr 0,05.0,15 % --A-T'i---0,15.0,25 0,03'.0,08 ,8':'O;OOO5"0;OO5'X-nO,OI.0,03,. --80,20.0,30 a: 0;001 .0,005 % ---c0,40.0,60 8:0,OOl,'O,ooS,%,-nO,OI.O,10% --e0,40.0,60 0,15.0,50 0,03'0,08 8:0,0005.0,006% --F0,20'.0,30 0,03'.0,08 8: 0.0005 %mini --H

'0,50.0.65 ,8:0,001.0,005% --J0,45.0,55 8:,0,001.0,005% --I:O,45~O,60 8:0,001.0,005% ~0,45·0,60 8:0,001--0;005% --P0,40.0,60 0,03.0,08 ---a0,10- 0,35 0,06 maxi Ti : 0,06 % moxi --S0,45·0.60 0,03.0,08 8:0,001.0,005% --T0,45;0.60', --A0,45.0;60 --B

0,45.0,60 -C0,45.0.60 0

Cion 1Ciou 2

V.I;) ·U.~'IU.DU·I.IV 0,035 0,035 0,40.0,8010,15.0,21 070.1,00 0,035, 0,035 0,15":0;3510,10.0,20 1;10.1;50 0,035 0;035; O,15.0,3Q10,12.,0,20 0.'10.070 0,035 0,035 0,10:0,400,10·0,20 0,60.1,00 0,035 0,035 0,15"0,35]0,12.0,21 0,95.1,30 0,035 0,035 0;15.0,35;0,12.0,21 0,45'0;70 0,035 0,035 0,20'0,35'

"'0,10.0,20 1,10.1,50 0,035 0;035 0,15.0,300,12.0,21 0,45.0,70 0,035 0,035 0,20·0,350,12·0,21 0;4S:0}0 0,035 0,035 0,20·0,350,14·0,21 0,95·130 0,035 0,035 0,15·0,35:10,10·0,20 1,10.1.50 0,035 0,035- 0.15.0,400,08.0,14 1,20.1,50 0,035 0,010 0.40.0,600,25 maxi 1,15'-1,50 0,035 0,035 0,15:0,400,25 maxi 1;15·1,50 0,035 0,035 0.15'0,40"0,25 maxi 'US. 1,50 '0,035 0,035 0,15.0,40'0,25 maxi 1,15.1,50 0,035 0,035 0;15.0;40

O,Z4maxi 0,7,0.1,35 0,035 0.035 0.15: 0,50,1

O,2J-tnOKi 0,60'0,90 0,035 0,040 0.10.0.35:,0,26 maxi 0,85'1,20 0,035 0,040 0,15'0;400,28 moxi 0,85.1,20 0;035- 0,040 0,15,.0;40O,l4-maxi 0,90.1,35 0,035 0,035 0,15'0,40O,19m"xi: 0,85.1,50 0,035 0;03S 0,15'0,40:0,20 maxi 1,00',1.60 0,035 0,035- 0;15.0,500,07 maxi 0;40·0;70 0,025 0,025 0,40 maxi0,07 maxi 0,40.0,70 0,025 0,025 0;40Il1O'"O.OTmaxi 0,40·0,70 0,025 0,025 0,40 maxI"0,07 maxi 1,30.1,65 0,025 0;025- O,40maxl 'O,Olmaxi 1,30·1.65 0,025 0,025 0,40 maxi ,

0,24 maxi 1,50 maxi 0,035 0,035 0,l5.0,5O,

A 7901 ~-- .... .,... 0,03 maxi 2,00 maxi 0,030 0,020 I,O'maxl

A 790M·95 ' - :' 532760 0;05 maxi 1,00 maxi' ' 0,030 0,010 J,Omaxi

COMPOSlTIONCHIMIQUE

ASTM I' Nuonce 'De~i9nati,'anl COmpoSition"chimique %Gtacle, _ UN5 C I Mn !P~oxi15 maxi I 51 !I)lI, I Cr

""--'--~-ir--.,.-- I"" ,,~, ,..~ .. -i ........... : .. , .... 1 i i

7,16 7-17

Page 135: PIPING DESIGN-PART-I.PDF

"-----."""\,......"

. TYPe' AI .s:e.:-at~;53 -96

-_/

-,')'~...p-:J.""'" .,.-"o

.....w187Ha

I'"']r--.--y

·'-:-~":":"'~:-:;4

..'- -Qi~W;:-~:;

o

--.,..,.....;·'-',···-'l;;;,:f"":'""~}"': . .it¥i+I.: t; :~;.....:..;;..;,;;..,;;.;.."'"""".....::.;7.-~A::~ ~',~:c:""';'')d;C;''''l... t.. .0 •

oo~,'-....-'"(;)ooocC'O"""'. ~. A #>..~/ U' VI!1c!

normesASTM'-,CARACTERISTIQUES MECANIQUES

'ASTM I~ '"m~:;~~/T_q.m:~·~5~a~±~,!~G.V·:,~i~~f{,. ~.; ,.;'~~.:' 1~ '.<>;:;':~~~~ ~~;/,~,;6~~.

:fI§;~~~;~ t-;:':-:. . ~'5 . 70 f;~~~~b"i} 36 s;;·; :f]~);.,_~{~~:~~ ~.-~ ;;;!r~···· ~ ~;·..·:~5E~~f' ~~ '. ~'::;~:t~:·::,·

r~ff€~!;~ . ",~!~?:.\ ~~ .~':~:~~EE;~ ~~ ~~:-~~st-:.~;:.~i(f~I·~,::':,,· -':Jt~tt~I ../:' :;,::?; ..'

:)~:~~~~~E ;.~~: '::~:~~~_~:' ~~ .··,~~;:~f2 ~~ . 'H":~:~'., ::C':F.k ....85·· .... 70 ·:.. ··275''''',,:·1, AO T'" ":'20',.

...&#~;I:i: i·::~Ii~:~f-A..1I2M·96'c.'·F3OAL :.··A85'·: 70 .170:·.····: 25 '30

.;:~ 515::· ' 75205-','.;':' 30 '·30'.~ 515 75 . 205 30 30

. ~. ASS.' 70 170 ., 25 -30·..·F321 515'·' • 75 205 .:. 30 30~ 515' 75 . 205 30 30~ 515" . 75 205· ."', 30 30:F.... · 450'. 9A . 300 AA 35'~ 620 .; 90 .\50 ., 65 I" 25

:.. ~. 750'.-&95 .' 109· 130550 •·,:80 25A.192/ ... ; .' .A·192'"M:91'··.··

CJc"c

~ : 690100-550·. J ' 80 '16'A193I"~ 760 110 585',·. 85. 15A'193·M.,6ciB7· .69O·B6O 100·125 515-720-, 75·10518'.16'.'. -. :'~ 515 75 7205-:.. 30 "30. . ·.B16" 690.• 860 100·125 585.725' 85·105 18-16

.•. '<:2M, 3, . c.

Al'4l: .. ~ .Ai9:, M·96 :4= ..____....:........1..~..:..~~._._.:---,.----4i--------If--,.-~.:....t___:_---t__--'-....:....--

.248·3S2HB ,·.24·,38HRC·' 2H2A8·352HB ".:2A·•.38HRC· --3-.248.3S2HB ..·.2A"38HRC· A A'194/228.271HB "·2O'28HRC' !> A 194M·962A8·352HB ..' .2A • 38HRC 7126·300H8 :6Q·l05HRB _....:8:........1- _

7.19

Page 136: PIPING DESIGN-PART-I.PDF

c c c CJe c, ce, o 0 0 a 0 0 (J 0 0 0 0 r--: ,""'" ~ ,1"\ ~-,

",') -, '"\ ~ .-., ~ --., '\

~ -'

11..234 /A 234 M-96e

11.214/A 21C'M-9Oa

11.216/A216M-93

11.213/A213M·9Sa

11.209/A209M-9S

11.2041A 20C M-93

WCAweiweeWPaWiiC

.WPi'WPsWP9

our domancle I . on~II

IV' domando I' :On.iI

maxl90HR8

_9OI1R8'

_9OHR8

maxlnHRa

IIlCIIli 9OHRa'.

ftiaida5HR8

maxI'85HR8maxla5HRa

maxl90HRa '

niaXla5HRa '

IIlCIIli90HRa

inaxl90HRa .

maxI-a9HR8

mciXJ 81 HR8 ,.''0\axl77HR8maxl8SHR8 .

.maid a5HRa

. maxl90HRa

. maxi 2SHRC .

. ..aid 8OHR8

" ,

maxl·197H8maxi 217H8

_'192H8

moxl 192H8

1IlCIIli217H8

_192H8

maxl197H8moxI197H8

IIlCIIli 192H8.IIlCIIli 192H8

maxi 163H8

maxi 163H8

IIlCIIli 192H8IIlCIIli 192H8

IIlCIIli 192H8

1IlCIIli2S0H8

IIlCIIli 163H8

IIlCIIli 163H8~IIlCIIli 179H8

IIlCIIli 153H8IIlCIIli 137HB

1IlCIIli.I46H8

·maxll63H8

;.~; .: ':....

·i=-·;:.~.~',

.;. :~

• ;: -.J:' -':." ...c~

-""-';--",:

~';':-;~.

:::~:f::::~'::;

.:: ~.;"".;_...;'"

.. ...:--:.\.....

.=. ~ <":.''''='":-.

::~:- - .

·!:"::·~JY·:

35·

3S

: ..•••-'::;'":.':.:1

..:. ~~ ~:.

.,.~".::-.;t;';.~;:"~::

. 3S' :

". ~-::;;-~,: ..~~'~?"

-',' : ~-~~~;:"~;..:~:).~:

" ;;',~c.._.:-~;~.~~:::~~~~_.

~.'~':~:'~: .-:;:.,.~~~.~~~,~'.,

,. ··.-~';;;:~""I-mOld21aH8 t ., "':·':-7.J:,"~~i~~.?~·~~~1

t=,,;";<':":~i ,"

;':'i'O;::'$; :':;:2f~;;~~, ..

·'.'i·.'.:- ''';"~';!'''-,,~,.;;l~-J lt9H8 ,.....

--),:. ..~-~:.~-~~("!~~

:-!.·:"~,L-·:;::/;tl~~ IIlCIIli 163H8:,'c·,·'•. '. '~'i-;,~.;;:'::'#;I . IIlCIIli 163H8 I. . . , I

::;··\:~;t~~it1 ::::~~ k I I

ASTM standardsMECHANICAL REQUIREMENTS

:;~~1i~~r~.a:rI~~I~~1~:r.~,=·t: ASTM

:,~·:;,:;~::~~::~1.::::=.1~.·'· .. \ '. (,. .. i

35353535

11P310S ...·:\SIS~:::l"C' 75 -.-r c··205 . '1 30 1-'----*.JP316 . 515 '...... 75 '. 20S 30 35

.....lC/A21CM,9Oa' ,,'.

11.216/ WCA ·415;585' 60.85 ·205 30 24A 216 M-93' weB 485, 6S5 ,. ' 70·95 ,2S0 36 22

. wee '485;'655' .70.95 '275" 40 22. WPa' .c15;5a5,··'· '60.85:' 240:· 35 L30 T20

A23C/ WPC485'•.6S5:. . 7.0·95 275. 40 L30 T20A 234'M-96e wn .380·550' 55· ao, .. : 205 30 L301T2.0

.. WP5 415,585' 60.85 . 205 30 L301120WP9 :415',:sas. . 60 t a5 205. 30 L301120

normesASTMCARACTERIISnQUES~~CA~I~~,ES,;, " .' 'Cod. diq•..•, .....~.~M 'N~,' ..ti~IT4,',:'-'rijlIh,<: 10000000:::=YliiId~,""''. 'I AI100ig 18oil9,' .

~oil"·,·:~.HW~~,WL:;;.~11;h"b.i::;:~· <~iiiWk..~._~':~· ;':"':~i~l;';bi •. ·· inl~i~~'-------r--:-:--

"~'M I;Ji~~! ~'~~I !!:~~~-9~'H+ :(;~~;j5~~~~ :;:i:o :;2:~~;~,~; ~ '.::: ,;.

:~~ '~.•.~~ ~.:~:'~~"; ~ ...•~.,.•

:::1~-93 ~~~:~:E~iE~~;: ·~t:~ :'~'<;~~E~',;~;~ ~r-'.11.209/ ~ ··,'.'380'J·, 55 ,205,,30 30

U09M-9S: ~''-:,:~~~~~':~; ~~ .::,.~.~,' ~~ ~~ .

i";~lr~~ E~E::;L ~I··T21 ·'415,,"'. 60 . '. ,205.:-30 30::m:::. 4\'5····· ,60 :205·' 30 30

11.213.1. .~ ,.:585,':',:: as ,~15':: 60 20A 21311'-950~ .. :,'S15:. ,.. . 75 205 30 35,

1P304 L' .'4a5~;';!' 70 '.' 170' • 2S 35

]·20 ]-21

Page 137: PIPING DESIGN-PART-I.PDF

c C 'C; 00 ,a 0 (;" () ·0 00 0 0 0 000 0 00 00 0 '0 0 ~ 0 O. 0 ·2 .j (J n

,;.

: ...~'" .

'::'.::1.

' ..~

.-.;.;

;~':;..

":;":"::":

~...~':; ".;.;,..;;.'-::-''':'',-''''

:.;"f..~.;-;~ .,!::-7'~

-';! ......;: ..~.~

;.-~('..:\':::':_0:'-: ~

,.. ,:.;;:" ~r" :

..:::~/.~,c.~.:, ..;_..:-;:7.;~t":i'_:::'·· -.-'..

ASTM standardsMECHANICAL REQUIREMENTS

'~~r~I,~~4~::,r+t~1~~~~=1 ASTM

,:: :"'" ;" -.I,19M' ,;';,"',C' ", ",': lM'l1.CJl

_.",,<_~,,':.'.'. :::::: ~;'~";:':::,' "":,,. =a;:~-96a""'. ""',y,, ' _248H8' :,t,,:,C,':: ,:,,: -, ",,' , WP91'.:- ," -.l201H8 --,'i'IiGiiI:92l:IRB,'/ ....:.;3:::04~1----'

,'" .. ", _201H8 ,.';,'IiiolliI.:?2~'('" 304l"-, _21M ,;:illGlll9~HR8";" , ,.,,', 3105

'MalCi 21M ::',~~RB~,.,: ' ,C,,," -' " , 3i6

=~i: ~1=f;,~:;"'3~l IU40-96a

_201HB ';;";iii1ii!i92HR8';.,' ~

,_;23H8 ii.==:>:~~ ~=::~: '\~[51s: '>:,:: .:<: ..::·~~i;;::'::~l1-I----

i~;;==:::~ ~~~6S A 249/,,'iiiiW~RB'~',· TP316l A249M·96a

'liIGid 9OHRB, ":, "TP3'2i'", :niQXI'9OHRB' TPW; ",)n"xr9OHRB:o:': ,,', ~TP~3;::48:...j.1 _

_ lA6HB :<.-;nci.I.8OHRB,~ ; TI'_ 153HB '\iioiI.rBIHR8' '::' ~

_ 137HB \', .,77tiRB,::" Tlb I /IIlDl(/ 163HB' ,·:, ....UISHRB.:' T2 A 250_ 163HB ,"-:'1ilGxI:85HRB:.;: ' TIl ' A 250 M·95_163HBL;"1IlDl(/'85HR8'': ' ':, ---n2::: ::: :~;~:::::,;.:' --TP3~T22~04..,..4I----_ 192HB ::"",iilalil:9:0HR6j'; ""TPiOii"_192H8 ;;:iiIciJof90HR8;:" TPii6-.l192H8 ',-,'iIIaid.9OHRB> '"'iP3i6T'_ 192H8 ;,0 III@WttRB ' TP321 A 269 ·96-.I 192HB , ,'-.l9OHRB': TP3Q-.l192H8 niiW90HRB ' lPUi_ 220HB :,_96HRB .;;.s~3:.:1~254:;'J.-,....,.....,.._

, - - T 304 A 270-95a_ 192H8 fP304 '_ 192H8 TP321 A 271 -96_ 192H8 TP347

T A2U/-o A 213 M·93a

....-~'.:; -

. ~ ',: -.' ;--:.'..:,,::.. '" ..~~..:.. ~~:.:\- ,:

94 1'300 I 44 1E'),q:;<':35:::~'X

108 L 550 I 80 h':':>F25'li"?,',

A 270-95a; ryp;-30l:_, ','," "TP304 :515'., -~-~~"20S'~- 30, ,35',

A 27l-96,: ~,,515,; 75 205 ' 30 35'", 'TP3A7 '515: 75 205 30 35",

A213/ ~ ,3~ •.450>,' 50.65, 185 ,27 '2842.3 M-93a~ 38,0.515, ' 55·75 ' 205 30 25

, " D' : ,415"550', 60.80 230 33 23

75 , 205 1 30 F'·,:,".\::40'~~'P'

75 !" 205 I 30 k"j':'::l;.AOif.,;,""',~

90 I., ',.450 I 65 1f.";J:~~;'2$i;:,~,\" :',

75 I, 205 ' I 30 E".::.;':,~O.~',~:"

71 I, 220 I 31 11:,;",7;',:35,',',,<,:

75 I'", 265' f 30 I'i: ,~.i,:iilk;'.:i/,:

70 I 170 I 25 1:'·,,>~4bI,;:t;·::.·,'

75 I . 205 I 30 k;':,/~":lIli.i::C:,

';;,122.', ,,',,',::::415': :::" ,I 60 1, 205 I 30 p, '> 30':;'" ,';"iTP304 ,,' '; ;,'" ~',' .':TP30Al, "''''';;'',',~':" k ,

.......,~l<~' I ~. I ~. I ~ 'I~'S31254 ",' .~,;" - - -

normesASTMCARACTERISTIQUESMECANIQUES

'ASTM 'Fi{:;.'~*~~~t~~.:ttM~·~.I~:ijIL:i.,._ .... -:. •. '._ " ..... ,_ ........._ .. ,., ...- ... - ii'

7·22 7·23

Page 138: PIPING DESIGN-PART-I.PDF

.~o~{~

ASTMstandardsMECHANICAL RfQUIREMENTS

5~~JGftol "g~=e2'l~':~Thoc/~~~d' :=I ASTM

•.~j.'.'.i ••. w•• ~.>.i•..·..<.,i...•Y;.·••..·..·.i•.··(.;- .- .- "-,,." <'",-:,.,:>:--:' .-,'-,_, '-,,<,,'-.:: .. -.,- _·.-·~·c

o.ilti, e-.."' __ .C-':':',.''',''·'_'_',:- .. -- .. : ,._'..:.- ':_',

CD

A299.1A299M·90

ADS/ADSM-90

.!.3

hA3MI~A334M-96

9"Ii

ADU02/:£::]U02M-93o

A"

c

-50

-100

- 50

-320-100

-150

- 75

- 75-45

-45

-195

"100

",

-

rnOxi9OHRB·

maitr9OHRB' .._85HRB(· .

·maiJ 9OHRB'",i., .......,.9OHRB:

l' ;,,, ,_.... '':::-'-~.~..:- .......:.~~" ~:;:,,~,:~.~~:: .. :-,:'"

'-. ,": ., ,~

.--; •.-' :;;:,,:",.:;•• ;.-,

~:

~-i '

./:'." -~.:~'';.:: '

'~',_:-.,._-,>-.:0-:t.:;

I :','.;: .

1': ......~';'~~"

I.~:

F' '0'

mald 19OH8

_190H8

mald 163H8

...... 190H8·...... 19OH8

1P304TP3041TP310STP316TP316l1A 3121TP321 A 312 M·95aTP30Trni

5312541,-:J.~·7,~.~'i ~

50:1 - ,'. i..... . ..... 17 A 320 150 l maxi 223H8 ..t ':iriciid96HRB' . U dl AUO M-94a

.' -,45 -SO 1- 100 - 150 --3-100 -150 --4- 45 - 50. ~A3331-75 -100 -nA333 M-94-195 -320 8-75 -100 --9-60 - 75 --10

---1-1~. 550 . 80 450 65 .U2·

_ __......;;-;.,.+:;;.:.,;,:'''.;.1_...." 450::-'" 65 240 35" .' Us''';..... 1.· • 380' 55 205 30 35:'

"" ~.," 450· 65 240 35 ·30; .. 'A#~/\ ,'~i" 415 60 240,:35:30.A3MM-96' --....:,;......450. 65 240 .. 35 30

• 8 690 100 520 75 22' .. ' ~. 435 63 315 46. '28'~:450 65 240 . 35 18i

~'.<~"~~~~~.::. ~~ f:'o ?o ?;"'~iE''1I'316 . ',515': 75 ··205 30 ,"', ';\:35/,12S"

Ul.2J "~':'A8S '.' 70 170.·.·· 2S ':,"H35'1.125A 312 M'9Sao~'. . ..·515". . 75 205. 30 ~""i1351i12S;:.

.~ ,< .,.SIS . 75 20S 30':US1,t25'~ " .515.; 7S . 2OS' 30 ·.·1351,T25~"650 •. 94 300 Ut3SIT25

...... 1'108904<"'.,490··. 71 215· 31 :.'. ·135IT25·/A~~/.:: 2!Z:......... '860. 125 n5 105 ." : 16:AUO'M'94G ,'88dl 515 75 205 . 30 '35:.

"':1 '" 380 55 205 . 30 1351·T2S .~ 45065 240 35 "L30hT20~ 415 60 240 35L301TI6;5

A.~Ur 1: 6 '.:." . 415 L30I1I6..5. A333M-94 :.7,. 450, 130/J22.. ''8 690 l22 ;.,. 9" . • 435 ·U8.

380 ..... 55 205'· . 30 L30I120 .380 55 205' 30 L30IT20

: 415 60 '205 30 L30 .T20". . .' 415. 60 . 205 .30.· .r' L30IT20

A335 t.. 415 • 60 205 30:L30'f;T20A;3UM.,sa 415 60 205 . 30 '. L301120

U5 60 205 30 . 130/120415 60 220 32 L30 leno

. 41S ..... 60 205 30 L30 lT20.

PIPi"P5PSb~U3S1~A33SM-95a

PitmPiS

Page 139: PIPING DESIGN-PART-I.PDF

()"C e e ~ (0 c .~ Cr~ V (""'\ '!"'I lJ ~ t'J ~ ,loA '''-', r""" /'\ r".. /"'., -- ..... ..\ ------., "'"' -\*.J) ,

'-j -hJ ~-> L; .,----" ',.J '.",:~, " , ~

normesASTMCARACTERISTIQUES'MECANIQUES

'ASTM 1='·.::=i~i~.§lGlr~n.1 ~f;~'·~

.A,:-m::'93ot;.~. 1lS;.I35 ,:.~. . .... 100','16, .. :~'.8' .' . '.;'19,,,'931);'..: 11'.13"- 690'. 100 '.16"·' '.

_ .. "':19.'11$0;;':'.; 11'.135' .• :690' J 100 ·16,.",:-·";i:79";\93If·:c.• 11'~ 135 690 ..'. 100 16' .'

.·.•~•._a.*·'. • ••••_ .a..... .aa •.•.

ASTMstandardsMECHANICAL REQUIREMENTS

'~~·~~r··~~/H~.ii.. 1~lSGldO,~~pai~""~""'=1 ASTM

~~il~ i ~j'~"i" .""'~ ,~~:~~:; ..; ~5171

.:~;~.ftaJCS\:- "...... ~ 517 M·93:,-;;~3S.~la-.e;~ . -M-'i'JR~35'1.ild'.lS?:.: :". -,-'~RiCI.';351'".Us·", ~"T~:RKtF3S'l,ld~~:- '" --5-

.',';ROCt~351'Rd'~,> ..•...:., _-::~...:-T:;+- _',' ," "':',' Claul'

. ..... . CIau 2,533/.".:0:.';'. ".:., c-'-- :.' CIau 3 '533 M·93T"·,:., CIau I 537 I"_.J....... .': CIau 2 537 M·95

-:-;~;~'" •. , . <~. , .. :: 573/

70 573M-93..... ' ~

.. ', B 6621,., . '.. ,'. C 662M-93

~ •.01

A.C!2 7361~-Cl3

..... C.OI 736 M·IIC;.03

.... . 7311,~ I: A ~~

tIlOXI 290HB ' niaxl30;SHRC . 790 I:'.: ·tIlOXI27OHB '790M-95

AS.17 I11.517 M,n

:.~~

t:;~-93; EI ~;~:E;~E~t lE:~~ ~~-:·,S~:·;· -:~ ,':':~/~;b,"~:~i~;,~;~':~::~ '~::;~:~~:::;~:~~:1:;,' ~~)' :~ ':'~~;,:"';

~:i:'~-9:i:" .'::~:'; :;~;::~~:~~;' :::~ ;. <~~~:.: ~~ .:.,-~; ,;,,~,. 70' ,.···.·,180~620.", 70. 90 290. . 42···, '.21

11.6621 • A. :400:.540::::';'8;' 78275" 40' 23,A 662 M-93 8-.:4SO;'585~.::, .6'· 85275 4023,

. C.'; .-:··48' /620;··.. 70. 90 .... . 29'·' 43' '. ,·22..··:Aiell;;· ",>620;760,:.( 90·110 550·:. 80 ·20

11.7361 11.:02: ::"_49'~'635;~' n· 92 450 65 .'20'

A736M'II~:~; ";':;:;~~;~:' 1::~~ :~~" ~~ .';~.-:-::=--:----.,~C::;.;;.::03:=:.;;._ '::T':·62O.;,·761i',::"· 90.110 S50' 80 '20

:;::~'90 .A. ::~s'~~i~;;~¥.Y:;~ .75- 95,' 310 45 '20

A790/. 531803:· ··.:·":'.620::"::c;;.~· ". 90 450· 65·; '25'A 790 M-95 532760 ;;.··7SO"8V"'c. 109.130 ',' 5'0''', 80 ,'2"--~-:'-.j..;..--,: ,'. "-";",':" ..

7·29 7·29

Page 140: PIPING DESIGN-PART-I.PDF

••'.••.1••..

Page 141: PIPING DESIGN-PART-I.PDF

SELECTION OF GASKET MATERIAL, I .

ABSTRACT

Gaskets are used to provide seal against fluid transfer across static mating surfaces. En flange gasketsfor piping the purpose is to ensure the gasket is compressed sufficiently to maintain sealing contact 'with the flanges under maximum fluid pressure expected in the system. .

. . .With no relative motion between components, the flange sealing seems elementary. Unfortunately itis the lost protluction, unpleasant working conditions and wasted energy have their origins in leaking

. offlange J9ints. ,.

Correct selection ofgasket material, good flange design, thorough preparation ofsurfa~es backed upby watchful preventive maintenance Will avoid pitfalls. ./.

Thi~ paper discusses the selection of gaskets for pipingjoints.

1.0 INTRODUCTION

Since gaskets seem simple, their importance is too often overlooked.. Leal.')' pipe flanges: joints ofallkinds cost the Indian industry CTores and crores of rupees every year. The problem ofsealingthesejoints gets tougher all the time as the industry is expanding at an ever faster rate and its arteriescarry everwidening variety of fluids at ever higher pressures and temperatures. The handling ortrallsferring ofnewfluid/s may also yield requirement ofnew materials and methods to seal thejoints..... ynderstandingiknowing their selection and use will.cure one of the sorest spots in today'sastronomical maintenance budgets in industry.

Sealing agasket joint iSnOl simply slip in a gasket and tighten the bolts; if the joint leaks, keeptightening the bolts until the leak stops. Gnthe contrary gasket seals require proper designing andselection for produCing effective seal.

The.purposeofa gasket is to pro\ide barrier againsta' fluid across rigid joint surfaces. The gasketsare,made from a variety ofmaterials to meet varied ~pplications encountered in indus;ry. The basematerials of gaskets are often treated with other materials to get better surface properties encouragingor discouraging adhesion to joint surface/s or p[ovidingchernical compatibility tofluidls in the

. systems. .

In spire ofvast diversity, all gaskets meet a numberofconunonconditions.in design and operation.A,.1l gaskets must conform and be softer than the faces/flanges so thattbey can flow in joint surfaceimperfections or irregularities when compressed; gaskets must be impermeable tosealfluidseffectively; gasKets must resist deterioration from chemicals and corrosives carried in the system, inother words gaskets must be compatible with fluids being handled in the equipment; gaskets mustwithstandheatltemperature and pressure of fluid.

2.0 INF·LUENCING FACTORS

The variables that must be c(;msidered in selecting gasketing materials are the following factors,.... \w' " •

Page 142: PIPING DESIGN-PART-I.PDF

C"J]'

()](~"

(']el,(i

()],,-{.lC] 0,

C

()](3

c]()]()

c~{'i

cJOJo0]

J(),JoJo~J'1- 2 .e

!'4

-2-'"j

2.1 Internal pressure

2.2 Bolt force

2.3 Temperature

2.4 Medium/fluid to be sealed

INTERl~'AL PRESSURE

This factor refers to the requirement that tbegasketingmaterial must seal with the available boltforce such that total force is greater than internal pressure that acts against the gasket closure.

BOLT FORCE

This factor refers to sele~tion ofgasketing materials on the basis of available bolt force. Hardermaterials require more force to seal, properly. If available force is less then softer materials are to beselected.

TEMPERATURE

This factor refers to requirement that gasketing material seal effectively under maximum temperature'condition of fluid being sealed.

MEDIUMIFLUID TO BE SEALED

This factor refers to the requirement that the gasketing material must be inert/chemically compatibleand impervious to the medium/fluid it is to seal.

3.0 GASKET AT WORK

When assembledgasket is squeezed and is subjected to compressive stress. Fig.! with joint atworking conditions hydrostatic end force in pipe 09ress~evessel tends to push the flanges apart.Bolts, gasket and flanges expand.' Under this situation compressive stress in gasket maybe relievedi.e. the n~teffectisless contact pressure on the gasket. The pressure tending to force the joint apartis known ashydrostatic~ndthrust. "'Ole hydrostatic endthlustor bursting thrust is 'a product ofint~malpressureandare~ofaperture in the gasket. It is equal to load applied to bolts to firstpreventtheparts blowing apart. Bolts must beJoaded more than hydrostatic thrust to maintaincompress~onin g,asket when system under internal pressure, for effective seal.

. .

The gasket is also slJbject to side, load due to internal fluid pressure tending.to,extrudeitthrough theflangefaces.Toresist~xtru.sionit is Ilecessaryto make effective compressive stress to be greatertbantheIllaxiIllUmintemalpressure likely to be encountered, and remain so. NOrlnally factor of.

, rnini111~2 isrec6nunended to allow rela.\:ation ofgasket. The gasket material should be such thatit ~OnfonnstQnaIlgesurface irregularities even at low operating pressure. Gasket designshouId alsotake into consideration compressive stn:ssapplied~ .

, .

Gasket design should also take into consideration temperature effect., ,TI1ennalexpansionofpipelinegi\'esrise to forces which tend to crush Qrcompress the gasket,unless compensated by suitablee::\..pansion device.

Page 143: PIPING DESIGN-PART-I.PDF

I(,'J

{

-3-.~'\ ." .~ '.

Like other materials gaskets too loose strength and take set as a result of stressing. This should betaken'into conside.t:a'tiop when designing gasket.

. ~ :1'

4.0 PRESSURE RATING OF GASKET

Pressure rating of gasket - the valueof internal pressure a gasket can withstand without extrusion ­is related to compressive stress that the material can withstand plus its ability to r~,sist ~reep and coldflow. The gasket material should be sufficiently hard to be able to combat creep'and'still be softenough to achieve sealing without excessive bolt and flange loads. A satisfactory gasket materialmust therefore be retaining a high residual stress. Typical stress relaxation curves are shown inFig. 2. Upper curve shows satisfactory material - here, ajtersome initial relaxation the residualstress remains,constant whereas material representing lower curve suffers continuous relaxation.

...Relaxation-also varies with material thickness and temperature. As a rv.le thinner the gasketminimum is the relaXation and thicker the gasket higher the relaxation. Fig. 3:

. ",J:"Thusfor high pres~ure and high temperature application, thingasket should be selected. But thisrequires high degree of flange accuracy which is not always possible. Hence in practice asacompromise suitable just thick enough gasket (reinforced gasket ifneed be) may have to be chosen toaccommoc;iate the fla.nge conditions; or improve/change flange design to accommodate thinnergasket

5.0 TEl'vrPERATURE RATING OF GASKET

This factor has significant effect on the perfol111ance of a' gasket. Gasket material degrades withincrease in temperature both in physical strength and deformation, theresidual stress changes as wellas bolt load..

Asatisfactory gasket material yields less defol111ation with wcrease in temperl:\ture whereas poorgasket material suffers high deformation with increase in temperature thus will show high relaxationand will eventually 'collapse or extrude.

In Fig. 4 Curve No.1 shows a goodquality material (satisfactoryfor service). Curve No.2 showsa critical temperature at which materialsoftens/qegrades/plastic curve bas shapy defined knee.Performanceof material forternperatures up to knee is satisfactory. Curve No.3 representsmaterial whichis continuous deforms/degrades and sholJld not be used.

6.0 GASKET SELECTION AND JOINTS

Flange joint geometry hasan' important effeGt on the selection of gasket. Two things common to alltypes of fla.nge joints are,

a) gasketcontact faces and

b) some meansto compress the gasket into these, faces withenough force to seal off any leakage.

Fig.S· s'howsfla.pges iricommon USe. In tenus ofselection flange jointsqiffer from one another inquite a ft;wways; the type OfcontactJaces (flat, raised~ male and fem(l,Ie,tongueand groove, flat andrecessed etc.) insmqQthness1U1,d flamess of these Jaces; in available compressive force to the gasketscontact area, and their rigidity or stiffness and mechanical strength. .. .

Page 144: PIPING DESIGN-PART-I.PDF

Geheral.gasketing materials in use are indicated below. These are general guidelines for given duty. selection should be Ina:de with reference to manufacturers catalogues.

- 4 - , ,

7. GASKETING MATERIALS AND THEIR COMPATIBILITY

3.4 Bar

3.5 Bar

Pressure

8 Bar

-do-

-do-

-30°Cto lsoac

I

50°C'max.

max.120°C

Temperature

Petrol, mineral oilsand hydrocarbons

Mineral.oils,' aromaticand aliphatic hydro",:.carbons and alc6hols

Low chemicalresistance

Suited for lubricatingoils, petrol, air, gasand hot water services.Widely used as oilseals.in transformers.

Mating faces areuneven or boltingloads are very low.

Used as a gasketand shims for water, .oil and petrol.

Service

b) Neoprene

c) Nitrile

a) Natural rubber

Manufactured from highquality fine granulecork bonded withelastomer.

b) Cellulose fibreimpregnated with aglue/glycerine.

Cork granules bondedwith resin sometimesinterlayed withfabrics.

Material

a} Kraft and manilastabilised withwax based fillers.

7.3 RU)3BERBONDED CORK

7.2 CORK

7.4 POLYMERS

7.1 PAPER

Fig. 6 shows various types ofgaskets available for flanges shown in Fig. S sealing.

Those variables effect joint performance and must be considered for gasket selection.

01~~.

():;]I

v~

; J( ')

[,1(~ ](,

" ].c'

c'cJ~). ]{'

(]..(:' '.

~<]

(~:,C]

( ', .• ,l

:°1()

0]0'1()J

'ey]

dJooJ

-.,.., .. ' .

;0,''''',' ~.,iI.~I L. -.'

ol!"-'<--'d)EPR. 9xygeI<s~~~!::<:.':._.:,..

water

......... ',

-do~~::'~..; ...•. : ..

G0·:" · ,· "· ·i·"··'·.,,·~·-· ~-._~ ..~.,~ ..,.. , ,."."."., ,•...- -,." --.- -,--•.-~,"" -- .

Page 145: PIPING DESIGN-PART-I.PDF

(J

ENCAPSULATElENVELOPED PTFE

PLASTICS

High

Low tomedium

, ..PressureTemperature

-do-

-80°Cto.260 °c

-do-

Aggressive andtoxic fluids

Water, Ozone

Aggressive andtoxic fluids

Petrol, oils,chlorinated solventsconcentrated alkalis,fuming acids...

Service

•l

Insert materials can bepolymers~AF etc. whichprovide resilience tothe gasket.

To overcome cr:eep andcold flow faced in useof solid PTFE. The gaskets~e made by.enshrouding.vulnerable surfaces inPTFE (Fig. 6 ).

PTFE - Polytetra­fluoroethylene

f) Silicon Rubber

e) Viton

Material

7.5

7.6

f..1 ]

""' :.. ]C;

C." 'J'C

~J ]()

~) J

( J

]'(, J('

(, :]

r.: ]

(). ]­c .

COMPRESSED ASBESTOS FIBRE

ASBESTOS FREE COM:PRESSEDSYNTHETIC FIBRE

Owing to health hazard -do-and pollution ofasbestosnon-asbestos or asbestosfreegasketing in western'countries are replacingmost applications earliercatered by CAF.

High

High

-20°Cto 500 cC

To 550°C

To 475 °c

Aggressive andnuclear radiation

Chemical compati­bility is determinedby the polymer used.See Table 1)

•'.,

Exfoliated graphite/graphite foil

Family of materialscomprising ofvarioustypes ofasbestosfibres enclosed andbcmnd by polymers.

7.9

7.7

7.8

Page 146: PIPING DESIGN-PART-I.PDF

l' loess II I'C

'"

gasket material which can withstand pressure and temperature of f1uidb~iI1gsealed.

~1\:-;1<c1:;h()lIhl be widc cllough lo l'lcllllllI.lCllkllgC pnthHwhcll ~c1cClillg fibrous lIIulcrinl :;uchus usbcslos..

gaskel material which has low Illodulus elasticity in recovcry. Low IUodulushclps gus~cl toexpand when bolts stretch and Dangesdislort.

High to'1000 bars'

I ligh

.~.

:... :.:.,..• :.:... :.".".'

-250°C1000°C

Cryogcnic to1000°C

•• ' "0 ~ ••~" .•-

Compatibility- .neulral toaggressive ­depending uponmaterial

C.hcmical compali­bilily IIculrulloaggressive and,

nuclear radialion ­dcpcnding 011

materials ofconstruction

gasket material which is compa'tible to the fluidal temperalure!s Lo be' sealed.

gaskelmalerial whicll requires low clamping force to hold seal.

Various technical injormationleajlels - Sealol Hi,iduslan Lid.Sec.lis andSealinK handbook. by Wcwl"i17K .1I1ecl!aJl.ica! Packing Handbook, by Mechanical PackillgAssucialiOllDesigning with Seals and Gaskets, by MachineDesign '.' .Product catalogues, by'variousmanufacturersojgaskeling mater~d!s"

.. . . ·t "

gasket matcrial which conforms easily to flange or joint surfaces, such muterial has a lowrequired seating stress.

gaskel material which has resilicncy' to mcct operating conditions.

Most gaskets requirehigh sealing slress. Iron.stainless steels. monel.copper. inconel. alloysare candidales [orsolid metal gaskets.

SOLID METAL GASKETS

Spirul wound gaskelCOIIIIH'ises or II lelll Islrip and rlon-melallicfiller would in spiral form.Fi lIer maleriul can beasbestos freeflbre.PTFE, graphite [oil,-even metals

1.

3.

For leak-free jojntsclcct:

1.2.j.

-4.5.

2.

CONCLUSION

7.11

7.10]

(

(' ':]

~ .lC

~-i' ]

0:

c'l ]

~..](\.

~>]c:c]c~)]

()1o()1 4.

oOJ 5.

?-J 6.op'J 7.

o Referellces:

~,Jttl

'Q

G

pl°.·.·..:... ·.-1 ..D ~:. [-<~-

(

c" 1

O

Page 147: PIPING DESIGN-PART-I.PDF

VULT YUHCf;

FIG -1

..HYDRAUUC END THRUST .

FLUID/1-.....- PRESSURE

f:]c

]

1000100

FIG-3

F1G-2

Time - hours

Thickness - mm

10

~., ,

Z J -4. 5-

\;t---> r- ,-

f- ""1N)r,Ai f- - .-t- -I .

i"-.... GOOD QUAUTYr-, -,

'\

r'.I'- .......

~ ---t-- t- t-r--..~ .,POOI.--

200L-L---L--~--+--~-+_---==t:::::::=::..

Jool--1---+-_-=:::~~-t---,----+-.....,;""",,.-----:t---

GOO

...~ 300......QJ.........ro 200:J~...QJ

0:

...o

.tJ

V)V)

QJ.........ro·:J:2

V1QJ

a:\

(\]

f>C']E]·6]o{)].()

010]o

0]

~~101\)01---

~()OJ

_.,...,._.....-....~ _~.w.~ •. '~ •.'=".-::",:, •• ~ ~o ---.-=-=:~,=.'C ,~" ..,.--:=:,-",",-,-,-,-,==--~-.-~--:~-".

Page 148: PIPING DESIGN-PART-I.PDF

Styrene Ethylene Poly- Silicone Nitrile Chlorosul- Fluoro- Poly-Butadiene Propylene chloro- Butadiene fonated carbon aC=-.11ate

prene Polyethyl-". ene

I-

vlater E G G G E E' E F

Acid G E G G G G .... P;:.

Alkaline E G E F G E G 'p

Gasoline P P F P E F E G

Petr=leum eil p p G P 0;;0 I G G E...Animal and

.Vegetable Oil..

P~8 G G G Ei F G. E;

Hydrocarbon iSolvents P P G P G-E J F £ G

(Zxce:rtAromatics) .'.

Oxygenated ... ~

Solvents F G P P p F F P

.Ozone P E G E P E E G

Useful ",Temp. ' '

0. -18 toRange ""(;. -'2.1 to '-18 to -10 to -~9 to -16 to -4 to +1 to

121 \177 121 315 ,149. 121 315 2 :>1:.

Table 1 - Chemical Resistance of Common Elastomers used as binder in Gasketing

APPENDIX - A

~:

--.. ,'"'........ ~

",--.....-. ,.-"'\),") ,'i) l ,

'L:.....",j '--' '--"

A~ <'JI"') ,!j 1/1: ) t· ._ '-,lc_~"'" './ ~~-'.., .........o -0 f)-I)o 0oooceo

:I""

-c':' c e.O C ("j....

.~1

C <If'~~ ,

;1~

.~1

':~J.• ~,:~

,1J

::j.!'1

E = Excellent;~

G = Good, F = Fair, 1.' == :i?oor

Page 149: PIPING DESIGN-PART-I.PDF

.......

~ -:. .

JOO

MALE ~ FEMALE

Folded lopa

Type 5G/IA •

[_:_.IL

FLAT FAC~ & RECESS

Mochlnod Iquora '

:PTFE env~/op~ 1l61k~U.

FIG -4

100 200TOll1porotuI'U 0 C

msJJJ?], RAISED FACE

c: _C

'Exemplas of spiral woulld /losk,IS,

POOR...-,__-J"""""" l\- I__---(

~....;.""..,FIG-6 EXAMPLES OF GASKET

SOUAlll:

TONGU~~ GBOOVE .

.FIG-S FLANGES IN Co.MMON USE .

Machined 1111

, Type 50

1----- ->,'-------\- LIM/raJ l'f.MPf.IIArUI,¥:RANGe

O· RING

FLAT FACE

[---=:_'-~

~ .

()

c.,]t\]

\.

eell1-

Cll()

c:]()

c;]oc]C].oc]

~

~q]oeJ~J,0, ;

c:J()

cJC1D~

c~l,

(:

C~\ )

01~

O';"7-" ..I<':".:"'.';":"'-"7-"-"-'.'''7'''''"'~''''~:":';--.-.' .•,- -, , '"

Page 150: PIPING DESIGN-PART-I.PDF

33

4500

4500

2900

7600

760Q

.,,*~.;

18QOO

18000

m*

5.5

3.0

3.0

2.5

3.75

3.75

5.5

2.75 3700(for \.,. in. thk)

0.5-1.75 0-1100

Very smooth

Vcr)' smooth

Smooth

Very smooth

Very smooth

Smooth

Serrated

Serrated

.Serrated

ReeommcndedFlange

Surf..,ce Fini~h

Application

Sce Table 2.11 fortemperature recom­mendation~. Most(·llicicnt and COSII)'

gasket. Internal pres­~ure. expands ring andcreates a degree of self­scaling. Preferred forscvere sci\'ice condi­tions. Octagonal ringtll0St' COlll 1l10n.

For use up to 850°F.Require less bolt loadto compress. than solidmetal gaskets and thusmore efficient for high.temperature highpressure joints.

For use up to 850·Fand high pressure.Good for severe sen·ieesuch as hot oil andchemicals.

For use up to 850° F,but not exceeding 600psi. Not for hot oil.

Requires less bolt loadthan flat metal gasketsand produces moreefficient joint. Re­placing fiat metalgaskets for many uses.

Up 'to 250°F

Satisfactory for maxi­mum temperaturemetal gasket or flangcitself will withstandwhichever is lower(see Table 2.11)..

Good for glass-linedflanges and roughsurfaces. Use limit300 to 400°F

Most common flilt gas­ket in process plants uselimit 750°F

Description

Corrugated metal withasbestos laid incorrugations.

·Th(."S(~ arc typiC',,' 'Oah1C"s.· D;'I't01 fc,r mctHllicgaskc:ts ~ln' fClrso(r,irnn ur swd. Sec "'[;,ble: 3.3G ((Jrmore cnmpl(:tc t~'JUhuinn.,·

Metal rings commonlyfurnished in soft iron,low carbo~ steel,stainless steels, monel,nickel, and copper.

Corrugated metal,asbestos filled.

Interlocked plies ofpreformed metal,cushioned with asbestosstrip spirally wound,

Metal jacketed asbestos.

Flat metal gaskets withconcentric groovesmachined into faces.

Paper, cloth, and rubber.

!\1,mr metals­Selection made to suitse",ice (see Table 2.11).

\Aloven asbestos.

Compres.<ed asbestos.

TABLE 2.10

COMMON GASKET TYPESl(;a~kct drawings. reproduced by permission: Tube Turns Divi~ion;'Chemctron Corporation (Copyright 1958»)

Octagonal Type

Asbestos Filled T)'pe

Serrated Gasket

Spiral Wound Type

Flat Metallic Gasket

Asbestos In~erted Type

Flat Non-Metallic Gasket

Ria.,:}"int

COTTl/ga/cd 7)1)(

___7'Flat Ring

Gaskets

(I) ]

()

0]I()0]roJo

9]o0]

(~) Jc)

c) J0 ICJ

(I J()

(i ];0

]n

G~

(..) .. "".~,,,,,.

,-"~

Page 151: PIPING DESIGN-PART-I.PDF

\\. \

• Temperature listcd may be raised or lowered b>' opera~ing condi­tions. These values arc for gCllcral reference only. (Reproduced bypermission, "The.Gasket," Vol:'I, No. 5-6,]ohns Manville Co., NewYork.)

TABLE 2.11

MAXIMUM SERVICE TEMPERATURES OFGASKET MATERIALS IN OXIDIZING

ATMOSPHERP

Aids in selecting pipe. valves and fittings I 2

Other variables being equal the gasket factor m and thedesign seating stress yare helpful in comparing gaskets. Acomplete list is given in Table 3.36. These values are relatedto the bolt load as shown below (ASME Code for Unfired,Pressure Vessels 1956). Calculated values of m and y can beused to suggest the best gaskets for a given service. For smalllow-pressurejointsy will govern, butfor large flanges and highpressures, mwill govern. -

Max. Temperatureof Continuous,

Type Service OF

212212212400500500,600600800

304 800316 800

10001000100012001200'

502 1200410 1300

14001500

347 17002000

"A" or "B" 200023003000

RING~TY?E

JOINT

Where, W = S,A tI

. So I ollowo'jlt: ~olt "tess(fOf 9Cs;'~~ selectionuse 20.COO psdoralloy bolTs. ~nd 10,000fOtmlll::::ltbOftsteel1

AD. lotol tlft:-lore bolt oreocalculoTe:: :;I: roof ofIPlttod f:.~ cn't' ~olt andthen ma:!!,:>lied ~Y

nll1flbtt :! boh'

p. mQllimll~ t:llowobteinttrnol ;rusure. psi

b:i effKti\'! :;:.sket width, in.(set sk~'::'I~s)

GASKET SELECTION NOTES FOR TABLE 2.10

RAISED-FACEFLANGE

m , (W,~I~~~~:")~

'I Ii 3.':I:IG

i-f-j .:.-rorIi. to-.~

I

Material

Tin , .Lead .Zinc .Magnesium .Admiralty Brass .High Brass .Copper .Everdur .Aluminum .Stainless Steel .Stainless Steel. " .Rema Iron .Armco Iron .Low Carbon Steel .Silver ,Gold .Chrome Moly Steel ,Chrome Stcel .NickeL. .r\'foncl .Stainless Steel .Incone! _ .Hastelloy .Platinum , .Tantalum :

To selecUlI.~_pnlp~L g~§,ls.y!..f~r a particular s~ryl~~,r_<;q!!i~

ca;ef~-I consideration of the operating t'em~ratureand nature ofthe fluid being containe"c:C-lra-eO;;o;i~~ff~idi~ ~i~ig'ii~~di~d,

e7~rtrecommenaatrons should be obtained from a corrosionengineer. Jacketed metal gaskets may be used, up' to 850°F.Above this temperature all metal gaskets must be used and manyengineers prefer ring-type joints at elevated temperatures.

If joints are to be disassembled frequently manufacturer'srecommendation should be followed for most efficient reuseablegasket.

34

~''l, )

r')J:t<J:

()

(]

~~Q]~

c~

J)

()]{)

Q]Q

J()](j'

0]'~~

~.

::JOJ0-

(~.-·'l·\ J'(j

! .,]\ .. ,' ,

(\ .

()l

f]'c!ellC-;i

cJ

Page 152: PIPING DESIGN-PART-I.PDF

MATERIALS OF CONSTRUCTION

TABLE 28·28 Important Properties of Gasket Materials

,"~.( ~.~~!

Nonporous; recommended·forglycol. oil. and gasoline to 175°F.Good water resistance.Resists oil at high temperatures. , ;Resists oil and water to 212°F. '. . '.Low cost, good mechanical properties. Resists gasoline, oils. greases. waxes',~solvents. , :

Excellent heat resistance, poor mechanical properties.

Resilient, compressible and s~ng;but not impermeable. Resists ~edium~minew acidS and dilute mineral sOlutions ifnot intermittently dned.R~~~ 'greases. waxes. most solvents: Damaged by alkalies.

Good chemical and heat resistance.' ' .' .High water repellency. .' .. . eriak~;Many combinations aVailable; properties~widely depending on mat "

, .Good chemical resistance. Be~nformabilityof m~tal gaSk~ts.Good resistance to neutral solutions. Attacked by aCIds. alkalIes. .High corrosion resistance. Slightly attacked by strong acids. alkalies.GOOd corrosion resistance at moderate temperatures. ..High corrosion resistance. .' '.' tta~High co1TQSion tesistance. Godd against most acids anti alkahes. but a . " ,strong hydrocliloric and strong oxidizing acids. '. "

,Excellent heat; oxidation resistance.. .High corrosion resistance. Properties depend on type used.

Important I'TOpt'.ties ­Good .mechanic-.l1 properties, .lmpervi~lIIs to wat....r, Fair to glxld resistant'. . .alkalws, Poor resIstance to OIls. gasohne. ('(XlI' ,wathcnng. agin~ co >crt' to lI<ids.

Betl<:'rwater resistanC<:' tlum natural ruhher. Fair to good rcsistant.~ t I, . 'j;'S'alkalies. Unsuitable with g,t~oline. oils and soh-ents.' ' 0 ael( s.

Vel)' good rcsistance to water. alkalies. many acids. Poor resistanCl' to oils '.most solvents (exccpt o~)'genated). ' ·l:a>oline.

Vel)' good water resistance. Excellent resistance to oils. gasoline. Fllir l--~resistance to acids. alkalies. a g."....

Excellcnt resistance ~o oils. g.lSoline. a1ipha~ic and aro!natic hydrocarholl sohVer),g~ water res.lStance. good alkail resIstance, fall' acid resistanc('. Poor 't'11ts..mecharncal properties. , :

Excellent meChanical pro~rties; Good resistance to .nonaromatic petrol r-oils. solvents (except aromatic. chlorinated. or ketone types). Good watell~.Jatt).resistance. Fair acid resistance. er ....".n.a

Excellent heat resistance. Fair water resistance; poor resistance to stelllll atl'~lp,,:ssures. Fai~ to good acid. alkali resistance. Poor (except fluorusilk,"ll' n:t~ )resistance to otis. solvents. r

Good heat resistance but poor cold resistance. Good resistance to oils. ,i1iI'IIaUc II\(

aromatic hydrocarbons. Poor resistance to water. alkalies, som<.' lIci<k. Excell~nt resistance to oxidizing chemical..s. ozone. weathering. R(,lali".I)'l(ood

resistance to oils, grease. Poor resistance to aromatic or chlorinat('d h)'drot.arltocu.Good mechanical properties. . ,

Can be used at high temperatures with many fuels, lubricants. h)'lmulk fluidS .solvents. highly resist~nt to ozone. weathering. Good mechanicalprul'(.rti('s. '

Large number ofcombinations available; properties val)' \videl)' del'enditll: onmaterials used. '

Same as above.Same as above.Same as above.Combines heat resistance and sealing properties of asbestos \\1th dWlllit-al

resistance ofTFE.Low cost. Truly compressible materials which permit substanti'll den('(.1iolls with '

negligible side flow. Conform well to irregular surfaces. High rcsistant'· to oils:"~ resistance to water, many chemicals. Should not be used \vith illu"!:anIc 8ddalkalies, oxidizing solutions. live steam. '

Controlled compressibility properties. Goodconfonnability. fatigue n,si.1ance. ..,Chemical resistance depends on kind of rubber used.

,f

Excellent resistance to almost all chemicals and solvents. Good heat n!Sistanoc;exceptionally good low-temperature properties. Relatively low compwssibilltY-eresilience. . '

Selectively improved mechanical and physical properties. Howe,·er. fill<,rs may rlower resistance ,to specific chemicals. ' .1

Chemical and heat resistance comparable with solid TFE. Inner gasket material I,provides better resiliency and deformability. '·~1"

,Higher cost than TFE. Better chemical resistanCe than most other gasket maI:llrUiIlalthough not quite so good asTFE.· .. ,;11

Good compressibility. resiliency. Resistant to water. oils, gasoline. and many addsand alkalies. Relatively narrowtemperature range.

Resists mOst solvents. Poor heat resistance.

500

800

300

500/

150

175230

212

212

250

350

300

600

2.50

300

300

150

450

450

250

14001500

2000

To 500

To 500

T0700 /

To 250, 400

To 1000500

250

Matimum s(""icctemperature. OF

ACl)'lic,

Chlorosulfonated polyethylene (Hypalon)

TFE(filled)

TFE composites

Silicone

Cork compositions

CFE .(Chlorotrifluoroethylene. Kel-F)

Vmyl

PolyethylenePlantBber

Neoprene-impregnated wood fiberSBR-bonded cottonNitrile rubber-eellulose fiberVegetable fiber. glue binder

Vulcanized fiber

Inorganic fibersFelt

Pure felt

Pol)'Sulfide

Nitrile

Butyl

Neoprene

St~Tene-butadien<,(SBH)

Ruhl)('r (straight)Natural

Cork rubber

PlasticsTFE (solid)

(Tetrafluoroethylene,'TefIon)

Fluoroelastomer {Viton. Fluorel2141. Kel-F}

ASbestosCompressed asbestos-rubber sheet

ASbestos-rubber woven sheetASbestos-rubber {beater addition process}ASbestos compositesASbestos-TFE

Material

TFE-impregnated, , Petrolatum or paraffin-impregnated

Rubber-impregnated 'Metal

LeadnnAluminum

, Cop~r. brassNiClCeIMonel

In~ncl ,Stainless steel

,

r ~I"

I,( ) i

I,

el 1

~C' I(' I

Ic; !

(~!

{,\

(j

C)"

r

()

C.~

\)

[)

C,'

SJ

0()

()

\)

()

\)

0

C(J

{)

()

Q

0

bJ

C

Page 153: PIPING DESIGN-PART-I.PDF

( ,

( )

(

(

( .

(

( /

(

(

( ,

c(

\)

(.

\.C

t)

Annexure E

Guideline Tables for PipingSpecification

Page 154: PIPING DESIGN-PART-I.PDF

"••'!

>:.

..~.~ ..;·i· :t.·f:':=~:.;~:

SI\ 'J...\~ WC.A!wc:.:B

5A. 74:> <:r ... 0:8c:..f=el\.\

SA '351 c.t: '3C.F"6f-1c. \-:..u .<

H \<.L~O

.;.OJ ;:. • .~.

Doh.: SI\320 gr. L7 ~52. G... LC1.Nuu: 51\194 gr. 4 l..c:?>

.Lc.a

Nuts: 51\194 gr. 8(55 S1\20)

nolls: 5AI93 t;r••D7NUIs: 51\194 p. 211

.Dolts: SI\3 20 f,r. D8strain Imdcncd

5A350 Eor. Lf'1or LF~

$1\!82 gradcs F304,F304l, F316.SAS22

SA3S0 gr. LF3

SAI05 p.1 nlll

5A181 cr. 1 olllSI\105 CI. I or II

1----_._------ .51\181 r.r. I 01 II

5A312 types 304,304L, 316, 316L5A333 p. 8

SA333 gr. 1

SA333 gr. 3

SAD (sCJIt\Ic~s)

015AI06

5.1(203 gr. 0 or E

SI\5 \6 :Il1l=r~d(s \IvcrI ill. Ihick impJcl leslcd

. ~A5 I~ all sndc~ imp:lcth:sled (sce lillIe 1) .

+3.3- +60

abovc +1500

S"203 ~r. A or 0 511.333 gr. 3 SA350 ror. LFJ!----,----,.-il--------'---- -t------:--+----------i

l-----!-----..------+---------;

,------!-..·_-------I

u'cU&00 -320- ·15 \:>..U

-150---76

~•15--5\

3 -50--21It

8- Ie~ - 20-+4~

.fj+5-+32 f<\5 16 :LII grades ovcr

lin. thie\: impaellcSlcdI--..+-'-----f-...

Type 310 st:l.1nlcsslncoloy.

'---'--------L.. ,..._--~-'-------J....,---------,..._-"-----~- .. --,-...J

I. S(.inlc~s slecl~ Iype~ 304. 304L. and 347 and 36 pcrcenl Ni ~lecl~ (or se,vic;c lemper~IUresbclow -4 2S' F m1Js(, be Imps.• !. tesled.1•. r«uure.vesscl~1eel :'I.le~ .re purcll.~ed 10 Ihe requirCIl\Cnl~ of Ihe sl.ridMd i\STM. (SA) 1\20. which·:requl,e$ Cesllne of Individual plalu. Fo! low.

l'clTlPC'rolure service. eM~on ~lecl",alcrl.1 is ordered 10 mccl lhelmpotl rcquirell\en(s o( supplement S-o( Che slan{jatdASTM (SA) A20. Typical'.m.Ic<.i.I.S.l'ecitic.~·inn .is "s rollo~~: "SAS /6 j:r. 60. norm.Ii7..,d In .01«( inlp.cl rC(llJiremcnts rcr ~upplcment (SS) o( SA20 al. -SO' F.".. .

J. Th~ l,ml~,"gdcsl&n ;emperolure Is delcrmine': hy lhe behavior o( Ihe ",.1.1 in lhe.p.rlicular environment snd itscottespondinc. mech::n[ca' pros>­crll~s. U.sh.lcmpen,ure Iimitationsa:e hard 10 define accur.ICly..For ins.IJl1Ce,10 avoid graphitir.alion or hydro~en·aIC.ckprobl.ems some mc:ta!·(urcut.s recommend 'j iO' F IS malmum design !empenlure (or cJrbon·slcel ,P.rU in petrochemical plonts. . ...

4. MHeruls (or ·slruC(I.'.1 ~lI-lchmenh welded fo preS~lJre paris and IransmiUinG lo.cl~ .durinr,operati<ln arc 1;,:n<:(2l1y of. the ~.me trade.$ th: Pt~·~~::~ ::'::';:. AH ::-:;;:::!:~~r:: .\:':~ilh'C'"c'j '.,"'dJeudirc:cUy (09 percent uickel $lccJ.s $huuhi be of Ihe s~menlat~ri.(or of anal:$«(~lillcs't=·inlcss steel

~,. Iy!'c \~'hlch unn:-: : bl hardeneo1 llY h~al·l;eatmenl., . . .. . . . •S. I~~lcml~~?§, i£.usd .tlower temperatures (below 32' f), should be 0,( silicon.killed (j1~C gr~in pracllce.

:;"285 {:r. C, j·.in. IhickUi:lX4

• ::.\515 &1.55.60.65.S·in. Ihick max.

:;,\$ \6 all Eor~dcs. all·E· :~ickncsscs

• .~ .1------l. g +61-+775 ::,\285 J:1. C. J.in. thick SAD (scal1'tlc~~)i u max.. SA106.Y .§ :i.\5 I5 ·Sf. 55.60.65, 5A33$ 1'1

l,.. -{.~,.~ ~;:~.:Ii. ~11~~~e~~sD.all - ~.I '-' --------.---.j.,.--.- ., I--t--------j thicrJ1csscs .. ~ ~

....,.;. +776-+875 SA204uBorC ..'''.1Hlll St.lZ2.;,.r-:. • . '~ ..r.::f., 1-1__--'-_···_--+1'- .'.. ... " .. 1----.,..----1 SA .2. 17'1' C '5 I C.("L..':".5

+876-+1000 SA387gCol.ICI.I SA3~;rll 'SA182 0 r.1-"11. • 1 W<..'<- ~y. We.· , <a

Q SI\38 7 gr. 12Cl.l 5A335P12 SA 18 2 fJ· F12 ':"Ie. '6:! t--~-~-+·------'-----+------_.,..~----=-----I-------__1r! +1000-+1100 SA387gr.22Cll 5A;'351'22 SAI82sr.f'22 SAI93gr.BSK.E rJ· 21 5AI94 gr. 3~ 1----~-+--:--_,_------+------.:.-~--------_1--------+-----...l-'------j

+11 00-+ 1500 $1\240 Iypcs 304, 316. SA3 12 lypcs SA I 82 ~radcs 304ft. SA 193 gr. 08321,347 30411.316\1. 31611. 32111. 3471l . 5AI94 gr. 8\47 preferred (scc 32111, 34111,ccllon 11.5)

I-----'-l---"-- : 1 ...,-_-.,.-_+__ -----...,-'---1

::-,! .Construction S,eeldor Noncorrosive Service. \;j~~~;~

:g ...' _l_ET'·'~_:~_'f_·!_~~_)~_~__R_f._·-+ I_'L_I\_T_f._. +-1__- r1rE G"-'G_I_N_G_S__-_I.r-_p_:_;_E_i_~N_rG_E_ __:Ir_c~~AS~~T-J--l_N._-.~_'_·s_·:_>_:--_:~~_~:;:_:~;.425--321 .:·'\240 typcs 304. 30·IL $1\3121ypcs 304, $1\182 &r~~lc.l ['30-1,

347 30·\ L, 347 no.: l. ['347------f-.----------1--------+--------I

5A240 tYlles 304, 304l,316.31HSl\3S3

Q

o

(

(I

I',)

JL

()

()

()

o()

()()

()

r

. .

~)

()

Go

Page 155: PIPING DESIGN-PART-I.PDF

(

(

()

()

(

112 Standlilrds for piping / 3

TABLE 3.40

PIPE, FinING, AND FLANGE MATERIALS(Reproduced by permission: Cat. No. 311, Copyright 1962, Chemetron Corporation, Tube-Turns Division)

Low and Intermediate Alloy steels

ASTM Specifications' Chemistry' I

Material Manganese SiliconASTM Specified

Number Grade FormCarbon Chromium Nickel Moly

Otherper cent percent per cent per cent per cent per cent Minimum Minimum

U.T.S. psi Yield psi

A 182 F I Flanges .20/.30 .60/.90 .20/.35 .40/.60 a 70.000 40,000

Carbon Moly A 335 PI Pipe .10/.20 .30/.80 .10/.50 .44/.65 b 55.oo~ 30.000

A 234 WPI Fittings Covers Manufactured Fittings-For chemistries other specifications apply

~Cr~ Moly A335 P2 Pipe .10/.20 .30/.61 .10/.30 .50/.81 .44/.65 b 55,000 30,000

I Cr~ MolyA 234 WP 12 Fittings

.15 Max .30/.61 .50 Max .80/1.25 .44/.65 b 60,000 30,000A 335 P 12 Pipe

I Cr~ Moly A 182 F 12 Flanges ;10/.20 .3Oi.80 .10/60 .85/1.20 .45/.65 a 70,000 40,000

I\4Cr~MolyA 234 WP.ll Fittings

.15 Max .30/.60 .50/1.00 1.0/1.5 .44/.65 c 60,000 30,000A 335 Pll Pipe

I'A Cr ~ Moly A 182 Fl1 Flanges .10/.20 .30/.80 .50/1.00 1.0/1.5 .45/.65 a 70,000 40,000

2'A Cr I MolyA 234 WP22 Fittings

.15M"x .30/.60 .50 Max 1.90/2.60 .8.7/1.13 c 60,000 30,000A 335 P 22 Pipe

2'A Cr I Moly A 182 F22 Flanges .15 Max .30/.60 .50 Max 2.00/2.50 .90/1.10 a 70,000 40,000

3 Cr 1 Moly A 335 P 21 Pipe .15 Max .30/.60 .50 Max 2.65/3.35 .80/1.06 c 60,000 30,000

5 Cr~MolyA 234 WP5 Fittings

.15 Max .30/.60 .50 Max 4.00/6.00 .45/.65 c 60,000 30,000A 335 P5 Pipe

; Cr~ Moly A 182 F5 Flanges .15 Max .30/.60 .50 Max 4.00/6.00 .50 Max .45/.65 c 60,000 30,000

7 Cr 'h Moly A 335 P7 Pipe .15 Max .30/.60 .50/1.00 6.00/8.00 .44/.65 c 60,000' 30,000

7 Cr~Moly A 182 F7 Flanges .15 Max. .30/.60 .50/1.00 6.00/8.00 .45/.65 c 60,000 36,000

9 Cr 1 Moly A 335 P9 Pipe .15 Max '.30/.60 .25/1.00 8.00/10.00 ,.90/1.10 c 60,000 30,000,

9 Cr I Moly A 182 F9 Flanges .15 Max .30/.60 .50/1.00 8.00/10.00 .90/1.10 c 100,000 70,000

3'h NickelA 420 WPL3 Fittings

.19 Max .31/.64 .18/.37 3.1873.82 d 65,000 35,000A 333 3 Pipe

3~ Nickel A 350 LF3 Flanges .20 Max .30/.60 .15/.35 3.25/3.75 a 70,000 40,000

5 NickelA.420 WPL5 Fittings

.19 Max .20/.64 .18/.37 4.68/5.32 d 65,000 35,000A 333 5 Pipe

CrCu NiA 420 WPL4 Fittings

.12 Max .50/1.05 .08/.37 .44/1.01 .47/.98 60,000 30,000A 333 4 Pipea,e

qrCu Ni A 350 LF4 Flanges .12 Max .55/1.00 .10/.35 .50/.95 .50/.95 .~ a,e 60,000 30,000

(

C. .'

c'()

(;

()

{)

o()

o()

()

oo

o()

C

()

o

I For speclficatlons onbQltmg materials for usc With, flanges of abovem~terials, refer to Table 3.34.

2 Where.maximum' values arc use~. the mini.mum content is deter­mined b)· strength r.equirements. Determinations of ehemistry,are byCheck AnalY$is.

(a) -Phosphorus .040 per cent m,ax, Sulfur .040 per cent max.(b) Ph,osphorus .045 ,per cent max" S~lfur.045 per cent max.(c) Phosphorus ,.030~ cent max, Sulfur .030. per cent max.(d) _Phospho~us .050 per cent max, Sulfur .050 per cent max.(e) Aluminum .04/.30, Copper .40/.75.

Page 156: PIPING DESIGN-PART-I.PDF

(

()

Material specifications 113

TABLE. 3.40 (Continued)Stainless Steels

Pure(a) 1060 2,3,4 99.6 Min .05 .35, L.25 .03 .03 .05 ... .03 .03 .... " 10,000 4,000 9,500 2,5001100 3,4,5 99.0 Min .20 (1.0 '1OtaI) .05 ... .10 .,. ... .05': .15 12,000 5,000 11,000 3,500

Manganese.7\ .6

~

Alloy 3003 1,2,3~4,5 Remainder .20 1.0/1.5 .,.. .10 ... ... .05 .15, 14,500 6,000 14,000 5,000

Magnesium 5052 2,3,4 Remainder .10 (.45 Total) .10 2.2/2.8 .20 .15/.35 ... .05 .15 25,000 . 9,500 25,000 9;500Alloys(b) 5154 2,3,4 Remainder .10 (A5 Total) .10 3.1/3.9 .20 . .15/.35 .20 .05 .15 30,000 11,000 30,000 11,000

Heat-Treatable .A1wnmuDl Alloys

~it.t,ingsare: ~e to 'i\STM .B361 .. whichinclucles perrnissible 'rawmaterials to:l'ipe.ASTM 8241: Tube-ASTM 8210, 8234 al"ld 8235;Plate'Aj)TM 8209: 8ar.AJ)TM 8211 and 8221: Forgings·ASTM 8247.

Ca) Alloys 1160, 1260,andI360a~ are available.(b) Alloys 5652 and 5254 also~ available.(e) Alloys 6053 and 6363 also a.. available.

(f)Phosphorus.040 per cent max.; S,:!lfur .030 per cent max.(g) Ti.tanium ,content, shall be not, l,ess th~n five times the carbon

content and nOt more than 0.60 per cent.(h) Phosphorus.035 per cent max, Sulfur.OSO per cent max.(i) , Columbium plw Tantalum' contCIlt shall not be' less than ten

times the carbon content and not more than LOO per cent.(j) Tantalum 0.10 per cent max.

ASTM Specificationst Ch=istry2

Material Max Manganese Silicon Clromium Nickel MolyASTM Specified

Nwnber Grade Fonn Carbon Otherpercent per cent per cent per ~nt per cent Minimum Minimumper cent

U:T.S. psi Yield psi

A 182 F 304 Flanges .08 2.0 Max 1.00 Max 18.0/20.0 8.0/11.0 f 75,000 30,00018·8 Cr Ni Type 304* A312 TP304 Pipe .08 2.0 Max .75 Max 18.0/20.0 8.0/11.0 f 7i,OOO·· 30,000

A 403 WP304 Fittings Covers Manufactured Fittings-For chemistries other specifications applyA 403 WP304L Fittings

.035 2.0 Max .75Mn 18.0,'20.0 8,0/13.0 f 70,000 25,00018-8 Cr Ni Type 304L A312 TP 304L PioeA 182 F 304L Flanges .035 2.0 Max 1.00 Max 18.0/20.0 8.0/13.0 f 65,000 25,000

25·R Cr Ni Type 309 A 403 WP309 Fittings.15 2.0 Max .75 Max 22.0/24.0 12.0/15.0 75,000 30,000'A312 TP309 Pipe f

A 403 WP310 Fittings.15 2.0 Max .75 Max 24.0/26.0 19.0/22.0 f 75,000 30,00025·20 Cr Ni Type 310 A312 TP310 Pipe

A 182 F310 Flanges .15 2.0 Max 1.00 Max 24,0/26.0 19.0/22.0 f 75,000 30,000A 403 WP316 Fittings

.08 2.0 Max .75 Max 16.0/18.0 11.0/14.0 2.0/3.0 f 75,000 30,00018·8 Moly Type 316* A312 TP316 PipeA 182 F 316 Flanges .08 ' 2.0 Max l.OOMax 16.0/IM 10.0/14.0 2.0/3.0 f 75,000 30,000A 403 WP316L Filtings

.035 2.0 Max .75 Max 16.0/18.0 10.0/15.0 2.0/3.0 f 70,000 25,00018-8 Moly Type 316L A312 TP316L PipeA 182 F316L Flanges .035 2.0 Max 1.00 Max 16.0/18.0 10.0/15.0 2.0/3.0 f 65,000 25,000

19·9 Moly Type 317A 403 WP317 Fittings

.08 2.0 Max .75 Max 18.0/2().0 11.0/14.0 3.0/4.0 f 75,000 50,000A312 TP317 PipeA 403 WP321 Fittings .08 2.0 Max .75 Max 17.0/20.0 9.0/13.0 f.g 75,000 30,00018-8 Ti Type 321* A312 TP321 PioeA 182 F321 Flanges .08 2.5 Max .85 Max 17.0 Min 9.0 Min g,h 75,000 30,000A 403 WP347 Fittings

.08 2.0 Max .75 Max 17.0/20.0 9.0/13.0 fli 75,000 30,00018-8 Cb Type 347* A312 TP347 Pipe

A 182 F347 Flanges ,.08 2;0 Max 1.00 Max 17.0/20.0 9.0/13.0 ~,i 75,000 30,000

A 403 WP348 Fittings .08 2.0 Max .75 Max 17.0/20:0~ .

9.0/13.0 f,i,j 75,000 30,00018·8 Cb Type 348* A312 TP348 PipeA 182 F348 Flanges .08 2.0 Max 1.00 Max 17.0/20.0 9.0/13.0 c,i,j 75,000 30,000

12CrType410A 268 TP410 Tubing .15 l.OMax ;75 Max 11.5/13.5 .50 Max f 60,000 30,000A 182 F6 Flanges .12 ' 1.0 Max 1.00 Max 11.5/13.5 .50 Max f 85,000 55,000

17 Cr Type 430 A 268 TP 430 Tubil"lg .12 l.OMax .75 Max 14.0/18.0 .50 Max f 60,000 35,000.,'.-

Types ofAluminum

MagnesiwnSilicon

A1loys(c)

·$04; 3IGH. 321 H. 347H and 348H Grades arc available differingfrom the regular grades in that the carbon content is 0.04 to O;lQ andth;H the Columbium, Tantalum and/or Titanium limits for 32tH,3.47H and 348H are already modified.

".For TP304 Schedule 140 in.sizes 8" and larger, the U.T.S. is70,000 psi minimum.

1 For:sPec:ificatioras on' bolgng materials, for use with Ranges of abovematerials, refer,to ,Ta~le 3.34~'

2 Where maximum values are used,'the minimum content is deter­mined by st,rength requirements. Determinations of chemistry are byCheck'Analysill.

• V~I,u~'a're f~~ Table UNF-,230fSectiol1 VIII of the ASMEBoiler,and, Pressure,' Vessel,Code, ,1959 Edili01'l1 with, tempen, of Hit2 '(un,·welded) and, () (~lded)/orJ.~enon~,heat-tJ'Catablealloys andT6 andT6-Yl~ldedfor the heat-treatable,alloys;", . ' " "

t;t = P~PC:1'2= TUb<ii',3.;;: rlate,,4,=·~arand5=.Forging.*Singlev~lues, are maximum amountspcrinitied.

Aluminum and Aluminum Alloysoo

(:

C)

(;

o

(

(I

c)

(

()

()

()

o

()

o()

o

o()

Q

oo

Page 157: PIPING DESIGN-PART-I.PDF

ASTM Specifications' Chemistry' ,Service

Welding

Material Number Grade Fonn Max Carbon Manganese Phosphorus Sulphur Silicon 'Thmperature.Filler Metal Preheat Stress

percent per cent per cent per cent per cent LimitsDegf3 DegF4 ReliefDegF'"

A53 Furnace Welded Pipe Max Phosphorus: .08 Open Hearth(OH); .13 Acid Bessemer(AB) -20 to 750 E6010GA60 No No

A53 AorB Pipe Max Phosphorus: .048 Seamless(OH); .11 Seamless (AB); .050 Electric -20 to 1100 E60IOGA60 No NoResistance~ded (OH)A 105 I Flanges .35 .90 Max .055 Max .055 Max .35 Max -20 to 1000 E60IOGA60 No NoA 105 II Flanges .35 .90 Max .055 Max .055 Max .35 Max -20 to 1000 E6010GA60 250Fs NoA 106 A Pipe .25 27/33 .048. Max .058 Max .10 Min 20 to 1100 E60IOGA60 No NoA 106 B Pipe .30 .29/1.06 .048 Max .058 Max- .10 Min 20 to 1100 E60IOGA60 No No

Carbon Steel A 120 Pipe No Chemistry Specified . -20 to 450 E6010.GA60 No NoA 135 AorB Pipe I I .050Max .060 Max -20 to 1100 E6010 GA60 No NoA 181 I Flanges .35 I .90 Max .055 Max .055 Max .35 Max 20 to 1000 E6010GA60 No NoAI81 II Flanges .35 I !JO Max I .055 Max I .055 Max .35 Max -20 to 1000 E6010 GA60 250Fs NoA 234 WPA Fitting> Coven Manufactured Fittings-For chemical analyses, other

specifications apply -20 to 1000 E6010 GA60 No No

A 234 WPB Fittings Coven Manuraetured .Fittings"';For chemical analyses. other-20 to 1000 E6010 GA60 Nospecifications apply No

A 333 C Pipe .25 I ,64/1.06 I .050 Max 1.060 Max 50 to 1000 E6010 GA60 No NoA 350 LFI Flanges .30 I 1.06Max I .040 Maxi .050 Max -50 to 750 E60l0 GA60 No 1100/1200

Wrought Iron A 72 Pipe I .06 Max Essentially lron-Approx. 1.5% 'Slag 20 to 750 E6010 GA60 No No

(

(,)

(:

(

(

{

c'(\

()

()

()

()

()

ooo()

oc()

o()

()

Q

o

114

Carbon Steels and Wrought Iron

1For speclficatlonS,on bolung ma~erials for usc withftanges of abo\.-ematerials. refer to ASTM Specifications A193. A194, A261 and A30i'.

2, Where maximum values are used, the minimum contends deter­mined by strength requirements. Determinations of chemistry are byCheck Analysis.

3 Permissible, temperature will be governed by serVice conditions.For most materials shownaUow~bleworking stresses have been estab.­lished by Codes govemingpipingdcsign. Refer toA,merican StandardCOde for Press~!" Piping (ASA B31.1) and ASME Boiler and PressureVessel Code. Section I.a~d SectionVIII.. lnsom~ cases ,the maximumtemperatures.. for which,coc;les have established ~rking stresses arelower than the limiting temperatures shown herein•. 1'he'~.,.t IlOilobt inltrprtud' asinipfJing Mal ,'M' materials ma)' ~t softly, ~ttl itnilt:r all smJiuconJjtions,U!ithin tIu lt~peraturt r4ng< "'9 give. nor that they cannot besafely employed beyondthose temperatw-e ranges.. tn selecting mate·rials the design engineer mwt, take into account all operating ~nditiOns

affecting the adequacy of the piping material.For cxa~plc, to avoid graphititQtion, Carbon, steel is COnServatively

limited to 775F max.

TABLE 3.40 (Continued)

of Preheating or these steels is not required but is recOmmended when(Al the ambient temperature is below 32F in which case local pre":heating to a hand~hot' tempcraturecondition is recomm.ended, (B) thenominal thickness exceeds '¥.z" and the carb,o~ content ,excceds.20%,Qcwhen the non:ainal thickness exceeds ~" regardless of analysis, in whichcase preheating to approximately 400F is advisable.

., Preheating is not required but, experienc;e has indicated that. pre.heating to 250F. is advisable, regardless of ambient temperature, whenwelding these materials. ,

6ASA B31;1, Section 6,rCquires stress relieving at I lOOF or over forcarbon steels thicker, than, ~"•. ASA lJ31. ...8rcquires st~relievi~gat1looF ,or over for carbon J:teels having a carbon content in excess of.32% (ladle analyiis) or a carbon'equivalent {C +' tA, Mfa> in excess of.65% (ladle analysis), and all carbon steels heavier than 11,4".

Standards for piping / 3

, ,.:;1,

(

Page 158: PIPING DESIGN-PART-I.PDF

(

(

( A.122 PIPING FUNDAMENTALS

( -'

TABLE A2.30 Selections of Gasket Materials for Different Services

"Several gaskct manufacturers have introduced nonasbcstos, nonmetallic gaskct materials for use inhigh-temperature service. These materials are proprietary and, therefore, the manufacturers should beconsulted for specific applications. ..

c.c)(

(:

(\

()

C:I

{)

()

()

()

oooooo()

()

()

()

U

o

Fluid

Steam (high pressure)

Steam (low pressure)

Water

Water

Oils (hot)

Oils (cold)

"Air

Gas

Acids

Ammonia

Application

Temp up to lOOooP

Temp up to lOOooPTemp up to lOOO°FTemp up to lOOO°FTernpup to lOOO°F

Temp up to lOOO°FTemp up to 750°FTemp up to 600°FTemp up to 600°F

Temp up to 220°F

Hot, medium, andhigh pressures

Hot, low pressuresHot

ColdColdColdColdCold

Temp up to 750°FTemp up to lOOO°F

Temp up "to 212°FTemp up to 300°F

Temp up to 750°FTeJI:lp up to 220°FTemp up to JOOO°F

Temp up to lOOO°FTemp up to 750°FTemp up to 600°F

, Temp up to 220°F

(Varies; see sectionon corrosion)

Hot or cold mineralacids

Temp up to lOOO°FTemp up to 700°FWeak solutionsHotCold

. Gasket material*

Spiral-wound camp. asbestos orgraphite

Steel, corrugated, or plainMonel, corrugated, or plainHydrogen-annealed furniture ironStainless steel 12 to 14 percent

chromium, corrugatedIngot iron, special ri.ng-type jointCamp. asbestos, spiral-woundWoven asbestos, metal asbestosCopper, corrugated or plain

Red rubber, wire inserted

Black rubber, rcd rubber, wire inserted

Brown rubber, cloth insertedCamp. asbestOs

Red rubber, wire insertedBlack rubberSoft rubberAsbestosBwwn rubber,cloth inserted

Camp. asbestosIngot iron, special ring-type jo'int

Cork or vegetable fiber·Neoprene compo asbestos

Compo asbestosRed rubberSpiral-wound camp. asbestos

Asbestos, metallicCamp. asbestosWoven asbestosRed rubber

Sheet Idd.ri'r alloy steel

Camp. blue asbestos

Woven blue asbestos

Asbestos, metallicCompo asbestosRed rubberThin asbestosSheet lead

Page 159: PIPING DESIGN-PART-I.PDF

HaLTED JOINTS A.389

(

(

o()

oooo()

ooo()

ol)

o

FEA can be used to predict the behavior of the flange structure subjected to its(lr~ratingconditions. It is possible to p~edict the behavior of the flange structurenr-:Uhematically because the behavior of the materials can be described mathemati­~;lllv. Hooke's law describes the mechanical behavior of the metal materials andtheir elastic response. Other types of stress-strain relationships have been developed1\1 model the nonlinear, plastic behavior of the gasket.

The key is to determine the actual operating stress on the gasket to predictils leak-tightness performance subjected to thermal effects, pressure, bolt stress,r~lJxation, and flange rotation.

ASSEMBLY CONDITIONS

The flange components consisting of flange, gaskets, and bolts may have beenadequately designed but their performance to specifications will be affected by"ls$~mbly conditions.

Flange Surface Finish

Flange surface finish is critical to achieve the design-sealing potential of the gasket.Again, gasket-leak tightness is dependent upon its operating gasket stress. Flangesthat are warped, pitted, rotated, and have incorrect flange gasket-surface finish willimpair'the leak tightness of the gasket.

Flanges out of parallelism and flatness should be held within ASME B 16.5specifications. This will ensUI:e that the uniform bolt loads translate to uniformgasket stress.

The resiliency and compressibil1ty of the gasket are affected byfiange surfacefinish. Recommended flange surface finishes for various gasket types are shown inTable A7.IS.

TABLE A7.18' Recommended Flange Surface Finish for Various Gasket Types

. Flange surface Flange surfaceGasket type finish microinch CLA finish micrometer Ra

Material <1.5 mm thick Material <1.5 rom thick125-250 3.2-6.3

Soft cut sheet· gaskets.

Material ;;::1.5 mm thick Material 2:1.5 mm thick125-500 3.2-12.5

Camprofile 125-250.. '3.2-6.3.- .,

~

~letal reinforced graphite 125-250 3.2-6.3

Spiral w~unJ 125-250 3.2-6.3

~(etal-jacketed gaskets 190 max 2.5 max·

Solid metal gaskets 63 max 1.6 max

Page 160: PIPING DESIGN-PART-I.PDF

cc c e e c c ~ 0 co 0 o 0 0 I"~.......; ; n (; "')

..... _J --..{ """--- ,-., ,~ >-: --'" --.,. '""'. '1 -\

SR.I DESIGNATION .1 NOM. IDESCRIPTIONNO. DIA

PIPING SPECIFICATION

PIPING CLASS : BB55CI (IBR)PIPING MATERIAL: A106GRB

CORROSION ALLOWANCE: 1.6 MMNOMINAL PRESSURE: 300#

FACING: RF, 63 RA

STANDARD

PIPES

2 IELBOWS

3 IELBOWS

4 IREDUCERS

5 IREDUCERS

1/2"IPIPE,CS (IBR)6" SEAMLESS,

Bun WELDED ENDS, SCH 40

1/2" IELBOW,90 DEG, CS (IBR)6" SEAMLESS, LONG RADIUS

Bun WELDED ENDS, SCH 40

1/2" IELBOW,45 DEG, CS (JBR)6" SEAMLESS, LONG RADIUS

BUTT WELDED ENDS, SCH 40

3/4" ICONCENTRIC REDUCERS, CS (IBR)6" SEAMLESS

BUTT WELDED ENDS. SCH 40

3/4"' 'I ECCENTRIC REDUCERS, CS (IBR)6~ . SEAMLESS .

BUTT WELDED ENDS,SCH 40

ASME B36.10

ASME B16.9

ASME B16.9

ASME B16.9

ASME B16.9

MATERIAL

MATERIAL

MATERIAL

MATERIAL

MATERIAL

A106 GR B

A234 GRWPB

A234 GRWPB

A234 GRWPB

A234 GRWPB

Page 161: PIPING DESIGN-PART-I.PDF

c c c C e e c ~ 000 0 o C) ,..., r""'\\./ \j

r""'I\_j n () /) /\ ,-. ;..", ~

.- -j.

'"'\ '-"'"\ ,'"'\ ~) -­,

SR'IDESIGNATION I NOM·IDESCRIPTIONNO DIA

PIPING SPECIFICATION

PIPING CLASS: BB55CI (JBR)PIPING MATERIAL: A106 GRB

CORROSION ALLOWANCE: 1.6 MMNOMINAL PRESSURE: 300#

FACING: RF, 63RA

STANDARD

61BRANCHES I 1/2" ITEE, CS (JBR)6" SEAMLESS,'

BUTT WELDED ENDS, SCH 40

7 IWEDOLETS I 1/2" IWEL,DOLETS,,CS (IBR)6" SEAMLESS

BUTT WELDED ENDS. SCH 40

8 IHALF , 11/,2" IHALF CO,'UPLlN,G,' CS, (IBR)COUI:>L1NG 1 1/2" PN/CLASS : 3000

SOCKET WELDED ENDS

9 ICAPS 11/2" ICAP, CS (IBR)6" SEAMLESS

BUTT WELDED ENDS, SGH 40

10 IFLANGES I 1/2'LISLEEPON FLANGE. CS (IBR)6f ,PN/CLASS: 300

ASME B16.9

MSSSP97

ASME B16.11

ASME B16.9

ASME B16.5RF,63RA

MATERIAL

MATERIAL

MATERIAL

MATERIAL

MATERIAL

A234 GRWPB

A105

A105

A234GRWPB

A105

Page 162: PIPING DESIGN-PART-I.PDF

etC c~>~)cc,o C; coo 0 r; o () (') (i () ')'''-/ '-.j'

PIPING SPECIFICATION

---.., -. '-, '1 -, ""'i '1 '\, - -'\ ) .-~ --,

SR.IDESIGNATION 'I NOM·IDESCRIPTIONNO DIA

PIPING CLAss: BB55CI (JBR)PIPING MATERIAL: A106 GRB

CORROSION ALLOWANCE : 1.6 MMNOMINAL PRESSURE: 300#

FACING: RF, 63RA

STANDARD

11 IFLANGES

12 IADAPTOR '

13 IGASKETS

141SPACERS

1/2" IB,L1ND FLANGE, CS (lBR) IASME B16.56" PN/CLASS: 300 RF,63RA

1/2" /PRESSURE GAUGE ADAPTOR,CS, (IBR) IASME B16.111" PN/CLASS : 3000#

ONE END 1/2" NPT (F) OTHER SOCKETWELDED TO SUIT PIPE SIZE

1/2" /SPIRAL WOUND GASKET !ASME B16.206" PN/CLASS : 300 '

4.5 MM THK WITH INNER AND OUTER RING

1/2" "I SPECTACLE -BLIND, CS (fBR) I~SME B16.466" PN/CLASS : 300 63 RA

FOR RF FLANGES TO ASME B16.5

i.

MATERIAL

MATERIAL

SPIRALFILLEROUTER RINGINNER RING

MATERIAL

A105

A105

-5S304ASBESTOSA515 GR 60A515GR 60

A515 GR60

15 IBOLTS 1/t"~lFULL"TH,READED STUD WITH6" '2 HEX HEAVY NUTS

THREADED CL2AI2B TO ASME 81.20.1THREAD FOR <= 1" DIA ;. UNC& >1" DIA-UN6

ASME B16.2.11ASME B16.2.2

STUDNUT

, A193 GR B7A193 GR2H

Page 163: PIPING DESIGN-PART-I.PDF

cceeeoo~OoocooooCon~

PIPING SPECIFICATION

PIPING CLASS: BB55CI (IBR)PIPING MATERIAL: A106 GRB

CORROSION ALLOWANCE: 1.6 MMNOMINAL PRESSURE: 300#

FACING: RF, 63 RA

-- ~ ---I ,'""\ -., r-, ')~ '"", " ~ " \

1 "-::::

SR.IDESIGNATION··I NOM. IDESCRIPTIONNO DIA

STANDARD

16 IGATE VALVESSW

17 IGATE VALVEFLANGED

1/2" 1GATE VALVE, SOCKET WELDED, CS (IBR)1 1/2" PN/CLASS : eoo,o

BOLTED BONNET HANDWHEEL OPTD.SOLiD WEDGE, OS & Y,RISING STEM, NONRISING HANDWHEEL,RENEWABLE BODY SEAT,INTEGRALBACK SEATINTEGRAL DISC SEATMECHANISM FOR RELIEF OF INTERNALPRESSURISATION DUE TO TRAPED FLUIDSHALL BE PROVIDED (REF API 6D)

GATE VALVE, FLANGED, CS (IBR)2" lPN/CLASS: 300,06" ASME B16.10

BOLTED BONNET HANDWHEEL OPTD.OS & Y,SOLID WEDGE UP TO 2",=> 2" FLEXIBLE WEDGE,RISING STEM, NONRISING HANDWHEEL;RENEWABLE BODY SEAT, RENEWABLEBACK SEAT INTEGRAL DISK SEAT

i 'IMECHANISM FOR RELIEF OF INTERNAL, PRESSURISATION DUE TO TRAPED FLUID

SHALL BE PROVIDED (REF API6D)

API 602SOCKET WELDEDENDS, B16.11

API 600RF,63 RAFLANGED END TOASME B16.5

BODY, BONNET A105TRIM 13% CR HARD FACEDPACKING GRPH ASB + INC WIREBONNET GASK SP WD 8S304 + ASBFASTENERS A193 GRB7/A194 GR 2HGLAND/GLAND FLG A105YOKE / YK BUSH M05/ NI RESISTOTHER INTR'L 13% CRHANDWHEEL MALLEABLE IRON

BODY, BONNET A216 GR WCB. 'TRIM 13% CR HARD FACED

PACKING GRPH ASB + INC WIREBONNET GASK SP WD SS304 + ASBFASTENERS A193 GR B7 / A194 GR 2HGLAND/GLAND FLG 13% CR/A216 GR WCBYOKEIYK BUSH A216 GR WCB / NI RESISTOTHER INTR'L 13% CRHANDWHEEL MALLEABLE IRON

Page 164: PIPING DESIGN-PART-I.PDF

CGCC~)CC() 000 0 COO 8 0 u ~ ~

PIPING SPECIFICATION

"....-., " ""'\ " \

-'\ '"'. -, .--"\ ~

PIPING CLASS : BB55CI (IBR)PIPING MATERIAL: A106 GRB

CORROSION ALLOWANCE : 1.6 MMNOMINAL PRESSURE: 300#

FACING: RF, 63 RA

SR.I DESIGNATION INOM. IDESCRIPTIONNO . DIA

STANDARD

18 IREGULATINGVALVESSW

19 IREGULATINGVALVESFLANGED

1/2".IGLOBE VA.LV.E, SOCKET WELDED, CS (IBR)1 1/2" PN/CLASS: 800,0

BOLTED BONNET, HANDWHEEL OPTD.REGULATING TYPE DISC, OS & YLINEAR FLOW CHARACTERISTIC DISCRISING STEM, RISING HANDWHEELRENEWABLE BODY SEAT,INTEGRAL DISC SEAT, INTEGRAL BACKSEAT

2" IGLOBE VALVE, FLANGED CS (IBR)6" PN/CLASS : 300,0

BOLTED BONNET, HANDWHEEL OPRTD.REGULATING TYPE DISC, OS& YLINEAR FLOWCHARACTERISTIC DISCRISING STEM, RISING HANDWHEELRENEWABLE BODY SEAT, RENEWABLEBACK SEAT, INTEGRAL DISC SEAT

BS5352SOCKET WELDEDENDS,ASME B16.11

BS 1673RF, 63 RAFLANGED END TOASME B16.5

BODY BONNET A105.TRIM 13% CR HARD FACEDPACKING GARPH ASB + INC WIREBONNET GASK SPWD SS304 + ASBFASTENERS A193 GR B7/A194 GR 2HGLAND/GLAND FLG A105YOKEIYK BUSH A105/ NI RESISTHANDWHEEL MALLEABLE IRON

BODY BONNET A216 GR WCBTRIM 13% CR HARD FACEDPACKING GRPH ASB + INC WIREBONNET GASK SP WD SS304 + ASBFASTENERS A193 GR B7/ A194 GR 2HYOKEIYK BUSH A216, GR WCB/NI RESISTGLAND/GLAND FLG 13% CRlA216 GR WCBOTHER INTR'L 13% CRHAND WHEEL MALLEABLE IRON

20 ICHECKVALVES.SW

1/2"; 'ILlFT CHECK VALVE, CS (IBR)1 1 2" PN/CLASS: 800,0

f : BOLTED COVER, PISTON LIFT CHECK DISCINTEGRAL DISC SEAT, RENEWABLEBODY SEAT, SPRING LOADED

BS 5352SOCKET WELDEDTO ASME B16.11

BODY COVERSEAT & PISTONCOVERGASKFASTENERSSPRING

A216GRWCB13% CR HARD FACEDSP WD SS304 + ASBA193 GR B7/A194 GR 2HA313 GR302

Page 165: PIPING DESIGN-PART-I.PDF

c c Cc,c()ce o C, 0 0 COO C o ,-'\.-~j o ''J '1 ~) '1 ""'" ,') r, '\ --, ~ ~ "'""

SRIDESIGNATION INOM. IDESCRIPTIONNO DIA

PIPING SPECIFICATION

PIPING CLASS : BBSSCI (IBR)PIPING MATERIAL: A106 GRB

CORROSION ALLOWANCE: 1.6 MMNOMINAL PRESSURE: 300#

FACING: RF, 63 RA

STANDARD

211CHECKVALVESFLANGED

22 ISTRAINERSSW

23 IFLANGEDSTRAINERS

2" ISVVING CHECK VALVE, CS (IBR)6" PN/CLASS: 300,0

BOLTED COVER, SWING TYPE DISCINTEGRAL DISC SEAT, RENEWABLEBODY SEAT

1/2" IV TYPE STRAINERS, CS .(IBR)1 1/2" PN/CLASS : 800 #

BOLTED COVER, WITH PERFORATEDPLATE AND WIRE MESH 40 MESH

1/2" IY TYPE STRAINERS, CS (IBR)1 1/2" PN/CLASS :300,0

ASMEB16.10 (Y TYPE GLOBE VALVE)BOLTED COVER, WITH PERFORATEDPLATE AND WIRE MESH 40 MESH

j,,:

BS1666 BODY COVER A216 GRWCBRF,63RA DISC A216 GR WCB HARD FACEDFLANGED END TO SEAT 13%CRASME B16.5 . HINGE PIN SS304

COVERGASK SP WD SS304 + ASBFASTENERS A193GR B7/A194 GR2HOTHER INTR'L 13%CR

MFG sm IBODY COVER A105SOCKET WELDED STR ELEMENT SS304ENDS TO B16.11 COVER GASK SP WD SS304 +ASB

FASTENERS A193 GR B7/A194 GR 2H

MFGSTD BODY COVER A216 GRWCBRF, 63 RA STR ELEMENT SS304FLANGED END TO COVERGASK SP WD SS304 + ASBASME B16.S FASTENERS A193 GR B7/A194 GR 2H

Page 166: PIPING DESIGN-PART-I.PDF

e c e e ~) c c """ c! 0 0 /""I a ""'" 0 ,-., n 1""'\ ,-., () .'1 ~.- .'1

"'-" 't:......-I "',,-J \J \ ___ .J... , j --"--, ,

PIPING SPECIFICATION

PIPING CLASS : BB5SCl (IBR)PIPING MATERIAL: A106 GRB

CORROSION ALLOWANCE: 1.6 MMNOMINAL PRESSURE: 300#

FACING: RF, 63 RA

.-, ,J )...., .-, '""".-~..z:'

)----. .~

SR.IDESIGNATION INOM'IDESC~IPTIONNO DIA

STANDARD

24 ISTEAM TRAPSTHERMO­DYNAMIC

1/2" ISTEAM .TRAP THERMODYNAMIC TYPE (IBR)1" PNI CLASS: lIOO,O

THERMODYNAMIC TYPE WITH BUILTIN STRAINER

DES. PRo : 16 KG/cm2 (G)DES. TEMP. : 300 DEG CNOM CAPACITY: 100 KG/HRMAX. CAPACITY: 150 KG/HRBK PRo : 1 KG/CM2 (G)

MFG STD IBODYSOCKET WELDED INTERNALSTO SUIT B16.11

A105SS304

25 ISTEAMTRAPS I 1/2"INVERTED 2"BKT.

STEAM TRAP INVERTED BUCKET TYPEPN ICLASS: 300,0INVERTED BUCKET TYPE WITH STRAINERDES. PRo : 15 KG/cm:l(G)DES. TEMP. : 300 DEG C .NOM CAPACITY : 200 KG/HRMAX. CAPACITY: 250 KG/HR

'BK PRo : 1.5 KG/cm:l (G)

MFG STD IBODYFLANGED TO B16.5 INTERNALSRF,63 RA

A216 GRWCBSS304

26 ISTEAMTRAPSBALL FLOAT

1/2" i/,STE.AM TRAP BALL FLOAT TYPE - IBR2", PN/CLASS: 300,0

r : BALL FLOAT TYPE ASSEMBLYDES. PRo : 15 KG/CM2 (G)DES. TEMP. : 300 DEG CNOM CAPACITY: 200 KG/HRMAX. CAPACITY: 250 KG/HRBK PRo : 1.5 KG/CM2 (G)

MFG STD IBODYFLANGED TO B16.5 INTERNALSRF,63RA

A216 GR WCBSS 304

Page 167: PIPING DESIGN-PART-I.PDF

~ c C c) ~, (;') e e C 0 (') 0 t"", 0 () ,-.., !8 () r; ,-, ;""\

""""r"\ .-, ",,\, ') '1 '1

....,~ ~ --- ~ ~,

\'" 1.,,.1' , ' / )

- Piping Specification

Branch Table

Piping Class: BBSSCI

Main Branch Pipe ONPipe 1/2" 1" 11/2" 21/2" 31/2" 5" 8" 12"ON 3/4" 11/4" 2" 3" 4" 6" 10"

1/2" LT - - - - - - - - - - - - -3/4" LT LT - - - - - - - - - - - -1" LT LT LT - - - - - - - - - - -11/4" LT LT LT LT - - - - - - - - - -11/2" LT LT LT LT LT - - - - - - - - -2" LV ET ET ET ET ET - - - - - - - -21/2" LV LV ET ET ET ET ET - - - - - - - -3" LV LV LV ET ET ET ET ET - - - - - -31/2" LV LV LV LV ET ET ET ET ET - - - - -4" LV LV LV LV ET ET ET ET ET ET - - - -5" LV LV LV LV LV ET ET ET ET ET ET - - -6" LV LV LV LV LV * ET ET ET ET ET ET

8" . ET - -LV LV LV LV LV * * * ET ET ET ET -10" LV LV LV LV LV ** ** ** ** ET ET ET ET ET12" LV LV LV LV LV ** ** ** ** ** ET ET ET ET ET

..IIr

..

## = LAMINATED # = BW-TEE, SPECIAL ** = STUB IN WITH PAD*=STUB-IN ED = WELDOLET EF = NECKED-OUT PIECEEL = LATROLET ET=BW-TEE LT = TEE,SOCKET WELDEDLV = half coupling PO = REINFORCED PIPE-BRANCH RT = BW-Tee, reduced

Page 168: PIPING DESIGN-PART-I.PDF

(;

(;

c(

o

Ci

()

ooC'

ooQ

oOJ

aoo()

Q

C)

oo(;)

oo

Annexure F

,.Drawings of Valvesand Pipe Fittings

Page 169: PIPING DESIGN-PART-I.PDF

H (Op,n)

~K

.Class 600, 900, 1500

2830, 32:36 " ·4042609 609 660 711 812 860

.g14'; 9.*4':;9~51,Ql6~1066"]14g

2825 3175 3473 3600 4100 4500450~5()O*":50or'500~ '.§{JO"&50'i1550 1950 2200 3050 3265 4250

CAST STEEL BOLTED BONNET

6

~K

Class 300

H (O'pen)

~-_. ._---_._...._._-_._--

Class 150

Class 900Size inch, 22'lz '3 4'5 "6. 8 ,1.0,1? 14 ,16W26'·L,L1-REBW mm 368 419 381 457 559 610 737 838 965 1029 1130 1219 1321H . 'mni <!45$ilf'Sg!)·751)';·165 865 t225.i'45() 1825'16801925 :20252310K mm 300 300 300 400 450 300· 350' .400' 400' 450' 500' 500· S50'WI. (approx) kg 85 105 125-189 260 310 525 975 1450 1900 2555 3275 3900

Class 1500Size inch 221iz 3· 4 568"10121416 18"L,L1~REBW mm 368 419 470 546 673 705 832 991 1130 1257 1384 1537H mm 475 525, 600 775 785 925 1250 1525 1725 1750 1950 2125K mm300 300 300' 300' 300' 350' 350' 400' 400~ 450· 550· 550'W~. (approx) kg 110 130 145 220320 403 71013502300 3100.3575 4585

• Gear Operation suggested. Dimensions on request.,. For But/welding end details refer Page 32, 33 .

Class 600Size inch . 2217~3' '4, 5 ,6 -. ,8101214, 161.820 24"L,L1-REBWmm292 330,356,432 508 559 660 787 838 889 991 1092 1194 1397.Ii 'rrjm ;440 5QO:545~72Q. 730 ?50 120lU3901580t~$5:19()5201:0·2275 2810.K mm 250 250 300 350 400 500 600 600 400' 450' 450' 500' 500' 550'WI. (app(o~) !kg, W61<68'123 '178 225430 73P . 8501300 1750 2?50 2450 4100

Dimensions

Class 150Site ,inch' 2'2~'3 ·4' . 5 . 6 8. 10 12 . 14 . 16 18' '20',2426L- RF ,mm 178 191 203 228 254 267 292 330 355 381 406 432 457 508 559'*(::1".BW Il1rri:21~,Z4i;282i:3b4.'aill,.403' lU9 .457: 501. 571609660 :ilr'&12 '863H mm 425 435 535 600 705 800 1010 1250 1385 1575 1825 1950 2080 2425 2750K mm2dli"20A'·~5Q·:'.;,~50280·30iF.3$04~O :500 350«'350' 350' ' 400· 400~.450'

WI. (approx) kg 22 29 37 56.78 84 138 210 310 450 565 740 927 1125 1425

Class 300Size::'" ":inch, 221h'j,;:$.,:·;';,ll· ,:5 . 6,: al0 12 ,14:;'.l6· . 18 20, ,," 24,:26:2a:,30:,•• L,L1- RFBW mm 216 241 282 305 381 403 419457 502 762 838 914 .990 1143 1244 13461397H ' nim 4304'75 53fl60S'715 8451075·1260142515851845 199521752650 2850 30503270'K mm 200 200 250 300 300 350 450 500 " 500 350' 400' 450' 450' 500' 500' 500'550'WI. (approx) kg 28 40 53:;W125 '152 245 '360 532' 72(i950 1:3,50: 1648 2350 290034004100

ooooo()

ooooo(])

ooo(;)

Q

ooaoQ£)

o0-...-,---- ---

Page 170: PIPING DESIGN-PART-I.PDF

()

("")

•.. 1,

,.(\

f)· CAST STEEL BOLTED BONNET

Part Name WCB LCB WC6 WC9

05 Stud and Nut A193 Gr B7 / A194 Gr 2H A320 Gr L7 / A194 Gr 4 A193 Gr B16/ A194 Gr 4/7 A193Gr Bi6/ A194 Gr ~704 Gland Packing GRAFOIL GRAFOIL . GRAFOIL GRAFOIL03 Gasket Spiral Wound / Soft Iron Spiral WOljf.ld / Soft Iron Spiral Wound / SS304 Spiral Wound / SS30402 Bonnet A216Gr WCB A352 Gr lGB A217 Gr WC6 A217 Gr WC901 Body A216 Gr WCB A352 Gr LCB A217 Gr WC6 A217 Gr WC9

Part Name C5 C12 CF8 CF8M05 Stud and Nut A193 Gr B16/ A194 Gr 4/7 A193 Gr B16/ A194 Gr 4/7 A193 Gr 137/ A194 Gr2H . A193 Gr B7 / A194 Gr 2~

04 Gland Packing GRAFOIL GRAFOIL . GRAFOIL GRAFOIL03 Gasket Spiral Wound / Soft Iron Spiral Wound I Soft Iron Spiral Wound / SS304 Spiral Wound / S831602 Bormet A217 Gr C5 A217 Gr C12 A351 Gr CF8 A351 Gr CF8M01 Body A217 Gr C5 A217 GrC12 A351 Gr CF8 A351 Gr CF8M

----------

7

"

'A Allti ,friet!on '.'ballJhr,u~tbe~'ring\:Reduces friction betweenmatitig~aJrtsto ensure smooth operation .

B Grubserew;.Secu~es. yoke riutinithe Qonnet ..... '. '.. ." ..............•.••....

C·Gre~seNipple: Supplieslubricamtto thematiiig parts

See Page 35, 37 torTrim and Seating Surface Materials

Material

Carbon SteelCarbon SteelCarbon SteelMalleable Iron / Cast Steel/Ductile Iron I Fabricated SteelCarbon StefJl / SS 304Forged Carbon SteelForged Carbon SteelA439-02 / AI. Bronze, BS 1400, AB2CCarbon Steel/Equivalent to Body Material

Part Name

Materials

19 Grease Nipple18 Grub Screw17 Hand Wheel. Nut16 Hand Wheel15 Yoke Nut14 Eye Bolt and Nut13 Cross Bolt and Nut12 Yoke Sleeve11 Gland Flange

10 Gland Bush }09 Back Seat08 Spindle07 Seat Ring06 Gate

Features> Outside screw and yoke construction> Flanged end or Buttwelding end> Valves provided with back seating arrangement

. > Solid, flexible, split wedge, 'double disc and parallel slide are available> Extended bonnet provided for low temperature and cryogenic services

(cold box and non-cold box applications) to conform to requirementsof as 6364

> SpeciaUV designed die' formed graphite packings,' controlled clearancesbetween stem, gland and bonnet bushing for guaranteed low emissionsmeet 100 ppm maximum fugitive emission .levels.

> ltenewable. seal welded seat ring or integral seat (cast S.S. only) available> Deep stuffing box - with lantern ring optioQal>.Self aligning' two piece gland> Anti-friction ball thrust bearing in yoke sleeve for higher sizes and classes> Locking arrangement optional> Bi-directional shut ·off> Optional gear, electric or pneumatic actuator available> Meets design requirement of ASME B16.34/ API 600/ API 603/ BS 1414/ API 60

and testing requirement of API 598 / BS 6755/ API 60> Flanged end dimensions conform' to ASME B16.5/ API 605/ BS 3293/ DIN> Ring joint facings available in higher classes> Buttwelding end dimensions conform to ASME B16.25> Face to Face and End to End dimensions conform to ASME B16.10 / BS 2080/ DIN

()II

( .••,..j

(>

()()()fj

~;)

Page 171: PIPING DESIGN-PART-I.PDF

I;;

Class 600, 900, 1500, 2500

Dimensions

H (Open)

CAST STEEL PRESSURE SEAL BONNET

For Buttwelding end delail,refer Page 32

Ll

Class 600, 900, 1500, 2500

Class 600Size irich 2 21J2 3 4 5 6 8 10 ' 12 14 16 18 20 24L mm 292 330 356 432 508 559 660 787 838 889 991 1092 1194 1397Ll-,SP >178 t16" 254 30S i • ·381 45T· ·584'·. 711 813;' "889: >,991 ' :1092.t194, 1397.H mm 525 610 650 775 825 1050 1200 1450 1600 1800 2050 2245 2400 2:-670K nim 250 250 300 350 400 500. 600 600 400' 450~ 450*.. 500' "500' 550'WI. (approx) kg 35 55 62 105 160 205 400 690 815 1125 1650 2025 2325 3'980

Class 900Size· ····inch··· .. 2 21J2 3·· ···4 5 '6 8 10 12 14 16 18 '20,L mm 368 419 381 457 559 610 737 838 965 1029 1130 1219 1321L1 - SP mIn..

216 254 305 356 432 508 660 787 914 991 1092 1219 1321H mm 550 645 670 790 855 1075 1225 1500 1635, 1830 2145 2300 2485K mm 300. ;300. 300' 400 ~56' 309~ 35g' 400' 400~ .450* 5'liof 500~ ·55o.~

WI. (approx) kg 75 90 96 136 225 275 490 825 1150 1500 2100 2750 3400

Class 1500Size. ·.··.inchi. ·:.;2 .2'/2 }: .....: 4 :8, ':10' 12 '.'<'',14 . '.W· 18L mm 368 419 470, 546 673 705 832 991 1130 1257 1384 1537U:.- SP ·'iii~ 21.6' 254 . 305' ." 406 "483 55~ '." 711 . 864 991 1061'· ·'1194 .' 1346,H mm 570 670 725 850 890 1125 1235 1520 1650 1875 2275 2365K :.C:mfTi: 300, 300 ,300~ 300' gOO*.· ,.3W, 350' 400' :400~ '450',. 550~ ... 550'WL(approx) 95 110 125 205 256 330 655 1200 2010 =2850 3450, 4250

Class 2500Size. inch 2 21/ 2. 3 4 5 6. 8. '10 ' .12L mm 451 508 578 673 794 914 1022· 1270 1422It-SP,' rnhl 279' .·.:}30: '36il· ,451 '533 ." qio ttJ2. "'/914: 1041'

,H mm 600 695 740 890 970 1135 1350 1680 1750K mm 400 450 300' 350' 350' 350' .400' 450' 450·WI. (approx) kg 110 130 140 225 295 495 825 1480 2400

• Gear Operation suggested. Dimensions on request.

Abbreviation : SP - Short Pattern

8

Page 172: PIPING DESIGN-PART-I.PDF

CAST STEEL BOLTED BONNET

~K

Class 600, 900, 1500Class 300

~K

-~h

LL1

~K

Class 150

'·C:

() Dimensions

Class 150Siz\l; .:'" .. !ncn::·,: • :':>::,,::~ i. "2 2Vi' ;'.3 4,'· '5; ;.• 6 "'8..: 10 12 14 16 18 20 24"L,Ll -REBW mm 203 21t) 241 292 356 406 495 622 699 787 914 977 977 1295

:lriiii:;,' ;..... ;,.;; ~' .r. .:. :?~!l; ·:,390, 410> '475' ,540 .'585' . '725 :'825'.:' ~40 1200: ·i27rj· 1300 131m 1450f1lm 200 250 250 300 350 350 450 500 600 600 650 650 700 750

Wt'(apPfox) kg •. 23 29 40 59 .95 115 178 268 385 .. 540 7.60 1050 1225 1650

Class 300Site :iil¢h\. 2' 2W :~ 4 5 6

.'8 1Q .12 14 16 18 20 24.'0/'"

·'L,L1-REBW mm 267 292 318 355 400 444 558 622 711 838 863 Q77 1016 1346H 111111 350 425 485 520 565 655. 825 920 1155 1250 1295 1340 1385 1475K mm 200 250 300 300 350 350 500 600 700 700 450' 500' 550' 550'W!·JapPfO~Y· kg' .30 45. ~Q' 83 135 162 .265 375 525 . 765 J1QO, 1470 16.80 2475

Class 600Size iorih. .2 2% 3 4 5 6.' 8 10. 12.. L,U- RFBW mm 292 330 355 431 508 558 660 787 838H,:~i>:/" 'rn.iTl··.··· (440., ;Agg" :~5o. SSo 620 'ioo <g~Q , 1140' 1320:K mm 250 300 300 350 500 500 600 600 400'W\.(approx)' kg 39 .61 76 "1.22 210 245 .. 447 692 975

Class 900. ~j~~:.:,.,,!; ,..·:·iri~h \:):";"'i ..... '..,..:,,". :.~."" .'4 '.12."L,U - REBW mm 368 419 381 457 559 610 737 838 965H. inm' ,495 ·'540 600 655 670 .. 780'· .'1050 1300 1480K mm 300 350 350 500- 500 350' 350' 400' 450'WI. (appr()x) . kg, 96 79 117. .178 305 ,,355 730. 1050 1350

Class 1500Size inch 2 21/2 3 4 5 6 8 10"l,L1- REBW mm 368 419 470 546 673 705 832 991H !11m 550 580 625 750 810 925 1225 1450.K mm ~~"-300-- 350 400 450 500 600 450' 500'wi: (approx) .kg 116 125· 145 210 395 415 925 136.5

• Gear Operation suggested. Dimensions on request.•* For Butlweldingend details refer Page 32

12

\)

()

'\')

Page 173: PIPING DESIGN-PART-I.PDF

(,

C",

(

(',

cc;; ,

i('

('

C­e,

c'c:

o

CAST STEEL BOLTED BONNET

Features» Outside screw and yoke construction» Angle and V-type design available)- Flanged end or Buttwelding end)- Valves provided with back seating arrangement)- Regulating, guided and soft seated plugs are available»,Extended bonnet provided for low temperature and cryogenic services

(cold box and non-cold box applications) to conform to requirementsof BS 6364

)- Specially designed die formed graphite packings, controlled clearances ..between stem, gland and bonnet bushing for guaranteed low emissionsmeet 100 ppm maximum fugitive emission levels.

)- Renewable, seal welded seat ring or integral seat (cast S.S. only) available)- Deep stuffing box - with lantern ring optional)- Self aligning two piece gland» Anti-friction ball thrust bearing in yoke sleeve for higher sizes and classes)- Locking arrangement optional» Optional gear, electric or pneumatic actuator available» Meets design requirement of ASME B16.34/ BS 1873 and testing requirement

of BS 6755)- Flanged end dimensions conform to ASME B16.5/ API 605/ BS 3293/ DIN)- Ring joint facings available in higher classes '» Buttwelding end dimensions conform to ASME B16.25» Face to Face and End to End. dimensions conform to ASME B16.10 / BS2080 / DIN,

Materials

17~~~~~~~16)-

13i}------Bm!l--'--~'_<118

()

c'()

q

o

()"

Part Name

18 Grub Screw17 Hand Wheel Nut16 Hand Wheel15 Eye Bolt and Nut14 Cross Bolt and Nut13 Yoke Sleeve12 Gland Flange11 Gland Bush

10 Back Seat, }09 Plug Nut08 Spindle07 Seat Ring ,06 Plug

Material

Carbon SteelCarbon SteelMalleable Iron / CastSteel / Ductile / Fabricated SteelForged. Carbon SteelForged Carbon Steel ,A439-02 / AI. Bronze, BS 1400, AB2CCarbon Steel 1Equivalent to Body MaterialStainless Steel

See Page 35, 37 forTrim and Seating Surface Materials

~;, Ailti·Jrii:li()~b~II.· t~ruslbearing': ..... ' Reduces frh::t1on between mating parts

to ensuresinootMoperatiQri , .' ...B.G('ub·sciew: secpresyokenutin.,

thebon~et "." •. '•. ' ,';., •.." .' '.. ..•. . ..'C:Grea'SeNipple':';S~ppliesiubricarit/ '

to lhematihgparts

£J""" .

(;

Part Name WCB LCB WC6 WCH

05 Stud and Nut A193 Gr BTl A194 Gr 2H A320 Gr L7/ A194 Gr 4 A193 Gf B16 / A194 Gr 4/7 A193 Gr B16 / A194 Gr 4/704 Gland Packing GRAFOIL GRAFOIL GRAFOIL GRAFOIL03 Gasket Spiral Wound / Soft Iron Spiral Wound / Soft Iron Spiral Wound / SS304 Spiral Wound 1SS30402 Bonnet A216 Gr WCB A352 Gr LCB A217 Gr WC6 A217 Gr WC901 Body A216 Gr WCB A352 Gr LCB A217 Gr WC6 A217 Gr WC9

Part Name C5 C12 CF8 CF8M05 Stud and Nut A193 Gr·B16 / A194 Gr 4/7 A193 Gr B16 / A194 Gr 4/7 A193 Gr'B7 / A194 Gr 2H A193 Gr B7 / A194 Gr 2H04 Gland Packing GRAFOIL GRAFOIL GRAFOIL GRAFOIL03 Gasket Spiral Wound / Soil Iron Spiral Wound / Soft Iron Spiral Wound / SS304 Spiral Wound 1SS31602 Bonnet A217 Gr 05 A217 GrC12 A351 Gr CF8 A351 Gr CF8M01 Body A217 Gr C5 A217 Gr C12 A351' Gr CF8 A351 Gr CF8M

13

Page 174: PIPING DESIGN-PART-I.PDF

('

(\

C

e,;

Cn

CAST STEEL PRESSURE SEAL BONNET

L1

Class 600, 900, 1500, 2500

14

Class 600, 900, 1500, 2500

Dimensions

• Gear Operation suggested. Dimensions on request..Abbreviation :SP '- Short Pattern

.Class 600Size hich 2 21/2 3 4 5 6 8 10 12II L1 mm 292 330 355 431 508 558 660 787 838ll-SP .. mrn ·1j~· 21S:,.2M .. •:304 .. :381 ,457( 584: .·nt:;'8121-1 mm 510 575 610 725 800 1010 1180 1360 1780K; .mm:. 250 300. 306. 350.' ,500 550 600 600 ' '400~

WI. (approx) kg 38 60 65 105 185. 230 410 615 895

Class 900Sizf' liich 2%···· "3 4 5' 6 ~.'. 10: ·12LI L1 mm 368 419 381 457 559 609 736 838 965Lt- SP mrri 225 254 305 35p 432 508 660 787 914H mm 550 580 675 750 815 1085 1300 1420 1825

min ~:<'300 : ·.···350",'.·350 '., \'500 :·.··' ..'500 ;,·.35lh. . 350r.: ·AQO~/A50~

WI. (approx) kg 70 85 105 130' 255 315 670 925 1200

Class 1500siie. ',.. inch.>; :';2.' . '21{;' ,.~ ·6 . .... :·S· i,:AO"lIL1 mm 368 419 470 546 673 705 832 991Ll'''-SP mot,:· ·:··.···:·.. 216: ':'~54" 305' .40~· .'483: ..559': '7;11.'

'. aMH mm 565 580 '680 800 825 1130 1450 1535K. mm '300: 350 40Q .·.·.450 '$00 600 460"" 509~

WI. (approx) kg 80 90 115 160 300 410 6~0 1150

Class 2500Size inch 2 21/2, 3 4 5 ~. 8 10LI Ll mm 451 508 578 673 794 914 1022 1270LV':':SP rTlm .279 3M 3~8., "4~t '.533;5· '609.5 762: '91;4;5H mm 575 605 725 835 875 1200 1510 1720K om; 3W 350 350' ~OO· 400' 400' 450' 550'WI. (approx) kg 95 110 125 210 565 615 1050 1525

o

oooooo,0

Page 175: PIPING DESIGN-PART-I.PDF

(

CAST STEEL BOLTED COVER

c

Class 600, 900, 1500

L, L1

Class 300

j

loL1

Class 150

Dimensions

Class 150Sizl!. .inch 2 2112. 3 4 ~. 6 e 10 12 14 16 1.8 20 24

**L,Ll-RF.BW mm 203 216 241 292 330 356 495 622 699 787 864 977 977 1295

H,.::·.:.····; .•·.,.··,,·; i:.:mm },.. '/ ;'. '··:,r·15S::.' '190 ':;',20Q r~2~~';'I .:iIlS,': 2ef' "3Q$; "\39Q;:',·· :4'10,' '. ,,435: ,';53'0', .5tQ'-. '62~': 675.

WI. (approx) kg 16 25 34 46 75 89 120 220 337 471 575 788 916 1275

Class 300Siie" inch 2 2'/2 '. $.' :6· .1p· .·,:t~ .20 24**L,Ll -RF.BW mm 267 292 318 355 400 444 533 622 711 838 863 977 1016 1346

H mm 180 200 225 240 275 310 370 410 440 5lio 545 605 675 785

WI. (approx) kg 26 32 53 73 110 157 234 348 450 650 800 970 1350 2210

Class'600Si~e;:· .i1'1ch. :;21/{ 3' : 5 6. 8". 10 12 ;14 1.6' ' :18. .20

**L,ll-REBW mm 292 330 355 431 508 558 660 787 838 889 991 1092 1194

.mm ..,.', :'-J~9 ;;215.:;. 250; ;·2pO: :310.:' ~50 •.· 4g0;'.: 490 525 580 ·.(Jao· 690 810

WI. (approx) kg 33 49 62 95 120 195 360 465 725 875 1075 1475 1900

oo

o

o

o

oo

(\

(

c·c\C

()

()

()

o(;)

()

oQ

""-" - .

()

()

()

Class 900Siifr', .. inch· 2 . . 2~/2 . 3 4 5. 6 ~ 10. 12 .. ,,1.4**L,l1-REBW mm 368 419 381 457 559 610 737 838 965 '1029-

H:' mIil. 195" 2~5< 260 ·275 320·'; .370· 435 .520 .. 530 :580

WI. (approx) kg 55 70 90 135 165 295 525 900 1075 1225

Class 1500Size inch 2. 2'/2 3 4

..S 6 '8'

**L,Ll- RF.BW. mm --- 368--- 419 470 546 673 705 832

H mm 220 270 290 310 350 410 485

WI. (approx) kg 70 85 115 175 180 370 680

*. For Buttwelding end details refer Page 32

18

Page 176: PIPING DESIGN-PART-I.PDF

(;CAST STEEL DOLTED COVER

WC9

CF8M

A193 Gr 816/ A194 Gr 4/7

A193 Gr 816/ A194 Gr 4/7

Spiral Wound / SS304

A217 Gr WC9

A217 Gr WC9

A217 Gf WC9

.A217 Gr WC9

A193 Gr 87/ A194 Gr 2H

A193 Gr B7/ A194 Gr 2H

Spiral Wound / SS316

A351 Gr CF8M

A351 Gr CF8M

A351 Gr CF8M

. A3~1 Gr CF8M

CF8

A193 Gr B16/ A194 Gr 4/7

A193 Gr 816/ A194 Gr 4/7

Spiral Wound / SS304

A217 Gr WC6

A217 Gr WC6

A217 Gr WC6

A217 Gr WC6

WC6

A193 Gf 87/ A194 Gr 2H

A193 Gr 87/ A194Gr 2H

Spiral Wound / SS304. A351 Gr CF8

A351 Gr CF8

A351 Gr CF8

A351 Gr ·CF8

19

Higher sizes are with dashpot arrangement to control the movement of the discin.order to avoid slamming and water hammer.

----------------.--_._---------_. '-----------------------"-_._/-------I

A193 Gr 816/ A194 Gr 4/7 .

A193 Gr 816/ A194 Gr 4/7

Spiral Wound! SS304

A217 Gr C12

A217 Gr C12

A217 Gr (;12

A217Gr C12·"-----"----"--------:----'----'----..,....,---

C12

A320 Gr L7/ A194 Gr 4

A320 Gr L7/ A194 Gr 4

Spiral Wound / Soft Iron

A352 Gr LCB

A352 Gr LCB

A352 Gr LCB

.A352Gr LCB

. LCB

See Page 35, 37 forTrim and SeatinQSurface Materials

MaterialStainless Steel

}~art.Name

Disc· NutWasherHinge PinSeat RingDisc

Bracket Stud&Nut A193 Gr 816/ A194 Gr 4/7

Cover Stud&Nut A193 Gr 816/ A194 Gr 4/7

Gasket Spiral Wound! SS304

Hinge 8racket A217 Gr C5

Hinge A217 Gr C5

Cover A217Gr C5

Body A217GrC5

Part Name WCB

'Part Name C5

07 Bracket Stud&Nut A193 Gr B7/ A194 Gr 2H

06 CoverStud&Nut A193 Gr B7/ A194 Gr 2H

05 Gasket Spiral Wound / Soft Iron

04 Hinge Bracket A216 Gr WCB

03 Hinge A216 Gr WCB

02 Cover A216 Gr WCB

01 Body A216 Gr WCB

Materials

> Flanged end or Butlwelding end

> Tilting disc design available

> Renewable. seal welded seat ring or integral seat (cast S.S. only) available

> Optional counter weight, lever and dash pot arrangement available

> Meets desig.n requirement of ASME B16.34 / BS 1868/ API 60 and testing requirementof BS 6755 and API 60

> Flanged end dimensions conform to ASME B16.5 / API 605/ BS 3293/ DIN> Ring joint facings available in higher classes

> Buttwelding end dimensions conform to ASME 816.25

> Face to Face and End to End dimensions conform to ASME 816.10/ BS 2080/ DIN

Features

1211100908

o

oo•

(\

()

ocoo

Page 177: PIPING DESIGN-PART-I.PDF

REDUCED PORT

CAST STEEL, TWO PIECE, FLOATING BALL - FULL AND REDUCED PORT

FULL PORT

Dimensions

Class 150 (Full Port)Size inch '/2 % 1 1% 2 2'/2 3 4 6 8

L- RF mm 108 118 127 165 178 190 203 229 394 457

B mm 12.5 17 24 37 49 64 75 98 148 198

H mm 65 70 80 95 110 135 145 170 235 275

K mm 150 155 160 180 200 225 325 . 350 500 600

Wt. (approx) kg 3 4 5 8 12 21 26 43 80 155

Class 300 (Full Port)Size inch .% 3/4 1 1'/2 2 2'/2 3 4 6 8

L- RF mm 140 152 165\ 190 216 241 282 305 403 502

B mm 12.5 17 24 37 49 64 75 98 148 198

H mm 70 85 90 105 120 145 160 195 250 290

K mm 155 160 180 200 225 325 350 500 . 600 700

WI. (approx) kg 3 5 7 13 15 28 32 55 105 170

Class 150 (Reduced Port)Size inch '/2 3/4 1 1'/2 2 2'/2 3 4 6 8

L- RF mm 108 118 127 165 178 190 203 229 394 457

81 mm 9 12,5 17 28 36 50 57 75 98 144

.H mm 65. 70 80 95 110 135 145 170 210: =_250K mm 145 150 155 160 180 200 225 325 350 500

. WI. (approx) kg 3 4 4 6 9 14 19 29 57 125

Class 300 (Reduced Port)

ISize inch '/2 . 3/4 1 1'/2 2 2'/2 3 4 6 8

L- RF mm 140 152 165 190 216 241 282 305 403 502

lB1 mm 9 12.5 17 28 . 36 50 57 75 98 144

H mm 70 85 90 105 120 145 160 195 225 275

K mm 150 155 . 160 180 200 .225 325 350 500 600

WI. (approx) kg 3 4 5 8 14 22 28 41 75 140

26

0:'y

(;>1'

o~

O!'

()j

01';1:

j

£?l"" 1 •.

'1

()'\

Page 178: PIPING DESIGN-PART-I.PDF

(

(

(

CAST 'STEEL, TWO PIECE,FLOATING BALL - FULL AND REDUCED PORT

('

C

C"r;

('\

c)

()

Features

> Long operating life with low torque

> Flexible lip seats compensate for wear and changes in pressure

> Anti blowout stem construction

> Anti static device standard> Soft seating recommended for service temperature up to 260°C.

Metal to Metal seating offered for higher temperature services> Extended gland provided for low temperature and cryogenic services

(cold box and non-cold box applications) to conform to requirementsof BS 6364

> Specially designed die formed graphite packings, controlled clearancesbetween stem and gland for guaranteed low emissions meet 100 ppmmaximum fugitive emission levels,

> Optional gear, electric actuator or pneumatic actuator available

> Locking arrangement optional>' Meets designrequirement of ASME B16.34/ BS 5351 and API6D and testing requirement

of BS 6755/ API 6D> Fire testing conforms to API 607/ API 6FA and BS 6755

> Flange end dimensions conform to ASME B16.5/ API 605/ BS 3293/ DIN

> Face to Face and End to End dimensions conform to ASME B16.10 / BS 2080

> Buttwelding end dimensions conform to ASME B16.25

Materials

FLEXIBLE LIP SEATS

ccoo0,

oro!oQ,

ooO.

e0'

Part Name Material

13 Handle Carbon Steel

12 Lock nut Stainless Steel

11 Gland nut Stainless Steel

10 Thrust washer Graphite filled PTFE 1GRAFOIL

09 Gland Bush } See Page 37 for

OB Spindle Trim Materials

Part Name WCB LCB WC6 WC9

07 Stud and Nut A193 Gr B7 /A194 Gr 2H A320 Gr L7 1A194 Gr 4 A193 GrB16/ A194 Gr417 A193 Gr B16 1A194 Gr 4/7

06 Stem Seal GRAFOIL GRAFOIL GRAFOIL GRAFOIL

05 Ball Seal Graphite filled PTFE Grap'hite filled PTFE Graphite filled PTFE Graphite filled PTFE

04 Body Seal GRAFOIL / SPIRAL WOUND .GRAFOIL 1SPIRAL WOUND GRAFOIL 1SPIRAL WOUND ~RAFOIL 1SPIRAL WOUND

03 Ball A217 Gr CA15 A351 Gr CFBM A217 Gr CA'5 . A217 Gr CA15

02 Adopter A216 GrWCB A352 Gr LCB A217 GrWC6 _ . A217 Gr WC9

01 Body A216 GrWCB A352 Gr L('R A217 GrWC6 A217 GrWC9

Part Name C5 C12 CFB CFBM07 Stud and Nut A193 Gr B16 1A194 Gr 4/7 A193Gr B161 A194 Gr 4/7 A193 Gr B7 1A194 Gr 2H A193 Gr B7 1A194 Gr 2H06 Stem. Seal GRAFOIL GRAFOIL GRAFOIL GRAFOIL05 Ball Seal Graphite filled PTFE Graphite filled PTFE Graphite filled PTFE Graphite filled PTFE._.._,-~-~--04 Body Seal GRAFOIL / SPIRAL WOUND GRAFOIL ISPIRAL WOUND GRAFOIL ISPIRAL WOUND GRAFOIL ISPIRAL WOUND03 Ball A217Gr CA15 A217 Gr CA15 A351GrCFB A351 Gr CFBM02 Adopter A217 GrC5 A217 Gr C12 . A351 Gr CFB A351 GrCFBM01 Body A217 Gr C5 A217 Gr C12 A351 GrCFB A351 GrCFBM

27

Page 179: PIPING DESIGN-PART-I.PDF

(

cc(.

C

(:

C

C(

()

oo()

c)

oooooov()

o()

coG

o

GATE, GLOBE, LIFT CHECK -.BOLTED BONNET

Dimensions

Gate Valve - Class 800 Globe Valve - Class 1500Size inch '/. % '/Z % 1 1'/. l '/z 2 Size inch '/. % '/Z % 1 1'/. l '/zL mm 85 85 85 92 105 125 125 135 L mm 92 92 92 105 125 130 135P mm 6.4 6.4 9.5'12.7 17.5 22.8 28.6 36.5 P mm 6 6 11 14.5 19 27 31H mm 165 165 165 175 195 265 265 275 H mm 175 175 175 190 250 250 255K mm 85 85 85 85 150 150 150 150 K mm 90 90 90 100 150 150 150WI. (approx) kg 2 2 2 3 3 8 8 10 WI. (approx) kg 3 3 3 4 8 8 11

Gate Valve - Class 1500 Lift Check Valve - Class 800Size inch '4 % '/Z % 1 1'/. 11/z Size inch '/. % l/

Z 3/. 1 1'/. 1'/Z 2L mm 92 92 92 105 125 125 135 L - SP mm 85 85 92 105 125 125 135P mm 6.4 6.4 9.5 12.7 15.9 19 27 L - RP mm 85 85 85 92 105 125 125 135H mm 175 175 175 195 265 275 275 P- SP mm 6 9 12 17.5 22,5 29.5 35K mm . 90 90 90100 150 150 150 P- RP mm 6 6 9 12 17.5 22.5 29.5 35WI. (approx) kg 3 3 3 4 8 10 10 H- SP mm 55 55 55 70 105 105 115

H" .RP: mm -w.~55": ~5 W. 7O,,-wr 105 115Globe Valve - Class 800 WI.-SP (approx.) kg 2 2 2 4 6 6 9Size inch '/. % '/Z % 1 1'/. 11/z 2 Wt.-RP (approx.)· kg 2 2 2 3 4 6 6 8L - SP mm 85 85 92 105 125 125 135L - RP mm 85 85 85 92 105 '125· 125 135 Lift Check Valve - Class 1500P-SP mm 6 9 1217.5 22.5 29.5 35 Size -inch .'/•. % '/2 3/. PI. 1'/2P- RP mm -6 6 9 12 17.5 22.5 29.5 35 L - SP mm 92 92 92 105 125 130 135H- SP mm 175 175 175 190 250 250 285 P - SP mm 6 6 1114.5 18 27 31

H- RP ·mm 170 170 170 175 190250 250 . 285 H- SP mm 65 65 65 70 105 115 115K- SP mm 90 90 90 100 150 150 150 WI: (approx) kg 4 4 4 4 7- 10 10

K-RP mm 85 85 85 85 100:150. .150 15UWI.-SP (approx,) kg 3 3 3 4 8 8 11 11WI.7RP (approx,) _kg 2 2 .2 3 1 8 .8 11 Abbreviations: SP - Standard Port • RP - Reduced Port

Page 180: PIPING DESIGN-PART-I.PDF

c'

(

c'n

oc'ooc

GATE, GLOBE, LIFT CHECK - BOLTED BONNET

Features> Outside screw and yoke construction> Valves provided with back seating arrangement> Self aligning two piece gland> Locking arrangement optional> Meets design requirement of ASME 816.34/ API 602/ 8S 5352> Socket weld ends conform to ASME 816.11> Screwed ends conform to ASME 81.2.1> Welded bonnet optional> Extended'gland provided for low temperature and cryogenic services

(cold 1ntx and non-cold box applications) to conform to requirementsof OS 6364

> Specially designed die formed graphite packings,controlled clearancesbetween stem, gland and back seat for guaranteed low emissionsmeet .100 ppm maximum fugitive emission levels.

Part Name Material

18 Spring Carbon Steel

17 Name Plate Stainless Steel

16 Grub Screw Carbon Steel15 Hand Wheel Nut Carbon Steel14 Hand Wheel Malleable Iron I Ductile Iron H(Open)

13 Screw Forged Carbon Steel

12 Eye Bolt and Nut ' Forged Carbon Steel

11 Yoke Sleeve A439-021 AI. Bronze BS 1400 AB2C

10 Gland Flange Carbon Steel I Stainless Steel

09 Gland Bush

}08 Spindle See Page 37 for

07 Seat Ring Trim Materials

06 Wedge I Plug

Materials

Part Name A105 F304 F316

05 Bolts A193 Gr B7 A193 Gr B7 A193 Gr B7

04 Gland Packing GRAFOIL GRAFOIL GRAFOIL

03 Gasket Spiral Wound Spiral Wound Spiral Wound

02 Bonnet I Cover A105 A182 Gr F304 A182 Gr F3~6

01 Body A105 A182 Gr F304 A182 Gr F316 H

JPart Name , F5 F9 F110

05 Bolts A193 Gr B16 A193 Gr B16 A193 Gr B160

-- 04 Gland Packing--- GRAFOll-------GRAFOIC- -GRAFOIC~-'------

03 Gasket Spiral Wound Spiral Wound Spiral Wound

02 'Bonnet I Cover A182Gr F5 A182 Gr F9 A182 Gr F1

01 Body A182 Gr F5 A182 Gr F9 A182 Gr F1

31

oo

o

Page 181: PIPING DESIGN-PART-I.PDF

Range of shell material

()

(j

()

()

()'

Material Type

Carbon Sieel

ASTM /BS

A216 Gr WCB

Service Conditionand Temperature

Non corrosive water, oil and gas-30° to 430°C (-20° to 800°F)

Recommended TrimLow Pressure High Pressure

1/8 8/5

lC)C)

o

Low Temperature ServiceCarbon Steel A352 Gr LCB

A352 Gr LC2A352 Gr LC3

Cryogenic service Low Temperature-46° to 343°C (-50° to 650°F)-73° to 343°C (-100° to 65QOF)-101° to 343° C (-150° to 650°F)'

2/12 12/5

37

Material and hardness of stem and backseat bushing or weld deposit

Note :. Cr =chromium; Ni =nickel; Gu =copper• Free maching grades of 13 Gr are prohibited•• See table - Nominal Seating Surface Materials for typical back seat weld deposit material

Material Type * Typical Specification (Type)** Hardness (HB)Stem Backseat Bushing

13 Cr ASTM A276-T41 0 or T420 200 min., 275 max. 250 min.

18 Cr-8 Ni ASTM A276-T304 Manufacturers Standard- Manufacturers Standard

25 Cr-20 Ni ASTM A276-T310 Manufacturers Standard Manufacturers Standard

13 Cr ASTM A27H410 or T420 200 min., 275 max. 250 min.

Ni-Cu alloy Manufacturers Standard Manufacturers Standard Manufacturers Standard

18 Gr-8 Ni ASTM A276-T316 Manufacturers Standard Manufacturers Standard

19 Gr-29 Ni ASTM B473 Manufacturers Standard Manufacturers Standard

5

5

5

Hastelloy C

9

Hastelloy B

13/14

8/5

8/5

13

13

10/12

13

13

Corrosives, Hydrochloric acid <1 %At ambient temperature

Hydrochloric acid (air free)All concentrated

Corrosives, Chlorine Gas dry, etc.At ambient temperature

Corrosives viz. Hydrogen sulphide dry

Corrosive, High temperature service-10° to 8WC (-20° to 1500°F)-10° to 427°C (-20° to 800°F)-254° to 649°C (-200 t01500° F)-10° to 454°C (-20° to 850°F)-10° to 8WC (-20° to 1500°F)

Non corrosive water, oil and gas(-20° to 875°F)Non corrosive water, oil and gas-10' to 593°C (-20° to 1100°F)Corrosive water, oil and gas-10° to 649°C (-20° to 1500°F)

A494 M35-1

A494 N12MV

A494 CW12MW

A351 Gr CN7M

A351 Gr CF8A351Gr CFSA351 Gr CF8MA351 GrCF3MA351Gr CF8C

A217 Gr WC1

A217 Gr WC6A217 Gr WC9A217 Gr C5A217 Gr C12

Alloy Steel

Trim No.

Alloy 20

Monel

Hastelloy B

Hastelloy C

11///0 Cr - 1/2% Mo21/ 4% Cr -1% Mo.5% Cr - 1/2% Mo9% Cr -1% Mo

Cast Stainless Steel18% Cr - 8% Ni

i 18% Cr - 8% Ni (L. Carbon)16% Cr - 12% Ni - 2% Mo16% Cr - 12% Ni - 2% Mo (L. Carbon)18% Cr - 10% Ni - cb

oo

n

o

()

o()

oooooooooo-o-_~

ooo-----_._-_._-_ .•

v()

\i

Q

Q

Page 182: PIPING DESIGN-PART-I.PDF

Pressure Temperature.Ratings

ASME B16.34 - 1996

A 182 Gr. F304 (1) A 351 Gr. CF3 (2) A 351 Gr. CF8 (1)

Notes:1) Upon prolonged exposure to temperatures above 800'F, the carbide phase of steel may. be converted to graphite. Permissible, but not recommended for

prolonged use above 800'E21 Not to be used over650'E'3 Leaded Qrades shall not be used where welded or in an application above 500'E4 For service temperature above 850'F, it is recommende~that killed steels containing not less than 0.10% residual silicon be used.

SPECIAL CLASSWeld End Valves

SPECIAL CLASSWeld End Valves

TEMP Working Pressures by Classes, pslgOF 150 300 600 900 1500 2500

- 20 to 100 265 695 1,390 2,085 3,470 5,785200 265 695 1,390 2,085 3,470 5,785300 265 695 1,390 2,085 3,470 5,785400 265 695 1,390 2,085 3,470 5,785500 265 695 1,390 2,085 3,470 5,785600 265 695 1,390 2,085 3,470 5,780650 260 680 1,360 2,040 3,400 5,670700 255 665 1,330 1,995 '3,320 5,535750 225 590 1,185 1,775 2,960 4,930800 190 490 980 1,465 2,445 4,070850 130 335 670 1,005 1,670 2,785900 85 215 430 645 1,070 1,785950 50 130 260 385 645 1070

1000 25 65 130 195 320 535

A 352 Gr. LCB (5)

STANDARD CLASSFlanged End Valves

STANDARD CLASSFlanged End Valves

TEMP Working Pressures by Classes, pslgof 150 300 600 900 1500 2500

- 20 to 100 265 695 1,390 2,085 3,470 5,785200 250 655 1,315 1,970 3,280 5,470300 230 640 1,275 1,915 3,190 5,315400 200 620 1,235 1,850 3,085 5,145500 '170 585 1,165 1,745 2,910 4,850600 140 535 1,065 1,600 2,665 4,440650 125 525 1,045 1,570 2,615 4,355700 110 520 1,035 1,555 2,590 4,320750 95 475 945 1,420' 2,365 3,945800 80 390 780 1,175 1,955 3,260850 65 270 535 805 1,340 2,230900 50 170 345 515 860 1,430950 35 105 205 310 515 860

1000 20 50 105 155 260 430

[j\..

c>f'

C''..{\

Q,

L

39

For weld end valves only. Flanged end ratings terminate at fOOOOFNotes:1) At temperatures over 1DOO'F, use only when the carbon content is 0.04% or higher.2) Not to be used over 800'E

'yo11;1.")'-:¥

.~

Q'!l)

1J.,£y

'~

~

TEMP Working Pressures by Classes, pslgOF 150 300 600 900 1500 2500

- 20 to 100 275 720 1,440 2,160 3,600 6,000200 230 600 1,200 1,800 3,000 5,000300 205 540 1,080 1,620 2,700 4,500400 190 495 '995 1,490 2,485 4,140500 170 465 930 1,395 2,330 3,880600 140 435 875 1,310 2,185 3,640650 :125 430 860 1,290 2;150 3,580700 110 425 850 1,275 2,125. 3,540750 95 415 830' 1,245 2,075 3,460800 80 405 805 1,210 2,015 3,360850 65 395 790 1,190 1,980 3,300 .900 50 390 780' 1,165 1,945 3,240950 35 380 765 1,145 1,910 3,180

1000 20 . 320 640 965 1,605 2,6751050 20(1) 615 925 1,545 2,570

I···· 1100 . 20(1) 255 515 770 1,285 2,1451150 20(1) 200 400 595 .' 995 1,6551200 20(1) 155 310 465 770 1,2851250 20(1) 115 225 340 565 9451300 ·20(1) 85 170 255 430 7151350 20(1) 60 125 185 310 5151400 ,20(1) 50 95 145 240 4001450 15(1) 35 70 105 170 2851500 10(1) 25 :55 80 135 230

TEMP ,Working, Pressures by Classes, pslg'F 150 300 600 900 1500 2500

- 20 to 100 290 750 1,500 2,250 3,750 6,250200, 255 670 1,355 2,005 3,345 5,570300 230 600 1,200 1,800 3,000 5,000400 210 555 1,105 1,660 2,765 4,605500 200 520 1,035 1,555 2,595 4,320600 185 490 975 1,465 2,440 4,065650 185 480 960 1,440 2,395 3,995700 180 ·470 945 1,415 2,355 3,930750 175 465 925 1,390 2,315 3,855800 175 450 900 1,350 2,250 3,750850 170 440 885 1,325 2,205 3,680900 165 435 865 1,300 2,165 3,605950 165 425 850 1,275 2,120 3,535

1000 155 405 815 li 220 2,035 3,3951050 150 385 770

,1,115 1,930 3,215

1100 125 320 ""-645 965 1,605 2,6801150 95 250 495 745 ' 1,245 2,0701200 75 195 385 580 965 1,6051250 55 140 285 425 705 1,1801300 40 105 215 320 535 8951350 30 75 155 230 385 6451400 25 60 120 180 300 5001450 15 45 85 130 215 3551500 15 35 70 105 170 285

Page 183: PIPING DESIGN-PART-I.PDF

FITTINGSBUTI' WELDED

ANSI B 16.9ANSI B ·16.28

ELBOWS, RETURN BENDS, CAPS, LAP JOINTSTUBENDS

TEES CONC.ANDECC.REDUCERS

SHORTSTUBENDS

Caps

Over alllength

:I: 1.6 :I: 6.4

Alignmentof Ends

DIMENSIONAL1800 Returns

:l:9.5.':l:6A:t 2.4

Reducers45° and 90°.' Elbows &--Tees

. -Outside Inside Wall Centre to End Over all Center to Back todiameter at 'diameter thickness Dimension length Center Face

. Bevel at End Dimension Dimension

~r. .'. ..' ~:

20-24

Normalpipe .~lze

All fittings'

1/2 ;. 2 1/2 +.1.6 ± 0.8 Not :l: 1.6 :I: 1.6 ± 6.4 ± 6.4 ± 0.8 ± 3.2- 0,8

. J-:-"':""'.;..'3,,"-,-_4_·_-+...:....:I:=-....:1;;:.;;6~+-·_· _:1:..,.1_._6-:-1 less than 1-_':I:--:-1-=.6_-+-__:l:_1_~6_+--,--:l:_6:-.4_+_±..,..-6_.4_+-..,..-:l:_0_.8---11-:l:_3._2""'-_-l5,-8 {, + 2.4 87.5%:1: 1.6 , :I: 1.6:1: 6.4 ± 6.4 '., ':t: 0.8 :I: 6.4

'··~.""~0-18-~: ~~.~. ~:~ ~:~::- of----.- ·._~i_2A_·- :l:2.4-~ -~:l:9.5-- 3.2 Nomin~l.+6A:. 4.8 . , :I: 4.8 thickness :I: 2.4

..NOM PIPE WALL THICKNESS RADIUS R L

-.

BORE 0.0. 55 105 "lOS 80S 10 1.50 20 30 A B C E G SHORT LONG H D h

1/2 21.34 1.65 2.11 2.77 ·3.73 12.7 19.05 25.4 38.1 ,12.7 15.9 25.4 25.4 34.9 50.8 7e.2 50.8 45 8

3/4 26.67 1.65 2.11 2.87 3.91 19.05 28.57 38.10 57.15 19.05 11.1 28.6 25.4 42.8 . 50.8 76..2 '50.8 50 8

'1 33,40 1.65 2.77 3.38 4.55 .25.4 38.1 50.8 76:2 25.,4 22.2 38.1 38.1 50.8 . 50.8 101.6 50.8 60 10

1 .1/4 42.16 1.65 .2.77 3.56 4.85 31.75 47.6. 63.5 95.25 31.75 25.0 ,47.6 38.1 63.5 50.8 101 ..6 50.8 70 12

1. 1/2 48.26 1.65 2.77 3.68 5~08 38.1 57.15 76.2 114.3 38.10 28.6 57.2 38.1 73.0 50.8 101.6 63.5 80 12

2 -60.32 1.65 2.77. 3.91 '5.54 50.8 76.2 101.6 152.4' 50,8 34.0 63.5 38~1 92.0 63.5 152.4 76.2 94 16

2. 1/2 '73.02 2.11 3.05 5.1.6 7.01. 63.5 . 95.25 127,0' 190~5 63.5 44.0 76.~ 38.1 104.. 8 63.5 152.4 . 88.9 '110 .. 16

3 88.90. '2.11 3.05 5.49 7.62·. 76.2 114.30 152.4 228.6 76.2 50.8 85.7 50.8 127.0 63.5 152.4 88.9 130 18

3 1/2 101.60 2.11 3.05 5.74 8.08 88.-9 133.35 177.8 266.7 88.9 57.2 95.3 63.5 139.7 76.2 152.2 101.6 140 18

,,4..' :., .114.30 2.1.1 3.05 6.02 ~.56 101~6 152.4 203.2 304.8 101.6 63.5 104.8 63.5 157.2 76.2 152.4 101.6 158 20

.5·" 141.30 2.77- 3.40 6.55 9.52 127,0 190:5 254.0 381.0 127.0 82.5 123.8 76.2 185.7 76.2 203.2 127.0 188 25

6' 168.27 2.77 3.40 7.11 10.97 .152.4 228.6 304.8 457.2 152:4 95.3 142.9 88.9 215.9 88.9 203.2 / 139.7 212 25

21.9.if7 2.77 3.76 8.18 12.70 203.2 304.8....

S 406.4 609.4 203.2 127.0 177.8 101.6 270.0 101.6 203.2 152.4 268 30

10 273;05 3.40 4.19 9.27 12.70 254.0 381.0 508.0 762.0 254.0 158.7 ~15.9 127.0 324.0 127.0 254.0 177.8 330 35

:12 323.85 3.96 4.57 9.52 12.70 304.8 457.2 609.6 914.4 304.8 190.5 ~54.0 152.4 381.0 152.4 254.0 . 203.2 400 40

\

14 355.60 .3.96 4.78. e.52 12.70 355.6 533.4 711.2 1056.8 355.6 222.2 279.4 165.1 412.8 152.4 305.0 330.2 425 45

16 406.40 4.19 4.78 9.52 12.70 406.4 609.6 812.8 1219.2 406.4 254.0 ~04.8 177.8 470.0 152.4 305.0 355.6 470 45

18 457.20 4.19 4.78 '9.52 12.70 457.2 685.8 914.4 1371.6 457.2 285.7 ~43,0 203.2 533.4 152.4 305.0 381.0 - .

20 508.00 4.76 5.54 '9.52 12.70 508.00 762.0 1016.4 1524.0 508;0 317.6 1381.0 228.6 584.2 152.4 . 305.0' 508.0 - -

1"1(''IL

, .

•~om

,~

r:(,

C'r~

~\

()

...9

..'~ .\ .. DIMENSiONS IN M.M.

~- .. .... -,.:.: .. :.•... -::..-:~._._~:- .. ~. ~ .. -... -.~ ..'- - .' ... -----,------------._-- -- ...--.--._,,-~.- ..'-

Page 184: PIPING DESIGN-PART-I.PDF

·JFITTINGSSOCKBT WBLl>

ANSI B ,16.li

r" , 9OOELBOW, TEE 45° ELBOW. UNION" COUPLING REDUCER HALF COUPLING, CAP

NOM PIPE 3CXX) LBS. /l3OOO L8S.

80'RE 0.0. A 8 C 0 E F G K L M N 0 P Q

1/4" 13.7 20.6 22.2 14.1 9.5 11.1 19.0 .8.0 25.4 36.5 22.2:31.7 ,6.4 17.5 9.5

318" 17.2 24.6 25.4 17.5 11.1 '13.5 19.0 8.0 28.6 36.5 25.4 36.5 6.4 19.0 9.5

1/Z' 21.3 28.6 33.3 21.7 12.7 15.8 22.2 11.1 35.0 36.1 31.7 43.0 9.5 22.2' 9.5

3/4" 26.7 33.4 38.1 27.0 14.3 19.0 25.4 12.7 38.1 46.0 38.1 51.0 9.5 25.4 12.7

1" , 33.4 38.1 46.0 33.8 15.8 22:2 28.6' 14.3 44.4, 52.3 44.5 60.3 12:7. 27.0 12.7

11/4?- 42.2 44.4 55.5 42.5 17.4 27.0 33.3 17.4 47.8 54.0 57.2 ' 70.0 12.7 ' 30.2, 12.7

11/Z' 48.3 50.8 62.0 48.6 19.0 31.7 35.0 20.6 50.8 55~5 63.5 82.5 12.7 31".8 12.7..

2" 60.3 60.3 75.4 61.1 22.2 38.1 42.8 25.4 ' 63.5 68~2 ,76.2 95.2 19.0 38.1 15.9

SCREWED FITTING TO ANSI B 16.1 I (TUReAD',TOASA B 2.1)

NOM PIPE 3000 LBS. 6OOO,L8S.

80RE 0.0. A ,,8 C F G. H J K ,A, 8 ,9.. 'F G .J;i J K

'118" 1'0.3 20.6 22.2 19.0 40.0 31.7 19.0 15.9 ~9.0 24.6 25.4 19.0 40.0 31.7 22.2 15.9 25.4

114" 13.7 24.6 25.4 19.0 43.0 35.0 19.0 17.5 25.4 28.6 33.3 22.2 43.0 34.9 25.4 ' 17.5 33.3'

318" 17.2 28:6 33.3 ,22.2 47.6 38.1 22.2 19.0 25.4 33.3 38.1 25....4 47.6 38.1 31.7 19.0 38.1

31.7;

1/2" 21.3 '33.3 38.1 25.4 51.0 47.6 28.6 ,23.8 38.1 46.0 28.6 51.0 47.6 38,1 23.8 48.0

3/4" 26.7 38.1 46.1 ,,28.6 57.1 ' 50.8 '35.0 25.4 36.5 44.4 '55.5 33.3 57.1 50.8 44.5 25.4 55.6"

1" 33.4 44.4 55.5 ,33.3 63.5 60.3. 44.5 30.2 41.3 50.8 S2~Q 35.0 63.5 60.3 57.2 30.2 61.9

1 '1'/4" 42.2 50.8 ,'62.0 35.0 73.0" 66.t~ ~57.2 '33.3 44.5 60.3 75.4 4~.8 ,73.0 ,66.7 63.5 33.3 75.4,. '

1/1Z' 48.3 60.3 75.4 42.8,' '80.0 .79.4 63.5 ' 39.7 44.5 63.5 84.1 43;6 80.0 '79.4 76.2 ,39.7 84.1

(" ..

2' 60:3 63.5 84.1, 43.6 89.0 "85~7~ "-76.2 42.9 '47.6 .... 82.5 101.6, 52.4 69.0 85.7 92.2 42:9 101;6'

" L...-::K,....J:r··.... -,

11HALF COUPLING, 'CAPREDUCERCOUPLING

••••• _ •• _.'- --_.... ~ ~ - -. _. • •• " • , __ " • _ •••_.~ •• 0. ~ __ ._:"':"._.~,• .--;'__• •• _,' _ ".: _,_••• ••••_.. ..... ,.. v""." _••

90° ELBOW, TEE 45° ELBOW UNfON.

G:r. <{5V rQJDe.

LI.<L

{)

Page 185: PIPING DESIGN-PART-I.PDF

FLANGES ANSI B 16.5

o()

oI.C

Q()

Q --_.._---_._-_._--,..-",._-' ',,'

BltiTISH STANDARD PIPE FLANGESSl»ECIFICATION B. S. 10.1962

GENERAL DIMENSIONS TABLE '0' AND 'E'FOR FLANGES. TO ANSi •.B 16.5.

ASA • 150 LIlS Length Thru Hub Drilling Nom. O.D.of P.C.D1.0. Flange of NO. & Dia. of Bolt thickness Qf

Nom. Out· ~eDiam. Weld- Thrd., No.& of F1an~e Ranges

of SUp·on Lap Bolt PipePipe side thick·~lsed

Ingand Joint Size of Circle TABLE TABLE TABLE TABLE TABLE TABLESIze Dlam. ness

FaceNeck

SocketHoles D.&E O&E D. E P E

I/Z 31/Z 7/16 131. 171. 'I. 'I. 4..5/. '13/. in . In in . In In In In

3/4 37/. I/Z 1,11/16 ! 2.'116 'I. 'I. . 4..5/. '13/.

I/Z 3 3/. 2'/. 4-% 4.1/z 3(16 .'I.1 4'1. 1/16 . 2 . 2.3/16 11/16 11/

16 4-'/. 231. 31. 4 'ell. 4-'1z 4.11. 3/16 1/.. z

W. 4'/. 5/. 'f/z 'fl. 13/16 .13/16 4-5/. 31/Z

1 41/Z 31/. 4-1/Z 4·1/Z ' 3/i6 %z11/Z 5, 11/16 27

/. ' 2.7i16 7/. 7/. 4-'1. 37/. l 1i. 43/. 37/ 16 4.11. . 4-1/Z If. '/16

, . . z2 6 3/. 3'/. 2" 1 1 4.3/. 43

/. Wz 51/. 37/. 4-1iz 4.11. 1/. 11/

32,

'Z ' Z'21/2 '7 7/. 411. 23/. 11/. W. 4.3/. 511. ,~ 6 41/z 4·'/. 4-'/. '/16 31..' , z .'3 71/Z 15/16 5 23/. 1.3il6 1,3/16 4.3/. 6 '21/Z 61/Z 5 4·'/. ' 4.5

/. '/16 13/.32,

31/Z' 81/2 15/16 51/Z 2,13/16 11/ 11/. 8-3/. 7 3 7'/. 53/ ' 4.5/, 4-'/. 3/. 7/16., C, ' .

4 9 15/16

6.3/ 16 3 1.'/16 1,5/16 8-3/. 71/Z 4 81/. 7 4-'/, '8..5f. 3/. I/Z' ., Z5 10 15/16 7.'/16 31/Z 1,7f16 1;1/16 ,8.7/, 81/Z 5 10 '81/. 8-'/. 8..5/. I/. 9/1~Z,6' 11 1 ,:81/~ 31/Z' 1,9/16 1.3/ 16 ' ,8.7/. 91/Z 6 11 91/. ' 8-'/. 8.3/. I/Z '11/16 '

8 131/Z 11/. 10'/. 4 131. 13/. 8J /. 1131. 8 1'31/. 11'1~ 8·'/. 8.3/. I/Z" 3/..,10 16 1.3/ 16 1'13/. 4 1.15/ 16 11"16 12-1 14'1. 10 16 14 8.3/ 12-3/. 'I. ,7/... ,

12 '19 1'1. 15' 41/Z 2,3/16 2,3/16 12·1 17 t2 18 16 12.3/. 12,7/. 'Ii 114 21 131, ,161/. 5 21/. 31/. 12-1'1. 183/. 14 20.3/. 181/Z '12.7/. 12.7/. % ' 116 23!1z 1,7f16 181/Z 5, 21/Z 3,7f16 16-1'1. 211/. 16 '(023/. 201/Z 12-1/S 12-1/. 3/•. 118 25 1.9/16 21 51/Z 2'"/16 IaWll 16-1'1. 223

/. 18 25'1. 23 12.1/. 16.1/. ' 7/. 11/a20 27'12 1.11/16 23 51'116 21/a 4HI6 20·1'1. 25 20 273/. 251/. ,16-1/a 16~1/a 1 1'1.24 32 11/a 271/. 6 31/. 4% 20·13Ia 291/2 , 24 ,32'1z '293/. '16·1, 16·1 11/a 11f

2'

ASA· 300 LSS Length Thru Hub ' Drilling TABLE 'F'AND'W

Nom. Out~ Range Dlam. Weld· Thrd., No.& Nom.P.C.O Thickness of

of ~lip-on Lap Bolt 0.0. of 'of FlangesPipe side Thick· . Ing Size of NO. & Dla. of BoltRaised and joint Circle' 1.0. Flange Flange

,Size Dlam. ness Neck Holes ofFace SocketPipe TABLE TABLE TABLE ' TABLE TABLE TABLE

Vz ' 33/. 9/16 1% 2,1/16 7/, 1/a 4-'/, 25/,. F&H F&H F H F H

'3/. 45/a ' 5/a 1,11/16 2,1/. 1 1 4~3/. 31/.

In' .In In In In In In

, 1 471. WIll :2 2:7/16 1"116 4.3/ 31/Z'1z 33/. 25

/. 4·1'z '-, 3/a -1-'116 ,.3/. 4 27

/, 4·1/z -' 3fa -W. 51(~ 3/. 2.'12 2,9/16 P/16 1,1/16 43

/. 31/. l/z 41/Z 31/. 4·'/. -'" I/Z11/Z 6'1, 13/16 27i, 2.W16 13/16 1,3/16 4-7/ a 4'1z ,3/. 41/Z 31/. 4~'/a 4-'/. - I/.9z2 61/2 7/. 3'/. 23/. 1.5116 1.'/16 8.3/. '5 1 43

/. 3//16 4·'/. 4-5/. 3/. /1621/z 71/Z 1 4ft; 3 1Hz l.'1z 81/, 51/, 1'1. 51/. , 31ia 4-5

/. 4.5/. ' I/Z "/., 163 81/. 1'1. 5 3~1/, 1.11/16 1.11/1 81/. 6.5/. 11/Z 51/Z 41/. 4-'/. 4·'/. I/Z' 11/16

31/2 ,9 1.3/16 51/Z 3.3/16 131. PI~ 8-1/. 71/. 2 61/Z ~_5 8.5/. 4-5/. 5/. 3/.

4' 10 "'1 6.3/'6 33{•. ,1,1/. 1,7/. 8j /. 71/.21/Z 71/. '53/. 8-'/i ' 8.5/. 5/a 3/.,.

, . 3 8 61/2 8·'/. 8·'/. 'I. 1/, ,.Ii 11 W. 7.'i16 31/. 2 2 8-7

/. 91/. 4 9 71/2 8·3/~ , 8..5/a 3/. -'6 12'1z 1,1/16 81/2 ' 311. 2.'116 ~,1f16 12·1/. 10'/. 5, 11 91/. 1203/. 8.3/. 1/. 111.' . , a',8 15 1% lO'/. ' 431. 21/16 2,1/16 12-1 13 6 12 101/4 ' 12,.3/. 12.3/. 1/. '1'1.10 1711 W. 1'13/ •45/. ' 25/. 3,3/. 16.11/. 15'/. 8 14'/z 12J

/. 12,3(. .1'13/. 1 11/., z '.12 201/Z 2 15 , 51/. '2,1/. 4 16-1'1. 173/. 10 17 15 12J /. 12,1/. 1 13/..,16.1/, ~Jl/a~ ~. 1'Iz-14 23 21f. 16'1. 5'/. 3, 43/. 20-1'1. 201/. 12 '191/. 17'1. 16.7/8 1---"-

14 2t31. 191/Z 16·1 16·1 1'1. ' 151.25'12 2.'1. 181/. ' 53/ 3'1. 4,3/. 20-131.' 16 " Z , . " .221f2 16 24 . 213/. . 20-11 '20-1 11/ 131•

18,' 28 2.3/. ,21 61/. 31/Z 51/a' 2~-13/. 243/. 20-1'1.' ,.

17/. '18 261/ '24 20·1'!. 131•.

~OI~ 2)/z 23 r?/i 33/. 24-13/.

' z ' .24-1'1.20 ,51/Z 27, 20 29 261/Z 24-11/. 1'12

2,..24 36 ~/. ,271/. 6'/. 43/16 6 24-15

/. 32 24 ' 331/Z 303/ 24-11/424.11/. ' 15/. 21/..,

Q

()

()

c

{

co,Ii.:

()

(

rrrc:

Page 186: PIPING DESIGN-PART-I.PDF

-----_.------'--_.--------_.__._-----------_.~-'-- ._----------''------------_.-(

cFluid Flowc 65

C)! Weldolet

Sockolet~ utilizes the basic Weldolet designconfigun:itionand incorporales a socket-weldoutlet.

Insert Weldolet

Sockolet

CoupejletCoupolet3l fittings ~re designed for use in lireprotection sprinkiersY$tems and other lowpressure piping applications.

Insert Weldolett/) is another contoured butt:weldbranch connection used in less critical applica­tions. Like the Sweepolet, the attachment weldsare easily examined by radiography, .ultrasoundand other standard non-destructive techniques.

Weldolet~' an economical ·bull-weld branch con,nection, is designed to minimize stress concen­trations and provide integral rein!orcemenL

()

.....;..,E1TLf::~~llYjj:J~i~!iS2i:·2I~0:;~:t~~i~~~~:~2:1 ~~. .,:.<,.;:~\i::ff:. Sweepolet--------'----~--~~----~

Sweepolet!' is a contoured, integrally reinforced,butt-weld branch connection with a tow stressintensification factor for low stresses and longfatigue life. The attachment weld is easily ex­amined· by radiography, ultrasound and otherstandardnon-destructiVe techniques.

Figur~ 2-10. Branch connectionsfor welding openings into steel pipe. See Figure 2·4C for .alternate welding fittings. By permission, BonneyForge Corp., Allentown, PA.

o

Ct.'..·'\ /,

o()

o

Q

{)

o()

()

o()

o

Page 187: PIPING DESIGN-PART-I.PDF

(j

66 Applied Process Design for Chemical and Petrochemic81 Plants

-_._..--,...._.-_._-_., .--'_.- .. _---_.~~--_ ...".... ", ._ .•.__ .... , .._---._--._-------------------_ ... _.._--_._---_._--------_._----'------_...

Elbolet

Nipolet

latrole~ used for 45° lateral connections, Isavailable bull-weld to meet your specific rein·'forcement requirements, and 3000/# or 6000/#classes for socket weld and threadedapplications.

Latrolet

Elbolet@l Is used on 90° Long Radius Elbows(can be manufactured for Short Radius Elbows)for thermowell and instrumentation connections.'Available butt·weld to meet your specific rein­forcement requirements, and 3000# and 6000#classes for socket weld and threadedapplications.

Nlpole~ isa one piece fitting for valve take-offs,drains and vents. Available with male socket-weld .or male threadedoutlet§.._

BrazoleF is designed for use with KLM and IPSbrass or copper piping or copper tubing.

Brazolet

Thredolet

Figure 2-10. Continued.

L~'{,h..\':~m.,., ON" PI

~

"I..< i

_. ---iJ J'-----L

, (,III

oooo

o

q;iI:,_;,!)~fY0-·

ooco()

()

()

()

()

e()

o

o()

()

c'. I

()

o()

()