25
Pion-photon transition form factor in light-cone sum rules ♮♭

Pion-photon transition form factor in light-cone sum rules...QCD@W ork, Lecce, Italy Pion-photon transition form factor in light-cone sum rules Alexander Pimik o v in collab oration

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • QCD�Work, Le

    e, Italy

    Pion-photon transition form factor inlight-cone sum rules

    Alexander Pimikov♮in ollaboration with A. Bakulev♭, S. Mikhailov♭, and N. Stefanis♯based on 1205.3770 [hep-ph℄

    Departamento de F��sia Te�oria -IFIC, Universidad de Valenia♮Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)♮♭ITP-II, Ruhr-Universit�at (Bohum, Germany)♯

    p. 1

  • QCD�Work, Le

    e, Italy

    Outline:Pion-photon transition FF in LC SR

    Pion DA and its evolution.

    Light Cone Sum Rules

    Pion DA from experiment

    Conclusions

    p. 2

  • QCD�Work, Le

    e, Italy

    Feynman diagram for e+e− → e+e−π0

    One of the most accurate data on exclusive reactions is data on transition FF

    F γ∗γ∗π0(q21, q

    22) provided by series of experiments e

    +e− → e+e−π0 with q22 ≈ 0.

    CELLO (1991) 0.7− 2.2 GeV2 ,CLEO (1998) 1.6− 8.0 GeV2 ,BaBar (2009) 4− 40 GeV2 ,Belle (2012) 4− 40 GeV2 ,BESIII (????) < 10 GeV2 .

    e±(p) e±tag(p/)

    q1 π0

    q2e−+ e−+

    p. 3

  • QCD�Work, Le

    e, Italy

    “Factorization” γ∗(q1)γ∗(q2) → π0(P ) in pQCD

    γ∗

    ∗γ

    π

    ∫∫∫

    d4xe−iq1·z〈π0(P )|T{jµ(z)jν(0)}|0〉 = iǫµναβqα1 qβ2 · Fγ∗γ∗π(Q2, q2) ,

    where −q21 = Q2 > 0, −q22 = q2 ≥ 0

    Collinear factorization at Q2, q2 ≫ (hadron scale ∼ m2ρ)

    F γ∗γ∗π(Q2, q2) = T (Q2, q2, µ2F ;x)⊗ϕπ(x;µ2F ) +O(

    1

    Q4) ,

    where µ2F – boundary between large scale and hadronic one.

    F γ∗γ∗π(Q2, q2) =

    √2

    3fπ

    ∫∫∫ 1

    0dx

    1

    Q2x + q2x̄ϕπ(x)

    �(P )��(q2)��(q1)

    �xPxP

    Q2F γ∗γπ(Q2, q2 → 0) =

    √2

    3fπ

    ∫∫∫ 1

    0

    dx

    xϕπ(x) ≡

    √2

    3fπ〈x−1〉π

    p. 4

  • QCD�Work, Le

    e, Italy

    Pion distribution amplitude ϕπ(x, µ2)The pion DA parameterizes this matrix element:

    〈0| d̄(z)γνγ5[z, 0]u(0) |π(P )〉∣

    z2=0= ifπPν

    ∫∫∫ 1

    0dx eix(zP )ϕπ(x,µ

    2) .

    where the path-ordered exponential

    [z, 0]= P exp

    [

    igz∫

    0

    taAaµ(y)dyµ

    ]

    ,

    i.e., the light-like gauge link, ensures the gauge invariance.

    Pion DA describes the transition of a physical pion into two valence quarks,

    separated at light cone.

    p. 5

  • QCD�Work, Le

    e, Italy

    Pion distribution amplitude ϕπ(x, µ2)The pion DA parameterizes this matrix element:

    〈0| d̄(z)γνγ5[z, 0]u(0) |π(P )〉∣

    z2=0= ifπPν

    ∫∫∫ 1

    0dx eix(zP )ϕπ(x,µ

    2) .

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.5

    1.0

    1.5

    ϕπ(x)

    x

    Curve Approach

    Asymptotic

    BMS DA, NLC QCD SR

    CZ from QCD SR

    AdS/QCD result

    DA evolution with µ2, ERBL [79-80] . Gegenbauer expansion:

    ϕπ(x,µ2) = 6xx̄(1 + a2(µ

    2)C3/22 (x− x̄) + a4(µ

    2)C3/24 (x− x̄) + . . .)

    p. 5

  • QCD�Work, Le

    e, Italy

    γ∗γ → π: Light-Cone Sum Rules!LCSR effectively accounts for long-distances effects of real photon using

    quark-hadron duality in vector channel and dispersion relation in q2 (Balitsky et.

    al.-89, Khodjamirian [EJPC (1999)] )

    Fγγ∗π(Q2, q2) =

    ∫∫∫ s0

    0

    ρPT(Q2, s)

    m2ρ + q2

    e(m2

    ρ−s)/M2

    ds+

    ∫∫∫

    s0

    ρPT(Q2, s)

    s+ q2ds ,

    where s0 ≃ 1.5 GeV2 – effective threshold in vector channel,M2 – Borel parameter (0.5− 0.9 GeV2).Real-photon limit q2 → 0 can be easily done.

    Spectral density was calculated in QCD:

    ρPT(Q2, s) = ImF PTγ∗γ∗π(Q2,−s− ıε) = Tw-2 + Tw-4 + Tw-6 + . . . ,

    where twists contributions given in a form of convolution with pion DA:

    Tw-2 ∼ (TLO + TNLO + TNNLOβ0 + . . .)⊗ϕTw2π (x,µ) . p. 6

  • QCD�Work, Le

    e, Italy

    Main Ingredients of Spectral DensityLO Spectral Density, Tw-4 term — Khodjamirian[EJPC (1999)]

    NLO Spectral Density — in [Mikhailov&Stefanis(2009)]

    NNLOβ0 Spectral Density — in [M&S(2009)]

    Tw-6 contribution — in [Agaev et.al.–PRD83(2011)0540020]

    NLO evolution of pion DA [Kadantseva&M&R – Sov.J.NP.86 (1986)]

    Terms of Pion-Photon FF at Q2 = 8GeV2

    Result is dominated by Hard Part of

    Twist-2 LO contribution.

    Twist-6 contribution is taken into account

    together with NNLOβ0 one — they has

    close absolute values and opposite signs.

    FF100%

    Tw2100.8%

    LO120.5%

    NLO-13.8%

    NNLO-5.9%

    Tw4-6.5%

    Tw65.7%

    Blue - negative terms

    Red - positive terms p. 7

  • QCD�Work, Le

    e, Italy

    Parameters of LC SR

    From PDG:

    αs(m2Z)

    Masses mρ, mω

    Decay Widths Γρ, Γω

    From QCD SR:

    Borel parameter

    M2LCSR ∈ [0.7,1] GeV2

    Vector Chan. Threshold s0

    Twist-4 δ2 ± 20% = λ2q/2

    Twist-6 (αS〈q̄q〉)

    Light-Cone Sum Rules:FF = (LO + NLO)⊗ (π-DANLO) + Tw-4 ±∆FF

    ∆FF = π-∆DA +∆Tw-4 + (NNLOβ0 ⊗ (π-DA) + Tw-6)

    π-DA model Data on FF

    FF Prediction Fitting π-DA (an) p. 8

  • QCD�Work, Le

    e, Italy

    Pion-gamma FF dataExperimental Data on Fγγ∗π: CELLO , CLEO, BaBar and Belle [1205.3249[hep-ex]]

    0 10 20 30 400.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Q2F (Q2) [GeV2]

    Q2 [GeV2]

    CELLO γ∗γ → π

    0

    Data Collab.

    ◆ CELLO (1991)

    dashed line =√2fπ

    p. 9

  • QCD�Work, Le

    e, Italy

    Pion-gamma FF dataExperimental Data on Fγγ∗π: CELLO , CLEO, BaBar and Belle [1205.3249[hep-ex]]

    0 10 20 30 400.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Q2F (Q2) [GeV2]

    Q2 [GeV2]

    CLEO γ∗γ → π

    0

    CELLO γ∗γ → π

    0

    Data Collab.

    ◆ CELLO (1991)

    ▲ CLEO (1998)

    dashed line =√2fπ

    p. 9

  • QCD�Work, Le

    e, Italy

    Pion-gamma FF dataExperimental Data on Fγγ∗π: CELLO , CLEO, BaBar and Belle [1205.3249[hep-ex]]

    0 10 20 30 400.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Q2F (Q2) [GeV2]

    Q2 [GeV2]

    BaBar γ∗γ → π

    0

    CLEO γ∗γ → π

    0

    CELLO γ∗γ → π

    0

    Data Collab.

    ◆ CELLO (1991)

    ▲ CLEO (1998)

    ✙ BaBar (2009)

    dashed line =√2fπ

    p. 9

  • QCD�Work, Le

    e, Italy

    Pion-gamma FF dataExperimental Data on Fγγ∗π: CELLO , CLEO, BaBar and Belle [1205.3249[hep-ex]]

    0 10 20 30 400.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Q2F (Q2) [GeV2]

    Q2 [GeV2]

    BaBar γ∗γ → π

    0

    CLEO γ∗γ → π

    0

    CELLO γ∗γ → π

    0

    BaBar γ∗γ → η, η

    CLEO γ∗γ → η, η

    Data Collab.

    ◆ CELLO (1991)

    ▲ CLEO (1998)

    ✙ BaBar (2009)

    ● BaBar ηη′

    (2011)

    dashed line =√2 fπ

    p. 9

  • QCD�Work, Le

    e, Italy

    Pion-gamma FF dataExperimental Data on Fγγ∗π: CELLO , CLEO, BaBar and Belle [1205.3249[hep-ex]]

    0 10 20 30 400.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Q2F (Q2) [GeV2]

    Q2 [GeV2]

    Belle γ∗γ → π

    0

    BaBar γ∗γ → π

    0

    CLEO γ∗γ → π

    0

    CELLO γ∗γ → π

    0

    BaBar γ∗γ → η, η

    CLEO γ∗γ → η, η

    Data Collab.

    ◆ CELLO (1991)

    ▲ CLEO (1998)

    ✙ BaBar (2009)

    ● BaBar ηη′

    (2011)

    ❍ Belle (2012)

    dashed line =√2 fπ

    Belle data do not confirm auxetic form factor behavior above 10 GeV2 (except

    outlier at Q2 = 27.33 GeV2).

    p. 9

  • QCD�Work, Le

    e, Italy

    Pion-gamma FF dataExperimental Data on Fγγ∗π: CELLO , CLEO, BaBar and Belle [1205.3249[hep-ex]]

    0 10 20 30 400.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Q2F (Q2) [GeV2]

    Q2 [GeV2]

    Belle γ∗γ → π

    0

    BaBar γ∗γ → π

    0

    CLEO γ∗γ → π

    0

    CELLO γ∗γ → π

    0

    BaBar γ∗γ → η, η

    CLEO γ∗γ → η, η

    Theoretical “data”

    Data Collab.

    ◆ CELLO (1991)

    ▲ CLEO (1998)

    ✙ BaBar (2009)

    ● BaBar ηη′

    (2011)

    ❍ Belle (2012)

    ● BMPS

    Belle data do not confirm auxetic form factor behavior above 10 GeV2 (except

    outlier at Q2 = 27.33 GeV2).

    BMPS predicted “data” agree well with CELLO, CLEO, BaBarQ2

  • QCD�Work, Le

    e, Italy

    Pion TFF Data and Models

    11

    22

    33

    0 10 20 30 400.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 Q2F (Q2) [GeV2]

    Q2 [GeV2]

    2fπ

    CZ

    AsyCELLO γ

    ∗γ → π

    0

    CLEO γ∗γ → π

    0

    CLEO γ∗γ → η, η

    BaBar γ∗γ → π

    0

    BaBar γ∗γ → η, η

    Belle γ∗γ → π

    0

    Data Collab.

    ■■ BaBar, 8 models

    ■■ Intermediate, 5 models

    ■■ BMPS & Holography, 4 models

    Most data points either inside green “Belle” strip (scaling ) or within red

    “BaBar” strip (auxesis ).

    BaBar η, η′ data are within green strip

    Blue strip mostly theoretical.

    p. 10

  • QCD�Work, Le

    e, Italy

    Alternatives for Pion-Gamma FF AnalysisAlternative: To consider data as forming two independent data strips (left) or one

    single data strip (right) [1205.3770]

    0 10 20 30 400.0

    0.1

    0.2

    0.3

    0.4

    Q2F (Q2) [GeV2]

    Q2 [GeV2]

    We suggest to explore the first Alternative :

    To consider all data as forming

    two independent data strips ,

    namely, CELLO&CLEO&Belle and CELLO&CLEO&BaBar

    p. 11

  • QCD�Work, Le

    e, Italy

    Confidential regions in 2D ( a2, a4)

    CELLO & CLEO

    +BaBar

    +Belle

    0.4

    0.6

    2.

    a2

    a4

    1.2Σ

    2.7Σ

    3.0Σ

    0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    In vertexes of a triangle - χ2/ndf

    On sides of triangle: discrepancy in terms of std. deviation (1σ ≈ 68%)

    p. 12

  • QCD�Work, Le

    e, Italy

    Confidential regions in 2D ( a2, a4)

    CELLO & CLEO

    +BaBar

    +Belle

    0.4

    0.6

    2.

    a2

    a4

    1.0Σ

    0.6Σ

    6.2Σ

    0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    ◆ Asy. DA

    BMS DA (✖&green bunch) from QCD Sum Rules with nonlocal condensates: ... 1σ.

    Asymptotic DA, CZ DA: > 6σ.

    p. 12

  • QCD�Work, Le

    e, Italy

    NLC SR Results vs 3D Constraints3D 1σ-error ellipsoid for (a2, a4, a6) at µSY = 2.4 GeV scale with theoretical

    ∆δ2tw4-error shown by green and red lines.

    0.0 0.1 0.2

    -0.1

    -0.2

    -0.3

    0.1

    0.2

    0.3

    0.4 a6

    a4

    a2

    CLEO&CELLO&Belle Data

    2D proj. of 1σ-ellipsoid

    • χ2ndf ≈ 0.4

    p. 13

  • QCD�Work, Le

    e, Italy

    NLC SR Results vs 3D Constraints3D 1σ-error ellipsoid for (a2, a4, a6) at µSY = 2.4 GeV scale with theoretical

    ∆δ2tw4-error shown by green and red lines.

    0.0 0.1 0.2

    -0.1

    -0.2

    -0.3

    0.1

    0.2

    0.3

    0.4 a6

    a4

    a2

    CLEO&CELLO&BaBar Data

    2D proj. of 1σ-ellipsoid

    • χ2ndf ≈ 1.0

    p. 13

  • QCD�Work, Le

    e, Italy

    NLC SR Results vs 3D Constraints3D 1σ-error ellipsoid for (a2, a4, a6) at µSY = 2.4 GeV scale with theoretical

    ∆δ2tw4-error shown by green and red lines.

    0.0 0.1 0.2

    -0.1

    -0.2

    -0.3

    0.1

    0.2

    0.3

    0.4 a6

    a4

    a2

    All Data

    2D proj. of 1σ-ellipsoid

    • χ2ndf ≈ 1.0

    p. 13

  • QCD�Work, Le

    e, Italy

    Data fit of pion DA vs QCD SR

    → BMS, → Belle, → BaBar 1− 40 GeV2 at µSY = 2.4 GeV scale

    x

    ΦΠHxL

    3D-CLEO, CELLO, Belle vs. BMS

    0.0 0.2 0.4 0.6 0.8 1.0

    -1

    0

    1

    2

    3

    x

    ΦΠHxL

    3D-CLEO, CELLO, BaBar vs. BMS

    0.0 0.2 0.4 0.6 0.8 1.0

    -1

    0

    1

    2

    3

    CLEO, CELLO, Belle data agrees with BMS bunch based on NLC QCD SR

    BaBar data above 10 GeV2 does not support BMS bunch.

    Confidence bunch based on data subset (CLEO, CELLO, Belle) includes bunch

    based on all data or subset (CLEO, CELLO, BaBar).

    p. 14

  • QCD�Work, Le

    e, Italy

    2D cut of 3D confidential regions ( a2, a4, a4)

    All data

    CELLO & CLEO+BaBar

    CELLO & CLEO+Belle

    1.

    0.4

    1.

    1.8Σ

    2.9Σ0.8Σ

    In apexes of a triangle: χ2/ndf

    On sides of triangle: discrepancy in terms of std. deviation (1σ ≈ 68%) p. 15

  • QCD�Work, Le

    e, Italy

    ConclusionsPerformed 2-D and 3-D analysis of CELLO, CLEO, BaBar, Belle data using

    LCSRs at NLO and Tw-4 term.

    We showed that the data from CELLO , CLEO, BaBar , and Belle at

    Q2 = 1− 9 GeV2 in 2D analysis favor a pion DA with endpoint suppression,like BMS model;

    Beyond Q2 = 10 GeV2, the best fit to data including BaBar on Fγ∗γ→πrequires a sizeable coefficient a6;

    Beyond Q2 = 10 GeV2, only CLEO-CELLO-Belle data agrees well with BMS

    bunch;

    Though we consider the Belle data to be more preferable for the QCD

    framework, the BaBar data should not be neglected.

    p. 16

    Outline:Feynman diagram for eqb {e^+e^-o e^+e^-pi ^0}``Factorization'' {small eqb {gamma ^*(q_1)gamma^*(q_2)o pi ^0(P)}} in pQCDPion distribution amplitude Texb {${varphi _{pi }(x,mu ^2)}$}Pion distribution amplitude Texb {${varphi _{pi }(x,mu ^2)}$}

    eqb {gamma ^*gamma o pi }: Light-Cone Sum Rules!Main Ingredients of Spectral DensityParameters of LC SRextbf {Pion-gamma FF data}extbf {Pion-gamma FF data}extbf {Pion-gamma FF data}extbf {Pion-gamma FF data}extbf {Pion-gamma FF data}extbf {Pion-gamma FF data}

    extbf {Pion TFF Data and Models}extbf {Alternatives for Pion-Gamma FF Analysis}extbf {Confidential regions in 2D (eqb {a_2,a_4})}extbf {Confidential regions in 2D (eqb {a_2,a_4})}

    Texg {NLC SR Results} vs 3D ConstraintsTexg {NLC SR Results} vs 3D ConstraintsTexg {NLC SR Results} vs 3D Constraints

    Data fit of pion DA vs QCD SRextbf {2D cut of 3D confidential regions (eqb {a_2, a_4, a_4})}extbf {Conclusions}