13
8/13/2019 PID21 http://slidepdf.com/reader/full/pid21 1/13 APCO/TSD/PPMSB RMPCT for Process Operators Control Algorithms 1-1 Control Algorithms

PID21

Embed Size (px)

Citation preview

Page 1: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 1/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-1

Control Algorithms

Page 2: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 2/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-2

Control Algorithms

• Feedback control

• Proportional control

• Integral control• Derivative control

• Controller tuning

Page 3: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 3/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-3

Concept of Feedback

Water

Temperature

Error =

Actual-

Desired

Move valve

to left

No action

Move valve

to right

Control

Algorithm

Temperature

Feedback

Desired

Temperature

PV

E

H C

SP ?

I’m too 

hot!

Page 4: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 4/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-4

Feedback Control

• Advantages : Measures the final product or

variable and so does not need an exact knowledge

of the process to work effectively

• Disadvantages : Deviation from the target musthave occurred before feedback control system will

function

Page 5: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 5/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-5

Definitions

• Process Variable

 –  The measured value of the variable to be controlled

e.g. obtained from orifice plate or thermo-couple

 –  Given in engineering units – Abbreviated as “PV” 

• Setpoint

 –  The required value of the process variable may be set

 by the operator or by the output of another controller(cascaded)

 – Abbreviated as “SP” 

 –  Same units as PV

Page 6: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 6/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-6

Definitions (continued)

• Error

 –  Measure of how far the process variable is from the

setpoint

 – Abbreviated as “E” 

 –  Defined as PV-SP

• Manipulated Variable (or Output)

 –  The variable that is adjusted to correct any error

 – Abbreviated as “MV”, Output is abbreviated as “OP” 

 –  Output to valve or secondary controller (cascade)

Page 7: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 7/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-7

Proportional control• Change in controller output is proportional to change in

error –  MV = Kc.E + C

 –  Where MV= manipulated variable

 –  E = error –  Kc = controller gain

 –  C = valve position at zero error (0.5 or 50%) 

• Proportional band = 100/Kc  –  % change in error required to move valve full scale

• Proportional only control results in offset –   Never reaches SP

• Action is instantaneous (proportional kick)

 –  As soon as error is produced, control action is taken 

Page 8: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 8/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-8

Integral Control

• Change in controller output is proportional to sum

of past errors,

• K C = gain as used in proportional only control

• TI = reset/integral time (mins)

• 1/TI sometimes used (repeats/min)

• As long as error exists, integral action will work to

eliminate the error• Used to Remove Offset

 MV K T Edt C I 

 

Page 9: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 9/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-9

Derivative control

• Change in controller output is proportional to rate

of change of error

 –  MV = K c.Td.(dE/dt)

 –  Where Td = derivative time

• Derivative action amplifies measurement noise

• Very effective if deadtime present and often

under-rated

 –  But problems if noisy signal

 –  Sensitive to tuning errors

 – Provides an additional “pulse” to push the control in

the right direction 

Page 10: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 10/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-10

Controller Tuning

• Open loop method

 –  introduce step change to process in open loop

 –  derive controller tuning from process response

• Closed loop method

 –  adjust controller tuning to obtain specifc process

 behavior

 –  derive controller tuning based on process response

• Trial and error method

 –  always needed for fine tuning

Page 11: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 11/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-11

Tuning Objective

• Flow control

 –  Constant flow required

 –  Very fast response to setpoint or load disturbance

 –  Tune as fast as possible without causing excessiveoscillation or valve wear

• Level control

 –  Keep feed to next unit as constant as possible

 –  Tune as slowly as possible

 –  Do not tune so slow as to empty or fill vessel!

Page 12: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 12/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-12

Tuning objective (Temperature to flow

cascade)• Flow controller

 –  Fast response required

 –  Small lag –  Fast tuning possible

• Temperature controller

 –  Steady temperature required

 –  Larger process lag and often deadtime

 –  Tune fast but not so as to cause oscillationFC

TCSP

SP

Page 13: PID21

8/13/2019 PID21

http://slidepdf.com/reader/full/pid21 13/13

APCO/TSD/PPMSB  

RMPCT for Process Operators Control Algorithms 1-13

Manipulated Variable Overshoot

• Most of the tuning methods do not take account of

effect on manipulated variable

 –  e.g. fuel valve position

• Excessive control valve movement –  causes wear and accelerates failure

• Controller tuning becomes a compromise between

fast approach to setpoint and minimum MV

overshoot

 –  Max 15% recommended