85
Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE Med, FASNC DIVISION OF CARDIOVASCULAR DISEASE UNIVERSITY OF ALABAMA AT BIRMINGHAM Disclosures to Report: Honoraria--Corscan

Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Embed Size (px)

Citation preview

Page 1: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Physics Principles for Nuclear Cardiology

E. LINDSEY TAUXE Med, FASNCDIVISION OF CARDIOVASCULAR DISEASEUNIVERSITY OF ALABAMA AT BIRMINGHAM

Disclosures to Report: Honoraria--Corscan

Page 2: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Atomic and Nuclear Emissions

Atomic and Nuclear Transitions

Atomic Structure / Emissions

Nuclear Structure / Emissions

Radioactive Decay

Interactions with Matter

Page 3: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsQuantities and Units• Radioactive Decay Requires

Special Units of Mass and Energy– Mass Units

• Universal Mass Unit (u) *–1/12 mass of 12C–u = 1.66043 x 10-27Kg

• Atomic Mass Unit (amu) –based on average mass all O isotopes–u = 1.00083 amu

• * most commonly used

Page 4: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsQuantities and Units• Mass and Energy Related by

– E = mc2

• c = Speed of Light (3 x 108 m/s)

– 1u =(1.66x10-27)(3 x 108 m/s)2

= 931.MeV

Page 5: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsQuantities and Units• Electromagnetic Radiations are

Referred to as Photons– Wavelength and Energy Related by – c = λν

• c = speed of light (3 X 108 m/sec)• …... λ = wavelength (cm or nm)• …... ν = frequency

• E(keV) = 12.4/λ(nm)

Page 6: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Atomic and Nuclear Emissions

Atomic and Nuclear Transitions

Atomic Structure / Emissions

Nuclear Structure / Emissions

Radioactive Decay

Interactions with Matter

Page 7: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsAtomic• Composition:

• Electrons: Negatively Charged Particles with Very Small Mass

• Protons: Positively Charged Particles with Very High Mass

• Neutrons : No Electric Charge with Very High Mass

–mass of proton ≅ mass of neutron–mass of electron ≅ 1/2000 mass of

proton–mass of atom ≅ 99+% P + N

Page 8: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Atomic and Nuclear Structure

Bohr Model of the Atom

Nucleus (Protons & Neutrons)

Orbiting Electrons

Electron shells or energylevels (K, L, M shown)

Outer Electron shell (N)is unoccupied

Page 9: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Atomic Energy Level DiagramAtomic Structure…Electron Orbitals

Ground state

BindingEnergy

Increases(eV or keV)

In shells closeto the nucleus

FreeElectron

NM

L

K

Low BE

High BE

Page 10: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsAtomic Structure…Electron Energy• Binding Energy

– Amount of Energy Required to Remove an Electron from a Shell

– Specific to a Shell i.e. KB, LIB, LIIB, LIIIB

– Increases with Z Number (# of protons)– Energy Required to Move an Electron

from One Shell to Another = KB – LB

– Moving from L → K Results in Emission

Page 11: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsAtomic Structure

• Atomic Emissions– Characteristic x-rays

occur when an inner shell electron is ejected, and it’s vacancy is filled by another electron

– 201Tl 69 – 80 KeV

K-shell vacancy

Characteristic x-ray

L-shell

Page 12: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• Atomic Emissions– Auger Effect is an

alternative to Characteristic X-rays

• occurs when the energy produced from filling vacancy is transferred to another electron

• called an Auger Electron

Auger Electron

Auger Effect

K L

K L

Basic Atomic and Nuclear PhysicsAtomic Structure

Page 13: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Atomic and Nuclear Emissions

Atomic and Nuclear Transitions

Atomic Structure / Emissions

Nuclear Structure / Emissions

Radioactive Decay

Interactions with Matter

Page 14: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsNuclear Structure

Nucleus composed of protons + neutrons

Atomic Number (Z) = # of protons (determines element)

Atomic Mass (A) = # of protons and neutrons

Neutron Number (N) = A - Z

Element ‘X’ represented as , e.g.N

AZI 78

13153 I

Page 15: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsNuclear Families - Definitions

Isotopes - nuclides composed of the same number of

protons (125I, 131I, 127I)

Isotones - nuclides with the same number of neutrons

(131I, 132Xe, 133Cs)

Isobars - nuclides with the same atomic mass A

(131I, 131Xe, 131Cs)

Isomers - nuclides in different excited / metastable

states (99mTc, 99mTc)

53 53 53

53 54 55

53 54 55

Page 16: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• comprised of protons and neutrons• called nucleons

– high density

Particle Charge Mass(u) Mass(MeV)

Proton +1 1.007277 938.211

Neutron 0 1.008665 939.505

Electron -1 0.000549 0.511

Basic Atomic and Nuclear PhysicsNuclear Structure

Page 17: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsNuclear Structure

• Nuclear Forces– Nucleons are Subject to Coulombic forces

and Exchange Forces– When These Forces are Equal the Nuclide is

Called Stable or Ground State– When these Forces are not Balanced, then

• Exited State - very unstable and transient• Metastable State - unstable but longer lived

also called Isomeric States

Page 18: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsNuclear Structure

• Nuclear Energy States– any transition in

which energy is carried off by a photon is a… γ ray

– if energy is imparted to an orbital electron, then particulate emission…internal conversion

Page 19: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• Characteristics of Stable Nuclei– Light Elements

• N = Z

– Heavy Elements• Z = 1.5N

• P:N ratio determines stability/instability

Line of Stability

Basic Atomic and Nuclear PhysicsNuclear Structure

Page 20: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Atomic and Nuclear Emissions

Atomic and Nuclear Transitions

Atomic Structure / Emissions

Nuclear Structure / Emissions

Radioactive Decay

Interactions with Matter

Page 21: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsRadioactive Decay

• General Concepts– unstable nucleus is called the parent– the product, usually more stable,

daughter– radioactive decay is spontaneous

and therefore random– the energy released is called the

transition energy (Q)• carried off by particles, photons, and

nucleus

Page 22: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Nuclear Emissions

Decay by β-emission with / without γ-emission (β -, γ)

99Mo → 99mTc

Isomeric Transition (IT) or Internal Conversion (IC)

99mTc → 99Tc

Electron Capture and γ emission (EC, γ )

201Tl → 201Hg (characteristic x-rays)

Positron decay and γ emission (β +, γ)

Basic Atomic and Nuclear PhysicsRadioactive Decay

Page 23: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsDecay Modes

• (β−,γ) Decay– If the β− results in an unstable daughter, the

daughter will likely decay by emitting a γ- ray• AX → A Y* → A Y

– Occurs in Neutron Rich NucleiiZ

β-

Z+1

γZ+1

Page 24: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay by β- Emission

β−

146 C

147 NIncreasing Atomic Number, Z

Page 25: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsDecay Modes

99mTc

Page 26: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsDecay Modes

• Isomeric Transition (IT) and Internal Conversion (IC)– if daughter is long lived a metastable state

occurs called Isomeric Transition• gamma ray emission occurs

– if nucleus transfers energy to an electron, then Internal Conversion occurs• conversion electron is emitted

Page 27: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay by Isomeric Transition

99mTc

99Tc

γ

Decay scheme for 99mTc

0.140 MeV

0 MeV

Page 28: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay by Internal Conversion

Internal ConversionTransition energy transferredto an orbiting electron (usuallyK-shell)

Conversion electron emittedwith energy equal to γ-rayenergy minus binding energyof K-shell.

Ee = Eγ - EK

Page 29: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsDecay Modes

Page 30: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• Electron Capture– orbital electron captured by nucleus,

combines with proton to form a neutron• p+ + e- → n + ν + energy• AX → A Y

– Occurs in Proton Rich Nucleiiz Z-1

Basic Atomic and Nuclear PhysicsRadioactive Decay

Page 31: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay by Electron Capture

EC

12552 Te Decreasing Atomic Number, Z

12553 I

γ0.035 MeV

0 MeV

Page 32: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay by Electron Capture

e + p n + ν + energy (EC)e + p n + ν + γ + energy (EC,γ)

Characteristic x-ray

Page 33: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Atomic and Nuclear PhysicsDecay Modes

201Tl → 201Hg

Page 34: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• Positron (β+) and (β+, γ) – a proton in the nucleus is transformed into

a neutron and a positively charged electron β+

• p+ → n + e+ ν + energy• AX → AY

– occurs in Proton Rich Nucleiiz Z-1

β+Positron Annihilation

Basic Atomic and Nuclear PhysicsDecay Modes

Page 35: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay by Positron(β+)Emission

p n + e (β+) + ν + energy

ν

β+

Page 36: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Annihilation ReactionPositron (β+) and an Electron (β-)

• Positron collides with an electron.

• Both are converted to energy

• Results in the emission – 2 gamma rays, each of

energy 511 keV– emitted in opposing

directions (~180o)

Page 37: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay by Positron(β+)Emission

188 O

Decreasing Atomic Number, Z

189 F

Eβmax = 0.633

MeV

Page 38: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Definition of Decay

A process by which an unstable nucleus transforms into a more stable one by emitting particles and / or photons and releasing energy.

Terminology

Parent nucleus = the unstable nucleusDaughter nucleus = the more stable productTransition energy Q = energy released

Radioactive DecayDefinitions

Page 39: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radioactive DecayDefinitions

• Half-life– Sometimes called Physical Half-life.

– Time required for activity to decay to 50% of its initial value.

Page 40: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radioactive DecayPhysical Half-Life

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time - Hours

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Activ

ity

Decay curve withT1/2 = 4 hours

Page 41: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radioactive DecayDefinitions…Activity

Curie (Ci) 1 Ci = 3.7 x 1010 disintegrations / sec1 mCi = 3.7 x 107 disintegrations / sec

Becquerel (Bq) 1 Bq = 1 disintegration / sec= 2.7 x 10-11 Ci

Conversion Factors1 mCi = 37 megaBecquerels (MBq)1 MBq = 27 µCi

Page 42: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay Constant (λ)

Fraction of the atoms undergoing radioactive decayper unit time (during a time period that is so short,only a small fraction decay during that interval)

For a sample of N radioactive atoms, the averagedecay rate dN/dt is given by

dN/dt = -λN

Radioactive DecayDefinitions…Decay Constant

Page 43: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay is an exponential function of time

Nt = No e (- λt)

where Nt = number of atoms at time tand No = number of atoms at time 0

λ = decay constant

Radioactive DecayDefinitions… Law of Decay

Page 44: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Decay Factor (e -λt)

Fraction of the atoms remaining after time t

For a sample of N radioactive atoms, the remaining atoms left after .25 hours is

e–(.1151)(.25hr) = .972N(15’) = N (0) e(- λt)

= 30 (.972)= 29.16

Radioactive DecayDefinitions…Decay Factor

Page 45: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radioactive DecayDefinitions…Half-Life

The Physical Half-Life (T1/2 or T) is the time required for thenumber of atoms to decrease by half. The relationship

between the Decay Constant λ, and Half-Life T1/2is given below

At t = T1/2, Activity = 0.5 x Initial Activity

i.e. N / N0 = 0.5, or 0.5 = e- λ T1/2

∴ loge(0.5) = -λT1/2 , or -0.693 = - λT1/2

∴ λ = 0.693 / T1/2or T1/2 = 0.693 / λ

Page 46: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Time (t)Th

No

No/2

N(t) = No e -0.693t/Th

Th = Half-Life = ln 2/λ = 0.693/λNo = original number of atoms

dN(t)/N = - λtλ = decay constant

Radioactive DecayDefinitions…Half-Life

Page 47: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Atomic and Nuclear Emissions

Atomic and Nuclear Transitions

Atomic Structure / Emissions

Nuclear Structure / Emissions

Radioactive Decay

Interactions with Matter

Page 48: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Interactions of Radiation with Matter• Particulate

– Mass– Momentum– Kinetic Energy

• Photon– Pure Energy in Motion– No Mass– Frequency and Wavelength Determines

Energy

Page 49: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Charged Particles in MatterCollisions

• α and β particles loose energy through Collisions– Interactions with

charge fields…not mechanical

• Excitation• Ionization• Bremsstrahlung

Page 50: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Charged Particles in MatterInteractions

• Excitation occurs when the incident particle interacts with an outer shell electron– Energy carried off by molecular vibrations,

infrared, visible or UV radiation• Ionization occurs when an outer shell electron

is ejected– Secondary electron (δ ray) may cause

ionizations• Bremsstrahlung occurs when the particle

penetrates the electron cloud

Page 51: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• Particles with high mass, loose energy over a short path length and low mass over a longer path length

• The relative amount of energy loss as a function of path length is defined as, LINEAR ENERGY TRANSFER (LET)– α (• LET)– β (• LET)

Charged Particles in MatterLET

Page 52: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with Matter

• 100% Energy Conversion

– EM to Kinetic Energy

• Spatially Discrete

• <100% Energy Conversion

– Energy Degraded Photon

• Altered Pathway

• High Energy– > 1.022 MeV

Page 53: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with Matter

Page 54: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with Matter

Page 55: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with Matter

Page 56: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with MatterMultiple Interactions

Page 57: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with MatterSecondary Radiations

Page 58: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with MatterProbability Distribution

Page 59: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with MatterProbability Distribution

82Pb

99m Tc – 140 keV

Page 60: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with MatterProbability Distribution

99m Tc – 140 keV

H20

201 Tl – 72 keV

Page 61: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Photon Interactions with MatterAttenuation

• Attenuation depends on the thickness and Z of the absorber– Greater thickness

leads to greater absorption

– Energy and Z relationship is more complicated

• Linear attenuation coefficient (µl)…cm-1

I(x) = I(0) e -µx

Page 62: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• Transmission through an absorber is described by:

• I(x) = I(0) e -µx

• HVT (aka HVL) is the thickness required to absorb 50% of the beam

• HVT = .693/µl

Photon Interactions with MatterHalf Value Thickness

Page 63: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Physics Principles for Nuclear CardiologySummary

• Relationship of atomic structure to– Mode of decay– Emissions

• Understand and explain radioactive decay

• Interactions of photons with matter– Tissue– Image quality

Page 64: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Basic Principles of Radiation Detection

Page 65: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radiation DetectorsGas-filled Detectors

• Ionization chambers•Geiger-Mueller counters

Scintillation Detectors•Inorganic scintillators (NaI)•Organic liquid scintillators

Semiconductor Detectors• Ge(Li) and Si(Li) detectors• CZT detector

Page 66: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Gas-Filled Detectors

-+-+

-+

-+ -

+ -+

-+

-+Radiation

+ (Anode)

- (Cathode)

CurrentAmplifier

Page 67: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Effect of Voltage on Detector Performance

Voltage

Out

put

ProportionalCounterIon

Chamber

GMCounter

RecombinationZone

ContinuousDischargeZone

Ionization Plateau

GM Plateau

Page 68: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Gas-Filled Radiation Detectors

• Ion Chamber Used for dose calibrators, pocket dosimeters

• Geiger-Mueller CounterOutput independent of absorbed energyUsed for survey meters10 times more sensitive than ion chamber

Page 69: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radiation Detectors

Gas-filled Detectors• Ionization chambers• Proportional counters• Geiger-Mueller counters

Scintillation Detectors•Inorganic scintillators (NaI)•Organic liquid scintillators

Semiconductor Detectors• Ge(Li) and Si(Li) detectors• CZT detector

Page 70: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Solid Scintillation Materials

• Sodium Iodide doped with Thallium (NaI)used extensively in Nuclear Medicine

• Bismuth Germanium Oxide (BGO)widely used in PET systems

• Barium Fluoride (BaF2) / Cesium Fluoride (CsF2)used in PET systems

• Luthetium Orthosilicate (LSO)used in hybrid PET/SPECT systems

• Plasticinexpensive bulk scintillator

Page 71: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Principle of γ-ray Detection

300 keV

200 keV

Radioactive sources

NaI (TI)crystal

Photomultiplier tube

Voltage output

Vo

ltag

e

T ime

Gamma rays Photons Voltage pulses of light

Page 72: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

• BASIC PRINCIPLES OF PULSE HEIGHT ANALYSYS– Requires a proportional detector…

NaI PMTPreAmp AMP

HV

-+PHA

Examination of signal amplitudes to determine energy

Voltage (Energy) Discriminator

Page 73: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Voltage Pulse to γ-ray Energy

Page 74: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Energy Spectrum Components

50 60 70 80 90 100 110 120 130 140 150 1600

200

400

600

800

1000

1200

1400Photopeak+ComptonCompton 1st orderCompton 2nd orderCompton 3rd orderCompton 4th order

Energy (keV)

Act

ivity

(co

unts

)

Page 75: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Energy Spectrum Components

• Photopeak

• Compton Edge

• Backscatter Peak

•Lead x-ray Peaks

Page 76: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Energy Spectrum Components

PP

BP

CE C1

C2

Pb

NaI Detector

PP = Photopeak

BP = Backscatter Peak

CE = Compton Edge

C1 = 1st Order Compton

C2 = 2nd Order Compton

Pb = Lead X-ray

Lead

Page 77: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

γ-ray Energy Spectrum

γ-ray Energy

Cou

nts

or N

o. o

f Eve

nts

Energy Windows

Page 78: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Energy Resolution

• FWHM – Full Width Half Maximum

• %FWHM– Expressed as a % of photopeak energy

Page 79: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Energy Resolution of NaI

Calculated : FWHM

Energy ResolutionMeasured FWHM

0 100 200 300Energy (keV)

5

10

15

20

FW

HM

(%

)

Page 80: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Pulse-Height Analysis

• What are the various peaksand valleys in the energy spectrum ?

• What parts of the spectrum containuseful information ?

• Where should we place the energywindow ?

• Why are the peaks so broad ?

Page 81: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Scintillation Detectors Summary

• Voltage pulse ∝ energy deposited in crystal• Measure voltage = measure energy• Low voltage gives error in energy measurement

Hence energy resolution ~ 1/√E

• Scatter in source ⇒range of detected energies• Energy window selects events / energies we want

• γ-ray detection efficiency depends on thickness of NaI crystal and energy of γ-ray.

Page 82: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radiation Detectors

Gas-filled Detectors• Ionization chambers• Proportional counters• Geiger-Mueller counters

Scintillation Detectors•Inorganic scintillators (NaI)•Organic liquid scintillators

Semiconductor Detectors• Ge(Li) and Si(Li) detectors• CZT detector

Page 83: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Radiation Detectors

Semiconductor Detectors

• Ge(Li) and Si(Li) detectors

• CZT detector

Page 84: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Semiconductor PropertiesHow an Electrical Charge is Generated

Note: Someof the positive charge is lostdue to hole

charge carriertrapping losses.Leads to tailing

effects in energyspectrum !

Page 85: Physics Principles for Nuclear Cardiology - CadmiumCDmeetingproceedings.us/2011/asnc-bp-sept/contents/papers/1c1.pdf · Physics Principles for Nuclear Cardiology E. LINDSEY TAUXE

Tc-99m Energy ResolutionSemiconductor vs Scintillation Technology

Tc-99m

CZTNaI