45
Physics of Xray radiation production and transport. Simulating photons and waves from the Xray sources to the samples Manuel Sánchez del Río AAM, ISDD, ESRF

Physics of X ray radiation production and transport. X ray ... · Physics of X‐ray radiation production and transport. ... • In practical cases, the coherent radiation is

  • Upload
    ngodung

  • View
    242

  • Download
    6

Embed Size (px)

Citation preview

  • PhysicsofXrayradiationproductionandtransport.

    SimulatingphotonsandwavesfromtheXraysourcestothe

    samples

    ManuelSnchezdelRo

    AAM,ISDD, ESRF

  • Outline

    Evolutionofxrayscience Sources: singleparticles(easy)andsetsofparticles(bunches,materials)

    Optics: whyXrayopticsisdifferent?Concepts Calculations

    Example:ID20(UPBL6) Nextgenerationofsimulationtools

  • Atthebeginning

    Rntgen1895 Revolutionaryrays

  • Xraysareonly light(optics)

  • Butalsoparticles (photons)

    I could have done it in a much more complicated way"said the red Queen, immensely proud.Lewis Carroll

  • What I cannot create, I do not understand.

    I calculate everything myself.

    If you cannot calculate Just simulate it! It may be a good starting point.

  • Light(EMradiation)emissionbymovinge

  • E0=20 keV

    E0=31 keV

    E0=40 keV

    E0

    E0=20 keV

    E=19 keV

    E=8 keV

    e-

    E0

  • 2

    6 120000.511e

    E GeVm c MeV

    = =

  • 2 2 2 2 '2 2 20

    1 1 0

    ( ) sin ( ) cot ( )n nn n

    P d P P e v d J J

    = =

    = + = +

    This formula is valid for all values of the velocity v.

    In the non-relativistic limit, v

  • 1912:Schottsformula

    1944IvanenkoandPommeranchucktheorizedthatmaximumattainableenergyislimitedbytheradiationlosses

    1946BlewettattheGeneralElectricLabsobservedtheshrinkingoftheelectronorbitatthehighestenergyof100MeVinamannerconsistentwiththepredictionsofthetheory.Theyfailedindetectingtheemittedradiationbecausetheysearcheditintheenergyrangeclosetothefirstharmonic,whereasthemaximumofthefrequencyspectrumliesintheregionclosetothecriticalenergy.

    1947,April24th,Pollock,Langmuir,Elder,andGurewitsch sawthebluishwhitelightemergingfromthetransparenttubeoftheirnew70MeV synchrotronatGeneralElectric'sLaboratory:Synchrotronradiationhadbeenseen.

  • SRFormulation(1e)Ivanenko and Sokolov (1948) derived an asymptotic formula for the spectral distribution of the radiation intensity. The same result was also obtained by Schwinger (1949)

    320

    620

    2 533

    3( ) ( )2 m cE

    m cW W K x dxE

    =

    2 22 2 3/ 2 2 2 3/ 20

    2/3 1/32 3( , ) ( ) cos ( )6 3 3cedW K K dR

    = +

    3max 0

    1 12 2c

    =

    Today, we can implement these functions in one line of code, e.g., Mathematica

  • BM EmissionbyNincoherent e

    MonteCarlo(SHADOW) Energy(andpolarisation)sampledfromspectrum AngularDistribution(1e,x,z) Geometry(alongthearc,x,z) Limitation:Computertimeandmemory

    Typically:103 109 rays Desirable:onerayperphoton,i.e.,10141020

    xy

    x x

    xy

    z

    Real Space (top) Phase Space (H)

  • Wiggler:LikeBM,butabitmorecomplex

  • Undulator:1e emissioninterfereswithitself

    =K

    For a single energy (odd harmonic)

  • Codes

    XOP:Urgent(Walker),US+WS(Dejus),Xwiggler,BM SRW(ChubarandElleaume) SPECTRA(TanakaandKitamura) SynchrSim(Grimm)

    http://flash.desy.de/sites/site_vuvfel/content/e403/e1642/e2308/e2310/infoboxContent2357/TESLAFEL200805.pdf

  • Lighemittedbytightbunchedbeams

    Thesecondterm,duetotherandompositionoftheelectrons,itisrandomlypositiveandnegative,itsaveragevalueiszero.

    Thisisnottrueiftheelectronbunchlengthisshorterthanthewavelength,andthepowerisproportionaltothesquareofthestoredcurrent. ThisisthebasisoftheFreeElectronLaser(FEL).Inpractice,thespectralfluxobservedisproportionaltoanumberbetweenNandN2.

    Inpracticalcases,thecoherentradiationisweakandhiddenbytheincoherentemission.Tomakeitdominate,averylongundulatorofseveraltensofmetersmustbeinstalledinaspecialbypasssectionofthering.Thisisquitedemandingfromanacceleratorpointofview.Itrequiresthehighestpeakcurrent,thesmallestemittance,thesmallestenergyspread,andverylongundulators.ThespectralrangeoftheemittedradiationislimitedtoVUVorsoftxrays.

    CodeslikeGENESIS(http://pbpl.physics.ucla.edu/~reiche/)areusedtocalculateXFELemisison

    22 *

    1 1

    N N N

    i i i ji i i j

    P E E E E= =

    = = +

  • XOP(W,Mo,Rh,Booneetal.) MonteCarloparticletransport(MCNP,EGS,GEANT4,PENELOPE,)

  • Radiationscatteredfromopticalelements

    E. Secco and M. Sanchez del Rio, SPIE Proc 8141, 81410Z (2011)

    W. Salah and M. Sanchez del Rio JSR 18 (2011) 512

  • Plasmas 99%ofthevisiblematterintheUniverseisinformofplasma PlasmasemitXraysduetovariouseffects(thermal

    radiation,acceleratedchargedparticles,transitionsinions,nuclearreactions)

    OnEarthwefoundnaturalplasmas(e.g.,lightinginthunderstorms)

    Artificialplasmas(electricdischarges[pinches],lasergeneratedplasmas)maybeusedasXraysource

    Xraysareaveryusefuldiagnostictoolforartificialplasmas

    ITER5s

    NIF109 s

    s

    WMELTING POINT

    T~20keV (200 million C). High densities, > 1020m-3, must be maintained to produce a sustainable reaction

  • XRAYPLASMADIAGNOSTICSATM.I.T.ALCATORCMODTOKAMAK

    XRAYPLASMADIAGNOSTICSATM.I.T.ALCATORCMODTOKAMAK

    21

    195pixelsfor60m

    348

    7pixels17

    2m

    /pixel~25.13

    cm

    Ar16+

    Crystal

    []

    Courtesy: PPPL

  • CoherenceandIncoherence Ifthesourceisincoherent,weaddtheintensitiesoftheemissionofeache at

    theobservationplane(typicallyinraytracing)(N)

    Ifthesourceiscoherent(suchasapointmonochromaticsourceatinfinity=>Planewave)weaddEattheobservationplaneandsquareittogettheintensity=>Waveopticspropagation.E.g.,FresnelKirchhoffpropagatorinfreespace(N2)

    Ifthesourceisincoherentbutsmall,thereisstillsomecoherenceobserved(vanCitterZernike)

    Butonecannotseeasourcetoosmall,becausethereisalimit(diffractionlimit)

    Moreover,fullycoherenceorfullyincoherencedonotexist=>partialcoherence

    Thesourceiscomplicated,andthisisonlythebeginning.

  • PhotonMatterinteraction(beforeoptics)

    For1e atEf0(q)=>Fh(E,q) Incoherentscattering(Compton)=>Shower Photoelectricscattering(absorption,fluorescence)

    1n i = 2

    ;2

    ;

    e Ar NK f KA

    K fA

    = =

    =

    0( , ) ( ) '( ) "( )f Q E f Q f E if E= + +

    20

    8 0.6652448 barn3T

    r = =

    222 1 cos( )

    2ed r f d +=

    2220 ' ' sin

    2 '

    KNCd r E E E

    d E E E = +

    '1 (1 cos )

    EE

    =+

  • Tabulations:DABAX,xraylib

  • Thesingleinterface(Fresnel)

    Structures in depth => playing with the reflectivity

    Structures along the surface =>playing with the direction

    22 21

    2

    1 cos sin 2 2c cnn

    = =

  • Multilayers

    no reflection from the back of the substrate

    compute recurrently the reflectivity of each layer from bottom (substrate) to top

  • Whathappenstothedirectioniftheinterfaceisnotplane?

    Ki Kg

    g

    =>Dispersion in energy

  • Gratings

  • Zoneplates/Lens

    Amplitude FZPalternate zones - opaque

    Efficiency:10.1 % (1st harmonic)1.1 % (3rd harmonic)

    Phase FZPalternate zones -phase shifting

    Efficiency40.5%

    Kinoform FZP(sawtooth profile)

    efficiency Up to 100%

    t rn

  • Crystals

    BRAGG or reflection LAUE or transmission

    ( )

    ( )

    22

    22

    1 for 1( ) 1 for 1

    for 11

    x x xR x x

    xx x

    = +

    Darwin, Phil. Mag. 27 (1914) 315 & 675

    Dire

    ctio

    nR

    efle

    ctiv

    ity

  • ImagingvsCondensingOpticalSystems

    Imaging

    Optics

    NON

    Imaging

    Optics

    Demagnification M

    => Large objects (elephants) are more deformed than small objects (ants)

  • OK,butIalwaysseeGaussians!

    Yes:(Theoremofcentrallimit)

    No:(plotitinlogscale!)

    ( / 2)

    2 2ln(2) 2.35

    RMS

    CL erf n

    FWHM

    =

    =

    =

    FWHM76.1%

  • Imagingsystems(grazingoptics) Inorderforanyopticalsystemtoformanimage,

    itmustsatisfythe"Abb sinecondition", atleastapproximately

    Two(ormore)surfacesareneeded

    E.g.:Wolteroptics

    KB(1948):Goodapproximation

  • Nonimagingsystem:BLasaconcentrator:whichshape(inreflection)?

    qp

    1 1 2sinp q

    + =

    1 1 2sinp q R

    + =

    Pointtopointfocusing(ellipsoid) Collimating(paraboloid) Notes:

    Focalizationintwoplanes TangentialorMeridional(ellipseorparabola) Sagittal(circle)

    Demagnification:M=p/q Easier:

    Onlyoneplane=>cylinderEllipsoid=>Toroid Parabola/Ellipse=>circle Sagittalradius:constant(cylinder),linear(cone),nonlinear(ellipsoid)

    Aberrations

  • ID20InelasticScattering

    meVresolution(103 timeslessthanwhatyoureadinthespectraph/s/0.1%bw)=>USETHEWHOLEBEAM (REDUCETHELOSSESBYDIMENSIONS)

    Highresolution=>Collimationindiffractionplane H orL?(L hashigherdivergence,H seemsfavourable) LBL(140m)orshorter?

    energy in the 5 - 20 keV rangefocal spot size 10 mminimal beam lossesenough space (>20 cm) around the samplesub-eV resolution

  • Source

    5

    1

    57x10

    88x6

    402x10

    11x6.2

    20keV

    400x10

    10x10

    ROUNDED

    57x10

    88x4

    402x10

    11x3.2

    e

    mrad

    57x10

    88x7.2

    57x10

    88x12Low

    m23(L)1/2

    rad

    mrad

    69(L/)1/2

    402x11

    11x5.6

    402x13

    12x5.6High

    10keV5keVRMS

    15cm

    19cm

    20m

    23cm

    28cm

    30m

    30cm

    38cm

    40m

    38cm

    47cm

    50m

    61cm

    75cm

    80m

    L(FWHM)

    p

    76cm

    94cm

    100m

    =3.1mrad=2.5mrad

    1mirror:Howfar?

  • M1xM2=100LBL

  • SagCylCollimator+Ellipsoid*,q2=75cm

    92,40

    94,4

    70m

    79,40

    81,3

    60m

    66,40

    66,2.5

    50m

    186,40

    207,7

    140m

    M(H,V)

    M(raytracing)

    52,40

    49,2

    40m

    Rsag TOO SMALL (NEED Rs>2cm e.g. q2=300 @ 70m) , BUT OK IN H

    V

    H

    * Computed for point-to-point focusing, thus neglecting collimation

  • Towardsfinalconfig ShortBL Useofsecondarysource(M=M1*M2MA=3.1*16MB=2.4*23) FirstHighPowerCollimatingmirror(sag/tan) KB:goodopticalperformance(goodapproxtoimagingsystem),tunability

    Mirroroptimisation(toroidM~3,distances,astigmatism) Slopeerrors(0.50.7radRMS) PowerLoad Tolerances Monochromator(s)optimization

  • (1.8 x 15 m2 without slope errors)

    96%

  • BLtransmitivity

    4 6 8 10 12 14 16 18 200

    1

    2

    3

    4

    5

    6

    Si(111) + Si(311)

    Inte

    nsity

    [ 1

    013 p

    hoto

    ns /s

    ]Energy [ keV ]

    The angular distribution along M4 (Long mirror) implies that part of the mirror is not working

    6 8 10 12 14 16 18 200,4

    0,5

    0,6

    0,7

    0,8

    R

    Energy ( keV )

    FM4: Rh 3.1 mrad FM4: Rh 2.5 mrad FM4: Pt 3.1 mrad

  • Si111@7keV or Si333@21keV

  • XROsoftwareroadmapR

    AY

    TR

    AC

    ING

    SR

    SO

    UR

    CE

    SW

    AV

    E O

    PTI

    CS

    KERNEL

    GUITO

    OLS

    SHADOW 3.0

    SRW

    XOP

    (ShadowVUI)SHADOW 2.0 New Tool

    PANSOXTICS

    OpenSource

    Python+Qt?

  • Acknowledgements

    mycolleagues SpecialthankstoGiulioMonacoandLinZhang)

    ReferencesWikipediaX-ray Data BookletAls-Nielsen & McMorrow, Elements of Modern X-ray PhysicsAttwood, Soft X-rays and Extreme UV radiationMichette (ed), X-ray science and technologySpiller, Soft X-ray Optics SPIE Press, 1994 Handbook of Optics (3rd Edition Volume 5)

    Credits(figuresandmore)http://www.nobelprize.org/http://xkcd.comPENELOPEmanual,A.BielajewMClecturehttp://wwwantenna.ee.titech.ac.jp/~hira/hobby/edu/em/dipole/N.A.Dyson:XraysinAtomicandNuclearPhysics(2nd ed)http://hasylab.desy.de/science/studentsteaching/primers/synchrotron_radiation/http://www.shimadzu.com/an/ftir/support/ftirtalk/letter9/mirror.htmlhttp://dx.doi.org/10.1107/S0021889806003232N.Pablant(PrincetonU)Vivalaciencia,Mingote&SanchezRon

  • Thankyou!