8
1 Physics of Aquatic Systems Werner AeschbachHertig Institut für Umweltphysik Universität Heidelberg 13. Noble Gases and Paleoclimate Contents of Session 13 13.1 Noble gases in hydrology and paleoclimatology 13.2 Noble gas components in groundwater – Solubility equilibrium and excess air 13.3 Excess air models Component separation and parameter estimation Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität Heidelberg Institut für Umweltphysik 2 13.4 Applications of the noble gas palaeothermometer 13.5 Speleothems as a new archive for NGTs Literature: – Mook Vol. 1, ch. 12 (radioisotopes) – Cook & Herczeg, 2000, ch. 11 & 12 Recent review: AeschbachHertig and Solomon, 2012. Noble gas thermometry in groundwater hydrology. In: The noble gases as geochemical tracers. Springer Verlag. (http://recherche.crpg.cnrsnancy.fr/spip.php?article1194&lang=fr) Noble Gases light NG Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität Heidelberg Institut für Umweltphysik 3 heavy NG 13.1 Noble Gases in Hydrology and Paleoclimate • noble inert conservaƟve • rare tracers ideal physical tracers Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität Heidelberg Institut für Umweltphysik 4 Sources of noble gases in water • Atmosphere • Nuclear processes Composition of the Atmosphere Gas Mixing ratio Selected isotopic abundances N 2 0.781 stable unstable O 2 0.209 Ar 9.34 10 3 40 Ar: 0.996 36 Ar: 3.4·10 2 39 Ar: 8.1·10 16 Volume mixing ratios x i in dry air and NG istopic abundances Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität Heidelberg Institut für Umweltphysik 5 CO 2 370 10 6 Ne 18.18 10 6 20 Ne: 0.905 22 Ne: 0.0925 He 5.24 10 6 4 He: 0.99999 3 He: 1.4·10 6 CH 4 1.8 10 6 Kr 1.14 10 6 84 Kr: 0.57 86 Kr: 0.17 81 Kr: 5.2·10 13 Xe 0.087 10 6 132 Xe: 0.269 129 Xe: 0.264 Solubility of (Noble) Gases in Water Henry's law: gas water i i i c Hc = The Henry coefficient H i (or K H,i ) is specific for each gas i and depends on temperature and composition (salinity) of the water i H,i i p K c = or "dimensionless" Henry coefficients H [L water . L gas -1 ] Temp He Ne Ar Kr Xe N 2 O 2 0 °C 106.2 80.3 18.6 9.1 4.5 42.1 20.4 Interpretation: High Henry coeff. Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität Heidelberg Institut für Umweltphysik 6 30 °C 104.3 91.4 31.2 17.9 10.5 67.0 34.3 Ù low solubility C i eq is the dissolved concentration of gas i in water at equilibrium with moist (vapour saturated) air at a total air pressure P: ( ) atm atm i i eq i P i i H,i H,i p P ex c C H K K = = = (e: saturation vapour pressure x i : volume fractions in dry air) ( ) ( ) ( ) ( ) i eq i H,i P eT x C P,T,S K T,S =

Physics of Aquatic Systems of Session 13

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

1

Physics of Aquatic Systems

Werner Aeschbach‐HertigInstitut für UmweltphysikUniversität Heidelberg

13. Noble Gases and Paleoclimate

Contents of Session 13

13.1 Noble gases in hydrology and paleoclimatology13.2 Noble gas components in groundwater 

– Solubility equilibrium and excess air13.3 Excess air models

– Component separation and parameter estimation

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik2

p p p13.4 Applications of the noble gas palaeothermometer13.5 Speleothems as a new archive for NGTs

Literature: –Mook Vol. 1, ch. 12 (radioisotopes)– Cook & Herczeg, 2000, ch. 11 & 12

Recent review: Aeschbach‐Hertig and Solomon, 2012. Noble gas thermometry in groundwater hydrology. In: The noble gases as geo‐chemical tracers. Springer Verlag. (http://recherche.crpg.cnrs‐nancy.fr/spip.php?article1194&lang=fr)

Noble Gases

light NG

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik3

heavy NG

13.1  Noble Gases in Hydrology and Paleoclimate

• noble  →  inert  →  conserva ve

• rare  →  tracers

→  ideal physical tracers

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik4

Sources of noble gases in water

• Atmosphere

• Nuclear processes

Composition of the Atmosphere

Gas Mixing ratio Selected isotopic abundancesN2 0.781 stable unstableO2 0.209Ar 9.34 ∙10‐3 40Ar: 0.996 36Ar: 3.4·10‐2 39Ar: 8.1·10‐16

Volume mixing ratios xi in dry air and NG istopic abundances

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik5

CO2 ≈370 ∙10‐6

Ne 18.18 ∙10‐6 20Ne: 0.905 22Ne: 0.0925He 5.24 ∙10‐6 4He: 0.99999 3He: 1.4·10‐6

CH4 ≈1.8 ∙10‐6

Kr 1.14 ∙10‐6 84Kr: 0.57 86Kr: 0.17 81Kr: 5.2·10‐13

Xe 0.087 ∙10‐6 132Xe: 0.269 129Xe: 0.264

Solubility of (Noble) Gases in Water

Henry's law: gas wateri i ic H c= ⋅

The Henry coefficient Hi (or KH,i) is specific for each gas i and depends on temperature and composition (salinity) of the water

i H,i ip K c= ⋅or

"dimensionless" Henry coefficients H [Lwater.Lgas

-1]

Temp He Ne Ar Kr Xe N2 O2

0 °C 106.2 80.3 18.6 9.1 4.5 42.1 20.4

Interpretation: High Henry coeff.

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik6

30 °C 104.3 91.4 31.2 17.9 10.5 67.0 34.3 low solubility

Cieq is the dissolved concentration of gas i in water at equilibrium with moist (vapour saturated) air at a total air pressure P:

( )atmatmi ieq i P

ii H,i H,i

p P e xcCH K K

−= = =

(e: saturation vapour pressure xi: volume fractions in dry air)

( ) ( )( )( )

ieqi

H,i

P e T xC P,T,S

K T,S−

=

2

The Noble Gas Thermometer

0.15

0.2

Xecm

3 STP

cm

-3at

m-1

]

T, SCi

Pxi

Air

Water

Slope ~ 4 % / °C

Dissolved noble gas concentra‐

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik7

0

0.05

0.1

0 5 10 15 20 25 30

Kr

Ne

Ar

He

Temperature [°C]

Bun

sen

Sol

ubili

ty β

[c

( ), ,i eq i iC T S p= β

tions in equilibrium with air:  

Bunsen solubility for concentra‐tion in [cm3STPg/cm3

w]:

0wi

H,i 0 i

T 1K P T Hρ

β = =

Groundwater as an Archive

Time

Tem

pera

ture

Distance, Age (14C)

Pro

xy T

emp

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik8

Flow velocity ∼ 1 m/yr ⇒ 20 kyr of record within ∼ 20 km of flow distance 

Xe

Kr

A

Solu

bilit

y

13.2  Noble Gas Components in Groundwater

2

radiogenicexcess airequilibrium

tritiogenic

um

radiogenicexcess airequilibrium

tritiogenic

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik9

temperature

Temperature

NeAr

He

Temperature

4He Ne Ar Kr Xe

1.5

1

0.5

03He

Con

cent

ratio

n

rela

tive

to e

quili

briu

Noble Gas Components in Groundwater

2

radiogenicexcess airequilibrium

tritiogenic

um

radiogenicexcess airequilibrium

tritiogenicn

nppnp

3H 3Heβ-

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik10

4He Ne Ar Kr Xe

1.5

1

0.5

03He

Con

cent

ratio

n

rela

tive

to e

quili

briu

X + α (4He)U, Th α

time

Noble Gas Components in Groundwater

2

radiogenicexcess airequilibrium

tritiogenic

um

radiogenicexcess airequilibrium

tritiogenic

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik11

???

4He Ne Ar Kr Xe

1.5

1

0.5

03He

Con

cent

ratio

n

rela

tive

to e

quili

briu

13.3  Excess Air Models and Component Separation

2

radiogenicexcess airequilibrium

tritiogenic

um

radiogenicexcess airequilibrium

tritiogenic How can we separate the components?

Use the differences in their elemental composition!

Focus on Ne, Ar, Kr, Xe:         

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik12

4He Ne Ar Kr Xe

1.5

1

0.5

03He

Con

cent

ratio

n re

lativ

e to

equ

ilibr

iu 4 gases, 2 components

Equilibrium component: Depends on 1 parameter: T

Develop models for excess air component with 1 or 2 new unknown parameters

3

Classical model: Complete dissolution of entrapped air bubbles⇒ composition of excess air = composition of atmospheric air

Excess Air Model 1: Complete Dissolution of Air

6%

8%

10%

12%

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik13

( )eqi ic c T S P= , , a

iAc+

ASW + airwater + air air entrapmentair entrapment complete dissolutioncompl. dissolution0%

2%

4%

He Ne Ar Kr Xe

Excess pattern

a wA V V=

a eqi i ic Hc= ⇒ ( )UA eq

i i ic c 1 AH= + UA: Unfractionated Air

Iterative Determination of the Temperature

• Idea: Equilibration temperatures of all noble gases should be equal

• Raw data: TXe > TKr > TAr > TNe• Due to excess air, assumed to be atmospheric air

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik14

• Correct concentrations by subtracting air, until the different temperatures agree as well as possible (minimise deviations between temperatures)

• TNG = mean(TNe, TAr, TKr, TXe)

0 08

0.1

0.12

0.14

0.16

Xe

Kr

Excess Air Correction: Hypothetical Sample

cm3 S

TP c

m-3

atm

-1]

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik15

0

0.02

0.04

0.06

0.08

10 15 20 25 30

Ne

Ar

Temperature [°C]

Bun

sen

Solu

bilit

y [c 0 08

0.1

0.12

0.14

0.16

Xe

Krcm3 S

TP c

m-3

atm

-1]

Excess Air Correction: Real Sample

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik16

0

0.02

0.04

0.06

0.08

10 15 20 25 30

Ne

Ar

Temperature [°C]

Bun

sen

Solu

bilit

y [

PR: Partial Re-Equilibration

EA Model 2: Dissolution and Diffusive Degassing

4%

6%

8%

10%

12%

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik17

air entrapmentair entrapment complete dissolutioncompl. dissolution diffusive gas lossdiffusive degassingexcess pattern

0%

2%

4%

He Ne Ar Kr Xe

i

Ne

DFDe

⋅ F: "Fractionation" rel. to air

PR eqi i ic c 1 AH⎛ ⎞= +⎜ ⎟

⎝ ⎠a eqi i ic Hc= ⇒

( )eqi ic c T S P= , , a

iAc+i

Ne

DFDe

Brazil: A "classical" Noble Gas Temperature StudyCooling of tropical Brazil (5 °C) during the Last Glacial Maximum.

Excess air fractionation:

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik18

How reliable is this result?

Stute et al., 1995. Science 269: 379-383

4

Inverse Determination of Parameters

5 parameters, 4 measured concentrations: underdeterminedThe parameters S (≈ 0) and P (altitude) are usually known!

measiC (i = Ne, Ar, Kr, Xe)

( ) ( )= +mod eq exi i iC C T,S,P C A,F

Data:Problem: Determine T (or other parameters) from

Model:

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik19

Inversion: Find values of T, A, and F, which minimise the weighted deviation between model and data:

The parameters S (≈ 0) and P (altitude) are usually known!3 free parameters, 4 measured concentrations: overdetermined

( )−χ =

σ∑2meas mod

i i22

i i

C C

Inverse Modeling: Parameter Estimation by Fitting

Error‐weighted non‐linear least squares fitting

Very general approach Standard numerical techniqueFlexible choice of free parametersError estimation from χ2‐surface

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik20

Error estimation from χ ‐surfaceCorrelations of parametersGoodness of fit: χ2‐testObjective model selection

Aeschbach-Hertig et al., 1999Water Resour. Res., 35: 2779-2792

χ2‐DistributionProbability distribution of sum of squares of normally distributed variable (errors)Expectation value of χ2: number of degrees of freedom n = n – m, 

where n = no. of data points, m = no. of parameters

( )−χ =

σ∑2meas mod

i i22

i i

C C

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik21

Model Selection: χ2‐TestBasic idea: If the model provides a perfect description of reality, all deviations between model and data (summarised in χ2) are due to random experimental errors: statistical assessment possible.

Area beneath tail of χ2‐distribution gives the probability p for a given or higher χ2‐value only due to experimental errors.

Very low probability (e g p < 0 01) indicates that the model is not

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik22

Very low probability (e.g. p < 0.01) indicates that the model is not a valid description of the data.

Ballentine & Hall (1999)* showed that neither unfractionated excess air nor partial re‐equilibration could explain the data set from Brazil.

Better model needed!

* Ballentine, C. J., and C. M. Hall (1999), Geochim. Cosmochim. Acta 63: 2315-2336

CE: Closed-System Equilibration

EA Model 3: Partial Dissolution and Equilibration

4%

6%

8%

10%

12%

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik23

( )eqi ic c T S P= , ,

ASW + airwater + air air entrapmentair entrapmentexcess pattern

0%

2%

He Ne Ar Kr Xe

i

i

1 AH1 BH+

⋅+

partial dissolution,equilibriationpartial dissolution

a b

w w

V V BA , B , FV V A

= = =

( ) iCE eqi i

i

1 F AHc c 1

1 FAH⎛ ⎞−

= +⎜ ⎟+⎝ ⎠

Derivation of the CE‐ModelInitial state Final state

Vw

eq

aVaic

a

w

VAV

= Vw

w

bVgic

b

w

VBV

=b

a

V BFV A

= =

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik24

mass balance:

=a eqi i ic Hc

( )= + = +0

eq a eqii i i i

w

n c Ac c 1 AHV

=g wi i ic Hc

( )= + = +w g wii i i i

w

n c Bc c 1 BHV

( )0eq eq ii i i

iw i iw w i i

1 F AHn n 1 AHc c c 1V V 1 BH 1 AFH

−⎛ ⎞+= ⇒ = = +⎜ ⎟+ +⎝ ⎠

eqic w

ic

equilibrium conditions

5

28

30

32

Review of the Brazil Data 1: Excess Air Model

T C

E [°

C] ≈ uniform shift of T

ΔT Holocene ‐ LGMremains ≈ 5°C

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik25

22

24

26

22 24 26 28 30 32

NGT original [°C]

NG

T

(LGM = Last Glacial Maximum)

13.4  Applications of Noble Gas Paleothermometry

ΔT Holocene – LGM = 9°C

Aquia Aquifer, Maryland, USA

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik26

ΔT Holocene – LGM

Applications: Continental Terminal, Niger

.5°C

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik27

ΔT

~5

Beyerle et al., Geophys. Res. Lett. 30 (2003)

Applications: Glatt Valley, Switzerland

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik28

Beyerle et al., 1998. Science 282, 731-734.

~ 0.5 ‰/°C

ΔT Holocene – LGM ≈ 5°C

Recharge gap in LGM

ΔT Holocene – LGM = 9.5°C

Applications: Ledo‐Paniselian, Belgium

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik29

Blaser et al., 2010. Quatern. Sci. J. 25: 1038-44.

Recharge gap

Applications: Belgium and Hungary

ΔT Holocene – LGM ≈ 9 °C

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik30

Aeschbach-Hertig and Solomon (2012)

6

Noble Gas Temperature Records Worldwide

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik31

ΔT Holocene – LGM < 5 °CΔT Holocene – LGM ≈ 5 °CΔT Holocene – LGM > 5 °C

Noble Gas Temperatures and Climate Models

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik32

From: Crowley, Climate Dynamics 16 (2000): 241-255

Namibia: Climate Signal in Excess Air?

NG

T (°

C)

21

22

23

24

25

26

27

20

ΔT Holocene – LGM ≈ 5°C

eqC C

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik33

250

0

50

100

150

200

0 10000 20000 30000 40000

ΔNe

(%)

14C age (years) adapted from: Stute and Talma, 1998, IAEA-SM 349/53

Peak in ΔNe 

Due to change in humidity, rise of water levels? 

( )eq

Ne NeeqNe

C CNe % 100%C−

Δ = ⋅

Heaton et al. 1983: Stampriet Aquifer, Namibia

humid periods

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik34

Heaton et al., 1983, J. Hydrol. 62: 243-262.

NGT and Excess Air Studies from the USA

Three recent US NGT and ΔNe records in comparison: • Wisconsin (Klump et al., 2008)• California (Kulongoski et al., 2009)• Arizona (Zhu and Kipfer, 2010).

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik35

The ΔNe record from Arizona contains a sample at around 14 kyr that indicates an extreme peak (off scale, ΔNe = 304 %).

Aeschbach-Hertig and Solomon (2012)

Review of the Brazil data (2): ΔNe

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik36

7

Niger: Excess Air and Stable Isotopes

dry

humid

r2 = 0.7280

100

120

140 CT3CT2CT1

Ne

[%]

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik37

dry

0

20

40

60

-55 -50 -45 -40 -35 -30 -25 -20

ΔN

amount effect

watertable?

δ2H [‰]

13.5  Noble Gas Temperatures from Speleothems?

Goal• New proxy‐archive combination:

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik38

New proxy archive combination:– accurate noble gas paleothermometer – high‐resolution speleothem archive

Basic Idea• Use water in microscopic fluid inclusions

– 0.1 mg of water (∼ 0.1 g of calcite) should be sufficient

Noble Gases in Stalagmites

Carbonates

CO2 dissolution

Noble gases

equilibration in soil

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik39

Modified from J. Fohlmeister

CaCO3 dissolution

CO2 degassingCaCO3 precipitation

stalagmite formation

excess air formation

equilibration in caveincorporation in fluid inclusions

Fluid Inclusions in Speleothems 

water filled inclusion

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik40

Use water in fluid inclusionsProblem: Air‐filled inclusions

air‐filledinclusion

20µm

Main Problem: Air‐filled Inclusions

Air‐filled inclusions (at grain boundaries)

Water‐filled inclusions (contain T‐information)

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik41

The maximum tolerable value of A  for small T‐errors is around 0.1Speleothems: Typically A ∼ 1, reduction is possibleGroundwater: Typically A < 0.01

Leads to "Excess air" as in groundwater:

Air/water volume ratioair waterA V V=( )tot eqi i ic c 1 AH= +

Stalagmites from Bunker Cave, Germany

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik42

8

Noble Gas Data from Bunker Cave

BU‐U:6 samplesT = 2.9 ± 0.7 °Cage: ≈ 11'000 yr

excess airBU‐1:

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik43

equilibrium

excess air T = 7.1 ± 0.8 °Cage: ≈ 1'300 yr

Soda straw:T = 6.4 ± 0.4 °Cage: unknownvery little air!

Results from Bunker CaveBU‐1: approximately constant T (~ 7 °C) throughout Holocene

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik44

Summary

• Noble gases are almost ideal physical tracers• Temperature dependence of solubilities: Thermometer• Aquifers as archives of old water: Paleotemperatures• Complication: Excess air• Inverse determination of T and other parameters:

G l fl ibl h

Physics of Aquatic Systems, 13. Noble Gases and Paleoclimate Universität HeidelbergInstitut für Umweltphysik45

– General, flexible approach– Estimation of errors, assessment of models (χ2‐test)

• Applications: glacial cooling ≈ 5°C in tropics, higher elsewhere• Climatic signal in ΔNe: humidity, water table fluctuations• Fluid Inclusions in speleothems as promising new archive