29
Physics at a low energy collider Steve Asztalos LLNL

Physics at a low energy collider Steve Asztalos LLNL

Embed Size (px)

Citation preview

Page 1: Physics at a  low energy  collider Steve Asztalos LLNL

Physics at alow energy collider

Steve Asztalos

LLNL

Page 2: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 2

The basic idea…

Page 3: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 3

Compelling physics case for a photon collider at NLC

(but is it technically feasible)?

• Though proposed in 1981, only have recent (laser) developments made it possible to achieve high luminosities.

• Demonstration prototype at an existing e+e- machine.

• Technical requirements:

-Lasers: ~ 1 m, rep rate ~ 10 Hz, 0.1 J , 2 ps

-Optics: /50, diffraction limited, focus and alignment

-Mechanical: Beam line, tight tolerances

Page 4: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 4

LLNL has demonstrated the individual technologies

Mechanical System

Optics Assembly

Interferometric Alignment Optics System

0.1J x 2 x 30Hz, 6W average power laser

OPCPA LASER System

Page 5: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 5

Assemble subsystems at a test facility

Would demonstrate essential elements of an NLC-like IR

Page 6: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 6

One such suitable facilityBeam Energy

DRx,y (m-rad)

FFx,y (m-rad)

x / y

z

x,y

N

30 GeV

1100 / 50

8 / 0.1 mm

0.1 – 1.0 mm

1500/55nm

6.0E9

Rough estimate ~$10M total project cost (incl. manpower)

See http://www-conf.slac.stanford.edu/lepcf/program.html

Page 7: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 7

A snapshot of the CP~ 1m, E ~ 0.1 J, x ~ 1.4 m, y ~ 50.2 nm, z ~ 0.1mm

N/Ne ~ 109

Photons receive a maximum of 1/3 of e+e- energy

CAIN

Page 8: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 8

This IP would deliver the world’s largest luminosity…Assuming e+/e- bunch charge of 4x1010 appropriate for a NLC-like beam a photon luminosity ~ 3x1032 cm-2sec-1

could be achieved.

L/E ~ 4x1031cm-2sec-1GeV-1

CAIN

Page 9: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 9

…and is verifiable

Kinematics allows separation of reaction products.

Pandora

Page 10: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 10

-Resonances:

-Photon structure function:

-Quark models: diquark or three quark

-Triangle anomaly and sum rules

Budnev, et al., Physics Reports, 15 (1975) 181

A low energy program

Xγγ

llcqc

Vnc

lq

Vbare γγ

c

Page 11: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 11Steve Asztalos - LLNL 8

Photon collider does complementary physics

n photons are assigned a charge conjugation

number C of (–1)n

- Two photon initial state has C = +1

- Charge conjugation is conserved, so intermediate and final states must have C = +1

- Eliminates states having JPC with C = -1

- J =1 states are forbidden from decaying into C.N. Yang, Physical Review 77 (1959) 242)

Page 12: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 12

Status of heavy resonances

~ 100 MeV

?

x x

ccX

Page 13: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 13

x x

bb

bb

bbX

Bottom mesons are more challenging

?

? ?

?

?

Page 14: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 14

1S13S1

11S0

c

Spin-spin interactions:

Spin-orbit interactions:

1P2(13P2)

1(13P1)

0(13P0)

Meson physics

One-gluon exchange plus confinement:

Page 15: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 15

- c(2s) discovery (1980) reconfirmed only last year at BELLE. Large mass confounds theoreticians

(PRL 89, 102001 (2002), PRL 89 (16) 162002-1)

- resonances continue to elude detection.

Hydrogen spectroscopy gave us the Bohr atom

,...)2,1(),1( bc SSPh

(Stephen Godfrey, Quarkonium Spectroscopy 2nd International Workshop on Heavy Quarkonium 2003)

Page 16: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 16

Meson production with virtual photons. Take advantage of 102 increase in luminosity.

Exploit control over laser polarizations to enhance particular states. For example, circular polarization enhances 0+ (signal) states over 2+ (background) states.

Why final states?

- Appreciable BR in resonance decays ~ 10-4

- Simple event reconstruction

- Well characterized background

We can do better with ppγγ X

ppγγ

pp

Page 17: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 17

Preparing the tools: Physics and Detector

Pandora/Pythia: SM and MSSM Event generation

• Packaged or user-defined luminosity and cross section classes.

• Delivers parton listing and luminosity-integrated cross section.

• Partons passed to Pythia for hadronization (as needed) and StdHep formatting

http://www-sldnt.slac.stanford.edu/nld/new/Docs/Generators/PANDORA.htm

LCDROOT: Detector Simulation and Event reconstruction • Track smearing

• Reconstruction of invariant mass

• Fitting

http://www-sldnt.slac.stanford.edu/nld/New/Docs/LCD_Root/root.htm

Page 18: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 18

Luminosity:• User-defined luminosity based on CAIN. • 4 x 10000 array of photon weights sorted by

energy and helicity.

Physics:• Define new resonance classes.

• Decay mesons to massive final states.• Pandora’s luminosity integrated cross section

not reliable for very narrow widths (< 10 MeV).• Override randomly generated final states.

Interface:• Identification of intermediate and final states in

event structure

Pandora modifications for ppγγ X

Page 19: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 19

Pandora Luminosity Modification for

Built-in Pandora luminosity class adequately treats Compton-backscattering process…

ppγγ X

…but does not include multiple interactions nor beamstrahlung.

Page 20: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 20

11|2/112|2/111|10|

10|2/121|2/110|11|

00|3/120|3/210|10|

11|2/121|2/111|10|

10|2/121|2/110|11|

22|11|11|

or 00|3/110|2/120|6/111|11|

or 00|3/110|2/120|6/111|11|

2|2|11|11|

011|11|

00|11|11|

00|11|11|

011|11|

|||| 21

)(

)( )()()(

)( )()()(

)(

1P

1S1P1P1P

1S1P1P1P

1P

2

0012

0012

2

c

cccc

cccc

c

JmJmm

Real photons only have transverse polarizations (helicity {1,-1}).

Associating luminosity with mesons

For L =1 Clebsch-Gordan coefficients give the (9) possible product states.

Page 21: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 21

Pandora Physics Modifications for background

cross section of interest in resolution of controversy between three quark (Nucl. Phys. B 259,

(1985) 702) and diquark hadron models (Phys. Lett. B 316,

(1993) 546). Both models predict

ppγγ **

-15E~σFor our purpose, is background whose functional behavior scales as

ppγγ

θ)cos1(

θ)cos1(E~

d

dσ2

215-

Chen-Cheng Kuo, Photon 2003 - Frascati

-12E~σ

ppγγ

Page 22: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 22

Breit-Wigner Signal with Power Law Background

No. of signal events:

No. of background events:

dE)dσ(E,t NE

L

6.

6.

0.4

75.22

totx22

x2

totxγγ

)m()mE((

π8dE)θ(dt)ppxBR( N

E

Lf

6.

6.

0.4

75.215

6

2

2

E

1015.1dE

)θcos1(

)θcos1(dt N

E

L

6.

6.

tot2totx

totxγγx )θ(d

)m(

π8)(mt)ppxBR( N fL

Page 23: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 23

Event numerology

MassΓγγ/ Γtot Γtot Events

c(1S) 2.979 --- 4.6 x10-4 0.0161 0.0012 3263

c(2S) 3.665 --- 4.6 x10-4(1) 0.0161 0.0012*

0.411(2)

2643

c0 (1P) 3.415 --- 2.4 x10-4 0.0107 2.4x10-4 194

c2(1P) 3.556 2.4 x10-4 0.0021 6.8x10-5 6

b(1S) 9.3 --- 4.6 x10-4*

(QbMb/QcMc)2

0.014(3) 0.0012 (4) <1

--- --- --- --- 9119

Total 15227

ppγγ

)θ(f

)θcos1(

)θcos1(2

2

22

4

θ)3cos-(1

or θsin

)ppxBR(

(1) Assumed to be same as for c(1S)

)ppxBR( )ee)1(/)/BR(ee)2(/BR( -- SJSJfor c(1S) times(1)

Page 24: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 24

Clear meson signals

c(1S) c(2S)

c0 (1P)

Page 25: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 25

Exploit angular information to suppress background

c(1S)

c(2S)c0 (1P)

Page 26: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 26

How do we match up?

Weiszacker-Williams spectrum

Page 27: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 27

Comparing BELLE and LINX luminosities

Page 28: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 28

Mesons from virtual photons (BELLE results)

Page 29: Physics at a  low energy  collider Steve Asztalos LLNL

Steve Asztalos - LLNL 29

Summary

• Compare events generated by Compton-backscattering with Weizsacker-Williams method

• Study different mesons decay modes

• Address effects of laser and electron polarizations

bb

Still to come…

• Charmed mesons should be copiously produced at a collider. This would allow for detailed studies of their properties.