18
UNIT VECTORS - are vectors whose magnitude is exactly one(1) and used to point a particular direction. - points to (+)x – axis. - points to (+)y – axis. - points to (+)z – axis. x y z i j k i j k

PHY10-Unit Vector.pdf

  • Upload
    vonn

  • View
    16

  • Download
    2

Embed Size (px)

Citation preview

Page 1: PHY10-Unit Vector.pdf

UNIT VECTORS- are vectors whose magnitude is exactly one(1) and used to point a

particular direction.

- points to (+)x – axis.

- points to (+)y – axis.

- points to (+)z – axis.x

y

z

i

j

k

i

j

k

i

j

k i

j

k

i

j

k

i

j

k

Page 2: PHY10-Unit Vector.pdf

UNIT VECTORS- are used as a another way of writing a vector.

- Vector Components

- Scalar Components

- Magnitude of the Vector

A = Ax i + Ay j + Az ki

j

k

i

j

k

i

j

k

Ax ii

j

k

Ay ji

j

k

Az ki

j

k

Ax

Ay

Az

= = = =A = Ax2 + Ay2 + Az2

Page 3: PHY10-Unit Vector.pdf

y

x53.13o

UNIT VECTORS- are used as a another way of writing a vector.

A = Ax i + Ay j + Az ki

j

k

i

j

k

i

j

kAx = 5 Cos 53.13o

Ax = 3

Ay = 5 Sin 53.13o

Ay = 4

Az = 0AAy ji

j

kAx ii

j

k

A = 5 v, 53.13o N of E = (3 i + 4 j ) vi

j

k

i

j

k

Given the vector A = 5 v, 53.13o N of E;

Page 4: PHY10-Unit Vector.pdf

Ay j = -2 ji

j

k

i

j

k

UNIT VECTORS

A vector, A = 4 i - 2 j + 3 k , would mean;

x

y

z

i

j

k

i

j

k

i

j

k

ii

j

k

ji

j

kki

j

k

Ax i = 4 ii

j

k

i

j

kAz k = 3 ki

j

k

i

j

k A

= = = =A = (4)2 + (-2)2 + (3)2

= = = =A = 29 = 5.39 v

Page 5: PHY10-Unit Vector.pdf

UNIT VECTORSVector Addition/Subtraction

Example 1. Given the following vectors:

a) B - A + C b) C - B - A

A = (-2 i + 3 j + 4 k)mi

j

k

i

j

k

i

j

k

B = (3 i + j - 3 k)mi

j

k

i

j

k

i

j

k

C = (-5 i - 2 j + 2 k)mi

j

k

i

j

k

i

j

k

A B = (Ax i + Ay j + Az k) (Bx i + By j + Bz k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

A B = (Ax Bx) i + (Ay By) j + (Az Bz) ki

j

k

i

j

k

i

j

k

Page 6: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSVector by a Scalar

- The product is another vector and takes the direction of the given vector.

A b = C

a = 25 kg

B = 4 m, N10oE

C = (-5 i -2 j + 2 k)Ni

j

k

i

j

k

i

j

k

Example 2. Given the following, determine (a) a B and (b) a C.

Page 7: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSScalar or Dot Product

- The dot product between two vectors is a scalar quantity.

Where: A & B – magnitudes of the given vectors - lesser angle between vectors connected tail-to-tail

A B = c

A B = AB Cos α θ β φφα θ β

α θ β φα θ β φ

φα θ βα θ β φ

Cases:i. 0o 90o - Parallel or Acute Angle; A B is (+).α θ β φ

φα θ βα θ β φ

<

>

<

>

ii. 90o 180o - Anti-parallel or Obtuse Angle; A B is (-).α θ β φφα θ β

α θ β φ

<

>

<

>

≥iii. = 90o - Perpendicular; A B is zero(0).α θ β φφα θ β

α θ β φ

Page 8: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSScalar or Dot Product

Example 3. Given the following, determine the scalar product between the given vector quantities.

A = 25 v, 25o S of W B = 40 v, N10oE

Page 9: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSScalar or Dot Product

0 0+1

A B = (Ax i + Ay j + Az k) (Bx i + By j + Bz k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Multiplying, first, vector A = Ax i + Ay j + Az k to Bx i , it will give us the following:

i

j

k

i

j

k

i

j

k

i

j

k(Ax i + Ay j + Az k) Bx ii

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

= AxBx(i i) + AyBx(j i) + AzBx(k i)

(i i) = 1(1) Cos ; = 0o ; Cos 0 = +1i

j

k

i

j

k

α θ β φφα θ β

α θ β φ

α θ β φφα θ β

α θ β φ(i i) = +1 = (j j) = (k k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i (-i) = 1(1) Cos ; = 180o ; Cos 180 = -1i

j

k

i

j

k

α θ β φφα θ β

α θ β φ

α θ β φφα θ β

α θ β φi (-i) = -1 = j (-j) = k (-k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i j = 1(1) Cos ; = 90o ; Cos 90 = 0i

j

k

i

j

k

α θ β φφα θ β

α θ β φ

α θ β φφα θ β

α θ β φi j = 0 = j i = i k = k i = j k = k ji

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Page 10: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSScalar or Dot Product

It follows that:

Therefore!

0 0+1

A B = (Ax i + Ay j + Az k) (Bx i + By j + Bz k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Multiplying, first, vector A = Ax i + Ay j + Az k to Bx i , it will give us the following:

i

j

k

i

j

k

i

j

k

i

j

k(Ax i + Ay j + Az k) Bx ii

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

= AxBx(i i) + AyBx(j i) + AzBx(k i)

(Ax i + Ay j + Az k) Bx i = AxBxi

j

k

i

j

k

i

j

k

i

j

k(Ax i + Ay j + Az k) By j = AyByi

j

k

i

j

k

i

j

k

i

j

k

(Ax i + Ay j + Az k) Bz i = AzBzi

j

k

i

j

k

i

j

k

i

j

kA B = Ax Bx + Ay By + Az Bz

Page 11: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSScalar or Dot Product

Example 4. Determine a) dot product and b) angle between the given vectors:

A = (-2 i + 3 j + 4 k)mi

j

k

i

j

k

i

j

k

B = (-5 i - 2 j + 2 k)Ni

j

k

i

j

k

i

j

k

Page 12: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSVector or Cross Product

- The cross product between two vectors is another vector quantity.

- Magnitude

Example 5. Given the following, determine the magnitude and direction vector product between the given vector quantities.

A x B = C

A x B = AB Sin α θ β φφα θ β

α θ β φWhere: A & B – magnitudes of the given vectors - lesser angle between vectors connected tail-to-tailα θ β φ

φα θ βα θ β φ

A = 25 v, 25o S of W B = 40 v, N10oE

Page 13: PHY10-Unit Vector.pdf

A x B = C

MULTIPLICATION OF VECTORSVector or Cross Product

Right-Hand Rule: Direction

- The index finger points to the direction of the first vector.

- The middle finger points to the direction of the second vector.

- The thumb points to the direction of the product.

First Vector Second Vector

Product

- First & second vectors lie on one plane and the product is perpendicular to the plane.

A

B

C

Page 14: PHY10-Unit Vector.pdf

= AxBx(i x i) + AyBx(j x i) + AzBx(k x i)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

MULTIPLICATION OF VECTORSVector or Cross Product

0

A x B = (Ax i + Ay j + Az k) x (Bx i + By j + Bz k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Multiplying, first, vector A = Ax i + Ay j + Az k to Bx i , it will give us the following:

i

j

k

i

j

k

i

j

k

i

j

k(Ax i + Ay j + Az k) x Bx ii

j

k

i

j

k

i

j

k

i

j

k(i x i) = 1(1) Sin ; = 0o ; Sin 0 = 0i

j

k

i

j

k

α θ β φφα θ β

α θ β φ

α θ β φφα θ β

α θ β φ(i x i) = 0 = (j x j) = (k x k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

ki x (-i) = 1(1) Sin ; = 180o ; Sin 180 = 0i

j

k

i

j

k

α θ β φφα θ β

α θ β φ

α θ β φφα θ β

α θ β φi x (-i) = 0 = j x (-j) = k x (-k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Page 15: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSVector or Cross Product

= AxBx(i x i) + AyBx(j x i) + AzBx(k x i)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

0

A x B = (Ax i + Ay j + Az k) x (Bx i + By j + Bz k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Multiplying, first, vector A = Ax i + Ay j + Az k to Bx i , it will give us the following:

i

j

k

i

j

k

i

j

k

i

j

k(Ax i + Ay j + Az k) x Bx ii

j

k

i

j

k

i

j

k

i

j

k

i x j = 1(1) Sin ; = 90o; Sin 90 = +1i

j

k

i

j

k

α θ β φφα θ β

α θ β φ

α θ β φφα θ β

α θ β φi x j = +ki

j

k

i

j

k

i

j

k

i x j = +1, along (+)z - axisi

j

k

i

j

k

j x i = -ki

j

k

i

j

k

i

j

k

j x i = +1, along (-)z - axisi

j

k

i

j

k

j x k = +ii

j

k

i

j

k

i

j

k

j x k = +1, along (+)x - axisi

j

k

i

j

k

k x j = -ii

j

k

i

j

k

i

j

k

k x j = +1, along (-)x - axisi

j

k

i

j

k

k x i = +ji

j

k

i

j

k

i

j

k

k x i = +1, along (+)y - axisi

j

k

i

j

k

i x k = - ji

j

k

i

j

k

i

j

k

i x k = +1, along (-)y - axisi

j

k

i

j

k

-k j

Page 16: PHY10-Unit Vector.pdf

= AxBx(i x i) + AyBx(j x i) + AzBx(k x i)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

Multiplying, first, vector A = Ax i + Ay j + Az k to Bx i , it will give us the following:

i

j

k

i

j

k

i

j

k

i

j

k

MULTIPLICATION OF VECTORSVector or Cross Product

0

A x B = (Ax i + Ay j + Az k) x (Bx i + By j + Bz k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k(Ax i + Ay j + Az k) x Bx ii

j

k

i

j

k

i

j

k

i

j

kii

j

k

ji

j

k

ki

j

k

ii

j

k

ji

j

k

ki

j

k

-k j

A x B = (Ay Bz - Az By) i + (Az Bx - Ax Bz)j + (Ax By - Ay Bx)ki

j

k

i

j

k

i

j

k

Page 17: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSVector or Cross Product

Using Matrix

A x B = (Ax i + Ay j + Az k) x (Bx i + By j + Bz k)i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

Ax

Bx

i

j

k

j

Ay

By

i

j

k

k

Az

Bz

i

j

k

i

Ax

Bx

i

j

k

j

Ay

By

i

j

k

A x B = + + (Ax By - Ay Bx)ki

j

k

(Az Bx - Ax Bz)ji

j

k

(Ay Bz - Az By) ii

j

k

Page 18: PHY10-Unit Vector.pdf

MULTIPLICATION OF VECTORSVector or Cross Product

Example 6. Determine a) cross product(magnitude & direction) and b) angle between the given vectors.

A = (-2 i + 3 j + 4 k)mi

j

k

i

j

k

i

j

k

B = (-5 i - 2 j + 2 k)Ni

j

k

i

j

k

i

j

k