Philippe Cluzel, Anne Lebrun, Christoph Heller, Richard Lavery, Jean-Louis Viovy, Didier Chatenay and François Caron- DNA: An Extensible Molecule

  • Upload
    uylrikk

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 Philippe Cluzel, Anne Lebrun, Christoph Heller, Richard Lavery, Jean-Louis Viovy, Didier Chatenay and Franois Caro

    1/4

    DNA: An Extensible MoleculeAuthor(s): Philippe Cluzel, Anne Lebrun, Christoph Heller, Richard Lavery, Jean-Louis ViovyDidier Chatenay, Franois CaronSource: Science, New Series, Vol. 271, No. 5250 (Feb. 9, 1996), pp. 792-794Published by: American Association for the Advancement of ScienceStable URL: http://www.jstor.org/stable/2889888

    Accessed: 22/02/2010 12:51

    Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

    http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless

    you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you

    may use content in the JSTOR archive only for your personal, non-commercial use.

    Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at

    http://www.jstor.org/action/showPublisher?publisherCode=aaas.

    Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

    page of such transmission.

    JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of

    content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new formsof scholarship. For more information about JSTOR, please contact [email protected].

    American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and

    extend access to Science.

    http://www.jstor.org/stable/2889888?origin=JSTOR-pdfhttp://www.jstor.org/page/info/about/policies/terms.jsphttp://www.jstor.org/action/showPublisher?publisherCode=aaashttp://www.jstor.org/action/showPublisher?publisherCode=aaashttp://www.jstor.org/page/info/about/policies/terms.jsphttp://www.jstor.org/stable/2889888?origin=JSTOR-pdf
  • 8/3/2019 Philippe Cluzel, Anne Lebrun, Christoph Heller, Richard Lavery, Jean-Louis Viovy, Didier Chatenay and Franois Caro

    2/4

  • 8/3/2019 Philippe Cluzel, Anne Lebrun, Christoph Heller, Richard Lavery, Jean-Louis Viovy, Didier Chatenay and Franois Caro

    3/4

  • 8/3/2019 Philippe Cluzel, Anne Lebrun, Christoph Heller, Richard Lavery, Jean-Louis Viovy, Didier Chatenay and Franois Caro

    4/4

    wherek is the Boltzmann onstant,T is thetemperaturen kelvin, y = x/N - (1 +12)/2,N is the numberof elements (nucle-otide pairs), Al = (12 - 1), and x is theextension of the chain (in micrometers).Poor fits are obtained orw -> 0. Takingwequalto - 16.6kj/molperbasepair,whichdisfavors isolated S-form or B-form ele-ments and impliesa cooperative ransition,leads o an excellentfit (10) (seefull line inFig. 2A).If, as suggested bove, the plateau s theresultof a DNA conformationalransition,a drasticchange could be expectedin thepresenceof intercalating gents.The tran-sition indeed disappearsn the presenceof10 ,ug/mlof ethidiumbromide Fig. 3). Atthe present tage, one can note the follow-ing: First, he rise of the force with exten-sion is smoother than shown in Fig. 2A,both beforeor after the plateau.This may

    160 -

    120 -

    e 80 -

    40 -

    0.6 0.8 1 1.2 1.4 1.6 1.8Relative lengthFig. 3. Force versus extension curve in the pres-ence of 10 pLg/mlf ethidium bromide at a pullingrate of 10 ,um/s, other conditions being identicalto those of Fig. 2A. The relative length is againdefined with respect to the B-form contour length(15.1 ,um).

    be a resultof exchangeof the intercalatorduring he stretchingprocess.Second,theforcerisesat a larger alueof the extensionthanwithout an intercalator,n agreementwith the well-known engtheningand un-windingof DNA inducedby intercalatingagents and with earlier observationsbySmith et al. (4).Molecular modeling of the DNAstretchingprocess,performedwith the pro-gramJUMNA(Fig. 4), also leads to a pla-teau in the force-displacementurve (Fig.2C). The structure f the S form,modeledby stretching he ends of one strandof theduplex (compatiblewith our experimenthere), suggeststhat extension involves areduction n helicaldiameteranda strongbase pair inclinationthat maintainsbothbase stackingand pairinguntil a relativelength of 2.0. This finding correlateswithearly spectroscopic tudies by FraserandFraser n stretchedDNA fibers(11). Thestrongbaseinclination nducedby stretch-ing suggests n explanation or the cooper-ative natureof the transition,becausedis-continuities in inclination would implyaloss of basestackingor wouldrequireDNAkinking.The 1.6 times extensionof DNA at theend of the force plateau s close enoughtothe extension inducedby RecA fixation(12, 13) to speculateon the biological m-portanceof an extendedform of isolatedDNA. The purposeof extendingand un-windingDNA, in the case of RecA, is tofacilitate the formationof a triplex (14),which is a putative ntermediate uringre-combination.A pre-extendedDNA formmaybe an intermediate tepin suchtriplexformation.The role of RecA mightthus be

    Fig. 4. DNA tretchingwas modeledwithuse of the JUMNAmolecularmechanicsprogramdeveloped for studying nucleicacid conformations21-23). An all-atomforce field s used, and efficientminimiza-tion s allowedby a reducedvariable ep-resentationnvolving elicoidal nd internalvariables bond rotations nd valence an-gles). Solvent and counterion ffects arerepresentedby a distance-dependent i-electric unctionand reduced phosphatecharges. An infiniteDNA polymer wasstudied with the use of helical ymmetryconstraints nda repeatof 10 nucleotidepairs. Stretching nvolvedminimizingheenergyperturnof the polymer s a func-tionof the lengthof one of its strands im-posedwitha quadratic istanceconstraintbetweenC5'andC3'atomsseparatedby10 nucleotides).Resultsare presented or an alternating Tsequence. The figure hows space-fillinggraphics f the relaxed inearDNA left) nd DNA tretchedby a factorof 1.7 (right). heelongatedDNAis characterizedya strongbase pair nclination,narrowminor roove,anda diameter oughly 0% essthan hatof B-DNA.The base pairs,whichare exposed on the major rooveside of the doublehelix, restillboundbya singlehydrogenbond, and strong nterstrandtackingbetweenadeninescan be seen.Thisconformationalhange occurs progressively nd cooperatively uring tretching.Modeling, ow-ever, indicates hat the finalconformation nd the energeticsof stretchingdepend both on basesequenceand on which trand ermini re tetheredduring tretching.

    to induce such a transitionby means ofspecific interactionsbetween the proteinandthe extended orm.REFERENCESAND NOTES

    1. M. H. F. Wilkins t al., Nature 171, 738 (1953).2. M. H. F. Wilkins t al., ibid. 167, 759 (1951).3. F. H. C. Crick and J. D. Watson, Proc. R. Soc. Lon-don Ser. A 223, 80 (1954).4. S. B. Smith et al., Science 258, 1122 (1992).5. C. Bustamante et al., ibid. 265, 1599 (1994); A. Vo-logodskii, Macromolecules 27, 5623 (1994); J.Marko and E. D. Siggia, ibid., 28, 8759 (1995).6. D. Bensimon et al., Phys. Rev. Lett.74, 4754 (1995);A. Bensimon et al., Science 265, 2096 (1994).7. A. Kishino and T. Yanagida, Nature334, 74 (1988).8. S. B. Smith et al., Biophys. J. 68, A250 (1995).9. T. L. Hill,J. Chem. Phys. 30, 383 (1959); B. Zimmand J. Bragg, ibid. 31, 526 (1959).10. Because this simple model does not take into accountthe entropicelasticity, t becomes rapidly naccurateorextensionsoutside the plateauregion.For a completedescription,a theory aking ntoaccount the degrees offreedom relatedto the exchange between states, aswell as those related to entropic elasticity(5), will berequired.Additionallasticitymay also arise romdistor-tions of bond angles (15) or from a dependence oftransitionnergieson base paircontent and sequence.11. M. J. Fraser and R. D. B. Fraser, Nature 167, 760(1951).12. A. Stasiak and E. diCapua, ibid. 299,185 (1982).13. M. M. Cox and 1. R. Lehman, Annu. Rev. Biochem.56, 229 (1987).14. B. J. Rao, M. Dutreix,C. M. Radding, Proc. Natl.Acad. Sci. U.S.A. 88, 2984 (1991).15. J. L.Viovy,C. Heller,F. Caron, Ph. Cluzel, D. Chat-enay, C. R. Acad. Sci. Paris 317, 795 (1994).16. A.-M. Frischauf,H. Lehrach, A. Poustka, N. Murray,J. Mol. Biol. 170, 827 (1983).17. R. G. Cox, J. FluidMech. 44, 791 (1970).18. EMBL3XDNA(16) was labeled at the rightend forattachment to a polystyrene microbead (Poly-science; 2.8 ,um)covered with antibody to digoxi-genin (anti-DIG) by ligation of a modified 12-meroligonucleotide, complementary to the 5' protrud-ing right end of XDNA. The modification consists oflabeling the oligonucleotide with terminal trans-ferase in the presence of DIG2'3'-dideoxyuridine-5'-triphosphate (Boehringer). At the left end, DNAwas multilabeled (about 150 ligands) on bothstrands with biotin by the ligation, by means of anadapter, of a 700-base pair fragment labeled withbiotin by the polymerase chain reaction.19. The exact valueof the initial xtension,whichis relatedto the positionof the beadwithrespectto the anchoringof DNAon the fiber, is known only to within 3 j,m;therefore, ntemalreferencewith a 1 jim accuracywasobtainedbyfittinghe steep riseof the entropic orce atthevicinity f the full ontour engthextension (4, 5). Thisfityieldsa persistencelengthsmaller hanthat obtainedby others (5) by a factor of 3 to 4. This decrease isqualitativelyonsistentwithour use of a higher altcon-centration,but a quantitativetudyof salt effects wouldrequire higheraccuracy n he low-forcedomainand isbeyond the scope of ourwork here.20. E.-L. Florin,V. T. Moy, E. Gaub, Science 264, 415(1994).21. R. Lavery, nStructureand Expression,vol.3 of DNABending and Curvature,W. K. Olson, R. H. Sarma,M. H. Sarma, M. Sundaralingam, Eds. (AdeninePress, New York, 1988), pp. 191-211.22. R. Lavery, K. Zakrzewska, H. Sklenar, Comput.Phys. Commun. 91,135 (1995).23. R. Lavery,Adv. Comput. Biol. 1, 69 (1994).24. The authorsacknowledge support from the Chemis-try Departmentof the CNRS,the Ultimatechprogram,the DRET/Ministbrees Armees, the EuropeanEco-nomic CommunityBiomed Program,and the FrenchSupercomputing CentreIDRIS.We thank J. Malth6teand J. Davidovits or helpfuldiscussions concemingthe chemistryof these experiments,A. Laigle orhelp-fulpreparatory xperiments,and F. Breton for techni-cal assistance.15 September 1995; accepted 15 November 1995