8
Philippe CHOLER Philippe CHOLER Plant Ecologist Plant Ecologist University of Grenoble. FRANCE University of Grenoble. FRANCE Marie-Curie Fellows Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) (from 15/01/2008 - to 15/01/2010) including two years as a including two years as a Visiting Scientist Visiting Scientist CSIRO Marine and Atmospheric Research CSIRO Marine and Atmospheric Research Black Mountain Laboratories Black Mountain Laboratories Canberra, ACT Canberra, ACT CASOAR Project: Plant Functional Diversity and Land-Surface Biogeochemical Modelling

Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

Embed Size (px)

Citation preview

Page 1: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

Philippe CHOLERPhilippe CHOLERPlant EcologistPlant EcologistUniversity of Grenoble. FRANCEUniversity of Grenoble. FRANCE

Marie-Curie Fellows Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010)(from 15/01/2008 - to 15/01/2010)

including two years as aincluding two years as a

Visiting ScientistVisiting ScientistCSIRO Marine and Atmospheric ResearchCSIRO Marine and Atmospheric ResearchBlack Mountain LaboratoriesBlack Mountain LaboratoriesCanberra, ACTCanberra, ACT

CASOAR Project:

Plant Functional Diversity and Land-Surface Biogeochemical Modelling

Page 2: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

CASOAR

Plant Functional Ecology (for dummies)Plant Functional Ecology (for dummies)

Species A

Small plant

Species B

Tall plant

Plants are getting smaller

under drier climates(size as a

response trait)

Tall and Small Plants do not affect

the Atmosphere in the same way

(size as an effect trait)

Page 3: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

CASOAR

1.0 1.5 2.0 2.5 3.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-0.4-0.2

0.0 0.2

0.4 0.6

0.8

SLA (mm2 g-1) [log scale]

Nm

ass

(%

) [lo

g s

cale

]

Le

af L

on

ge

vity

(m

o)

[log

sca

le]

Fundamental trade-offs among leaf Fundamental trade-offs among leaf traitstraits

NN massmass

(%) [

log scale]

SLASLA (mm-2 g-1) [ log scale]

Lea

f lo

ng

evit

yL

eaf

lon

gev

ity

(mo

nth

s) [

log

sca

le]

NOT everything is possible (at least for leaves)NOT everything is possible (at least for leaves)

"glopnet" leaf economics datasetWright I.J. et al. (2004) Nature

Page 4: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

CASOAR

Basic questionsBasic questions

• What are (if existing) the fundamental trade-offs among Community

Aggregated Traits ?

• How are Community Aggregated Traits spatially distributed ?

insights from mechanistic (plant physiology...) and empirical approaches

n

1i

ii tpTCApi Relative Abundance (Cover) of species i in the community

ti Mean Trait Value of species i

Scaling-up from leaves to canopy

Community Aggregated Trait = Functional Property of Canopy

Page 5: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

CASOAR

A case studyA case study

0 100 200 300 km

Adelaide

Albury

Geelong Melbourne

New castle

Sydney

Wollongong1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16171819

2021

22

23 2425

2627

28

293031

3233

34

35

36

37

38

39

40

41

42

434445

46

4748

49

50

200 500 1000 2000

20

50

10

02

00

50

01

00

02

00

0

Rainfall (mm yr-1) (log scale)

So

il P

(m

g k

g -

1)

(lo

g s

cale

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

1920

21

22

23

24

25

26

27

28

29

303132

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Rainfall gradient

Pho

sph

orus

gra

dien

t

Which are the best predictors of SLACA values ?(Envir. variables or Seasonal Canopy Reflectances)

Page 6: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

CASOAR

Use of Remotely Sensed DataUse of Remotely Sensed Data

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]]

050

015

00bl

ue

1

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

010

0025

00re

das

.dat

a.fra

me(

zoo.

nir)

[, D

EL[i]

]

1000

2500

4000

nir

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 2

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 3

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 4

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 5

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 6

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 8

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 9

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 10

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 11

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 12

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 14

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 15

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)as

.dat

a.fra

me(

zoo.

blu)

[, D

EL[i]

] 16

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 17

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 18

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 19

time(zoo.red)as

.dat

a.fra

me(

zoo.

red)

[, D

EL[i]

]as

.dat

a.fra

me(

zoo.

nir)

[, D

EL[i]

]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 20

time(zoo.red)as

.dat

a.fra

me(

zoo.

red)

[, D

EL[i]

]as

.dat

a.fra

me(

zoo.

nir)

[, D

EL[i]

]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 21

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 22

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 23

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 24

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 26

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 28

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 29

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 30

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 31

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 32

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 33

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 34

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 35

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 36

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 37

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 38

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 42

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 43

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 44

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 45

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 46

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 47

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 48

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 49

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

time(zoo.red)

as.d

ata.

fram

e(zo

o.bl

u)[,

DEL

[i]] 50

time(zoo.red)

as.d

ata.

fram

e(zo

o.re

d)[,

DEL

[i]]

as.d

ata.

fram

e(zo

o.ni

r)[,

DEL

[i]]

<--TIME-->

Sampling sites

Evergreen Broad Leaf ForestsOpen Shrublands

Closed Shrublands Savanna

MODIS data : MOD13A1 - level 3(VI products) - Collection 5250m Composite 16 days. (2000-2005)

Global Land Cover Class Averaged (3km around measured site)

Principal Component Analysis on time series correlation matrix(Data reduction process)

Retrieval of n independent Principal Components

Page 7: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

CASOAR

Measured vs. Predicted SLAMeasured vs. Predicted SLACACA

3.6 3.8 4.0 4.2 4.4

3.6

3.8

4.0

4.2

4.4

SLA measured [log scale]

SLA

fitt

ed [lo

g s

cale

]

1

2

34

5

6

8

9

10

1112141516

17

1819 20

21

22

23

2426

28

29

30 313233

34

35

3637

38

42

43

44

45

46

47

48

4950

3.6 3.8 4.0 4.2 4.4

3.6

3.8

4.0

4.2

4.4

SLA measured [log scale]

SLA

fitt

ed [lo

g s

cale

]

1

2

34 56

8

9

10

11

12

14

15

16

1718

1920

21

22

23

24

2628

29

303132

3334

35

36

37

38

42 4344

45

4647

48

49

50

3.6 3.8 4.0 4.2 4.4

3.6

3.8

4.0

4.2

4.4

SLA measured [log scale]

SLA

fitt

ed [lo

g s

cale

]

1

2

34

5

6

8

9

10

11

121415

16

17

18

1920

21

22

2324

2628 29

303132

33

34

35

3637

38

42

43

44

45

46

47

48

49

50

MODEL 1.Rainfall

PhosphorusElevation

MODEL 2.

MODIS time series Principal Components

MODEL 3.

All explanatory variables

Explanatory Variables

ModelPerformance

(n=43)

r2 = 0.55

P (Elevation = 0)= 0.002

P (Slope = 1)= 0.0062

RMSE = 0.12

r2 = 0.64

P (Elevation = 0)= 0.012

P (Slope = 1)= 0.022

RMSE = 0.107

r2 = 0.77

P (Elevation = 0)= 0.07

P (Slope = 1)= 0.09

RMSE = 0.085(around 1 unit SLA)

Page 8: Philippe CHOLER Plant Ecologist University of Grenoble. FRANCE Marie-Curie Fellows (from 15/01/2008 - to 15/01/2010) including two years as a Visiting

CASOAR

ConclusionConclusion

Community 1()

Plant Physiology

(understqnding trade-offs)

Plant Functional Traits

Community 2()

De

nsi

ty

Trait space

RemoteSensing

Spatial Distribution Models of CA Traits

Ground Measurements

Aim: Land-Surface Biogeochemical Modelsmore firmly grounded in ecological knowledge

Thank you