Philip KLINGLER28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test

Embed Size (px)

Citation preview

  • Slide 1

Philip KLINGLER28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Slide 2 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Topics 1.Introduction 2.Tracer-test 3.3D-model 4.Imaginary faults 5.Gravity forward modelling 6.Conclusions Philip Klingler Slide 3 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Introduction Philip Klingler Objective of the study was to characterise the geological and hydrogeological setting to determine effects of an increase in production rate from the project Riehen Plus. RiehenPlus Cooperation of distant heating systems of the township Riehen, Niederholz AG und Wasserstelzen (IWB) linked with an increase in production from18 l/s to 23 l/s Slide 4 Dublet heating system (D = 960 m) Running since 1994 Production well Riehen 1: Depth = 1547 m (Muschelkalk) Temperature = 65C Injection well Riehen 2: Depth = 1247 m (Muschelkalk) Temperature = 52.2C Pressure interaction ocurred during pumping tests [Hauber et al., 1989] 960 m Riehen 1 Riehen 2 After Hauber et al. [1989] Introduction Slide 5 Tracer-test Injection: 10 kg Uranine in solution (1000 l) on 3 Novembre 2009 No fluid circulation ocurred during the tracer test Sample 27 Novembre 2009 = Contamination 27 Novembre 2009 Slide 6 Hypothesis 1 parallel A regional groundwater system flowing from the south to the north hinders the circulation of the thermal water. Hypothesis 2 in line The reservoir has been separated by the fault of Weil am Rhein. The existing hydraulic connection is distant, the majority of the thermal water flows through the doublet heating system, which may have enforced a new groundwater flow system. Tracer-test 1 1 22 Slide 7 A few thoughts about hydraulics Possible flow patterns of a doublet in a homogenous aquifer with a groundwater flow from extraction to in injection well [Strack1989]. a b c Tracer-test Slide 8 28 Octobre 2010 Philip Klingler 3D model Perimeter: 30 km x 23 km Coordinates (CH1903): xmin: 600843 mxmax: 630843 m ymin: 255694 m ymax: 278694 m zmin: -8000 m o. s.zmax: Surface Methods Compilation of all available geological information into a 3D model Objective Discretisation of the regional 3D geology of the reservoir to characterise the geological and hydrogeological setting Slide 9 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Available data: Surface: SRTM-Daten (Shuttle Radar Topography Mission US Geological Survey) Slide 10 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Available data Geological sections: 1. Grler- sections [Grler et al., 1987] 2. Annotations to Map 1047 Basel [Fischer et al., 1971] 3. Annotations to Map 1067 Arlesheim [Bitterli-Brunner & Fischer1988] 4. Drilling report on Riehen [Hauber et al.1989] [Hauber et al.1989] [Grler et al.1989] [Fischer et al.1989] Slide 11 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Available data Geological maps: 1.Map 1047 Basel, 1:25000 [Fischer et al., 1971] 2.Map 1067 Arlesheim, 1:25000 [Bitterli-Brunner & Fischer, 1988] 3.Geologische Karte der zentr. Nordschweiz 1:100 000 [Mller et al.] Well data: 1.13 Geothermal wells 2.5 Salt wells(NaCl, KCl) Slide 12 3D model Available data 3D models: GKW model [Schill et al., 2010] Geological 3D model Riehen (GoCad), 4x4 km [Dresmann, 2010] Slide 13 3D model Formations and series E: 180 m D: 80 m C:130 m B: 680 m F A A B C D E F Slide 14 3D model Major faultsMinor faults Infinite Constant displacement Termination only possible on other faults or on model boundries Finite ellipse Hor., vert. & influence radius Max. displacement in centre, no displacement at edge Slide 15 The hor. radius has to be large enough, that the infinite faults wont continue in the depth 3D model Imaginary faults fault y fault z fault x fault y imaginary fault stop! Definition: Imaginary faults are finite faults with a very big vertical radius (>5 x vertical extent) linked with an imaginary formation and have no effects on the geological formations. An imaginary fault, which separates fault x and z will terminate fault y too Slide 16 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top crystalline basement Slide 17 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top anhydrite zone Slide 18 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 19 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 20 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 21 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 22 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 23 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 24 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 25 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 26 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top upper Muschelkalk Slide 27 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top Keuper Slide 28 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Formation top Malm Slide 29 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model All formations with tertiary Slide 30 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler 3D model Main characteristics Crystalline basement und Paleozoic sediments (Permian, Carboniferous) as undifferentiated homogenous unit Inhomogenous Data distribution: Very little information available in NE Imaginary faults and formations with no effect on the model to terminate infinite faults Rounded structures instead of abrupt boundries Slide 31 Gravity anomaly: The local deviation from the theoretical value of the gravity on the surface of a homogenous reference ellipsoid (e.g. WGS 84) Bouguer anomaly: The effects of the gravity anomaly that have been caused by different densities in the underground Gravity forward modelling Definitions Slide 32 On the basis of absolute gravity values g from Swiss, German and French gravity stations the Bouguer anomaly was calculated with following formula: Gravity forward modelling Calculation of the Bouguer anomaly Measured gravity Free air correction (altitude) Surface correction Theoretical gravity value of reference ellipsoid + Slide 33 Gravity forward modelling Bouguer anomaly The increasing negative anomaly towards the south originates from the alpine depression of the Moho Slide 34 Gravity forward modelling Residuals [1] Positive anomaly in N [2] Negative anomaly in S [3] Inhomogenous Zone in SE [4] Riehen in area with strong change in gravity [5] Sediments and faults of the Upper Rhine Graben 1 5 4 1 3 2 Slide 35 Gravity forward modelling Forward modelling with Geomodeller Slide 36 Gravity forward modelling Misfit of forward modelling with Residuals Strong misfit in north (positive) and in south (negative) Possible Explanations Permo-.............. Carboniferous Igneous.... Intrusions Old tectonic.. Struktures in.... basement Slide 37 Gravity forward modelling Dotted Lines = Permocarboni- ferous trenches according to Ustazewsky [2004] Slide 38 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler Rsum 1.No fluid circulation occurred during the tracer test. 2.Two different models of a regional flow system have been proposed to explain the absence of fluid circulation during the tracer test 3.The infinite fault network in Geomodeller had to be modelled with imaginary faults 4.The comparison of the forward modelling with the residuals show that current geological concepts agree only in part with the gravimetric field results. 5.There is a strong change in gravity in the area of the geothermal reservoir of Riehen. Slide 39 Bibliography SRTM-Daten: Daten der Shuttle Radar Topography Mission. US Geological Survey. http://seamless.usgs.gov Adams, M. C. & Davis, J., 1991. Kinetics of Fluorescein Decay and its Application as a Geothermal Tracer. In: Geothermics, Vol. 20: 53-66 Aug, C., 2004. Modlisation Gologique 3D et Characterisation des Incertitudes par la Mthode du Champ de Potentiel. PhD, ENSMP, Paris. Bitterli-Brunner, P. & Fischer, H., 1988. Erlauterungen zum Geologischen Atlas der Schweiz 1:25000, Map 1067 Arlesheim, 66 pp., Landeshydrologie und -geologie. Dresmann, H., 2010. Datenlieferung an die Universitt Neuenburg: GoCad-model, 4x4 km. Angewandte und Umweltgeologie, Universitt Basel. Baugrundarchiv (BGA), Riehen 20, 23. Februar 2010. Fischer, H., Hauber, L. & Wittmann, O., 1971. Erluterungen zum Geologischen Atlas der Schweiz, 1:25000, Map 1047 Basel, Landeshydrologie und -geologie. Hauber, L., Brumann, O., Schneider, A., Vgtli, B. & Wittwer, H., 1989. Geothermische Tiefbohrungen Riehen 1 und 2; Geologischer und Technischer Bericht. Baudepartement Basel Stadt, Gemeinde Riehen. Grler B., Hauber L. & Schwander M., 1987. Die Geologie der Umgebung von Basel. Beitrge zur Geologischen Karte der Schweiz. Laujanie, C., Courrioux, G., & Manuel, L. 1997. Foliation Fields and 3D Cartography in Geology: Principles of a Method Based on Potential Interpolation. Mathematical Geology, 29, 571584. Mller, W.H., Huber, M., Isler, A. & Kleboth, P., 1984. Geologische Karte der zentralen Nordschweiz 1:100 000 mit Erluterungen. Nagra NTB 8425. Signorelli, S. & Kohl, T., 2006. Geothermischer Ressourcenatlas der Nordschweiz - Gebiet des nrdlichen Schweizer Mittellandes. Schweizerische Geophysikalische Kommission (Beitrge zur Geologie der Schweiz: Geophysik, Nr. 39). Putz, M., Stwe, K., Jessel, M., & Calcagone, P., 2004. Interpreting Stage Warping Events Using 3D Simulation: An Example from the Plattengneis Shear Zone, Eastern Alp. Bolletino di Geofisica Teorica ed Applicata (GeoMod Proceedings), 45, 126 182. Slide 40 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Philip Klingler Thank you for your attention! Slide 41 28 Octobre 2010 Characterisation of the geothermal reservoir Riehen: 3D structure and tracer-test Aufbau Philip Klingler Abb.: Residuals mit einem Butterworth-Filter mit einer Grenzwellenlnge von 50 km. Grulich berzogen sind die Gebiete, wo sich gemss Ustazewsky [2004] Permokarbon-Trge befinden sollten. Ihre Isopachen sind mit der den gepunkteten Linien erkennbar.