28
PHENIX Spin Program Recent results A.Bazilevsky Brookhaven National Laboratory for the PHENIX Collaboration XXXXth Rencontres de Moriond - March 12- 19, 2005 QCD and Hadronic interactions at high energy

PHENIX Spin Program Recent results A.Bazilevsky Brookhaven National Laboratory for the PHENIX Collaboration XXXXth Rencontres de Moriond - March 12-19,

Embed Size (px)

Citation preview

PHENIX Spin ProgramRecent results

A.Bazilevsky Brookhaven National Laboratoryfor the PHENIX Collaboration

XXXXth Rencontres de Moriond - March 12-19, 2005       QCD and Hadronic interactions at high energy

Proton Spin Structure

pzLG

2

1

2

1Spin zLG

2

1

2

1

Quark Spin Gluon Spin

Orbital Angular Momentum

sdusdu

Polarized DIS: contribution of quarks to proton spin is amazingly small 0.25

Main candidate to carry proton spin - Gluons

Gluon polarization (G) remains poorly constrained G measurements – main RHIC-Spin goal

Polarised PDFAsymmetry Analysis Collaboration

M. Hirai, S. Kumano and N. Saito, PRD (2004)

• Valence Dist’s are determined well

• Sea Distribution poorly constrained

• Gluon can be either pos, 0, neg!

PHENIX Spin Program

Prompt Photon LLA (gq X)

Transverse Spinu u d d , , ,

u u d d

Flavor decomposition

GGluon Polarization

L lA (u d W ) T

,

A p p ( , ) X

I nterference fragmentation:

:Transversity q

NSingle Asymmetries A

Production LLA (gg,gq X) W Production

L lA (u d W )

Heavy Flavors LLA (gg cc,bb X)

TTDrell Yan A

Utilizing high energy polarized proton beams of RHIC

RHIC as polarized proton collider

BRAHMS & PP2PP (p)

STAR (p)

PHENIX (p)

AGS

LINACBOOSTER

Pol. Proton Source500 A, 300 s

GeVs

L

50050

onPolarizati%70

cms102 2132max

Spin Rotators

Partial Siberian Snake

Siberian Snakes

200 MeV Polarimeter AGS Internal PolarimeterRf Dipoles

RHIC pC PolarimetersAbsolute Polarimeter (H jet)

2 1011 Pol. Protons / Bunch = 20 mm mrad

RHIC accelerates heavy ions to 100 GeV/A and polarized protons to 250 GeV

Spin Running at RHIC-PHENIX

Run2: 2001-2002– Transversely polarized p+p collisions– Average polarization of ~15%– Integrated luminosity 0.15 pb-1

Run3: 2003– Longitudinally polarized p+p collisions

achieved– Average polarization of ~27%– Integrated luminosity 0.35 pb-1

Run4: 2004– Longitudinally polarized p+p collisions – Polarization of ~40-45%– Integrated luminosity 0.15 pb-1

Run5: starting next month– Expected Longitudinally

polarized p+p collisions – Expected P ~ 50%– Expected L > 10 pb-1

0 Cross Section in pp at s=200 GeV

9.6% normalization error not shown

Phys. Rev. Lett. 91, 241803 (2003) NLO pQCD consistent with data

within theoretical uncertainties• PDF: CTEQ5M• Fragmentation functions:

• Kniehl-Kramer-Potter (KKP)Kniehl-Kramer-Potter (KKP)• Kretzer

• Spectrum constrains D(gluon) fragmentation function

Important confirmation that pQCD can be used to extract spin dependent pdf’s.

• Same comparison fails at lower energies

)()()( /// hchbBbaAa zDdxfxfdcdab

||<0.35

0 ALL

PreliminaryPRL 93, 202002

0 ALL small (or consistent with zero)

L

LR

RNN

RNN

PPALL ;

||

1

21

(P) Polarization (R) Relative Luminosity(N) Number of pi0s

0 ALL: G constrain

gqgq G

G

q

q

qqqq q

q

q

q

gggg G

G

G

G

Fractional contribution to pp0X at s=200 GeV at mid-rapidity

0 production at low/moderate pT’s is sensitive to gluon distribution

0 ALL: G constrain

Note considerable contribution of soft physics in the lowest pT point (50%)

Comparison with theory: GRSV-std

21-24% (pT>1 GeV/c)27-29% (pT>2 GeV/c)

GRSV-max0.00-6% (pT>1 GeV/c)0.01-13% (pT>2 GeV/c)

Run3+4

Consistent with GRSV-stdLess consistent with GRSV-max

B.Jager et al., PRD67, 054005 (2003)

This is the first constrain of gluon polarization using strongly interacting probes; the current sensitivity is comparable to the world set of polarized DIS data

Prompt photons and G

NLO pQCD describes data well can be used to interpret ALL() ALL() needs large luminosity: results expected in 2007-08

• Gluon Compton Dominates– At LO no fragmentation function– Small (15%) contamination from annihilation

2i i 2

i u,d,s

2i i 2

i u,d,s

LL1

1LL

e f (xg(

)

e f (A

x )a (gq

x )

g(x )q )

pol-DIS theory

Unpol. cross section

||<0.35

Transverse Single-Spin Asymmetries • Observed in 0 production at

forward region (E704, STAR)

– Increase with xF

• Origin of AN

– Transversity Spin-dep fragmentation (Collins effect)

– Intrinsic-kT imbalance (Sivers effect)

– Higher-twist effects– Or combination of above

NAleft

rightAN at mid-rapidity (||<0.35)

AN for both charged hadrons and neutral pions consistent with zero.

Future

200910: q-bar from W AL

200507: G from 0 ALL

200708: G from ALL

Summary• RHIC has been successful as the world’s first polarized proton

collider, opening up new kinematic regions for investigating the spin of the proton

• The first spin results from PHENIX are out and stimulating discussion within the theoretical community– AN of neutral pions and non-identified charged hadrons– ALL of neutral pions

Many more years of exciting data and results to look forward to!

• Spin physics at PHENIX planned for 2005 and beyond– Measure gluon polarization via direct photon double longitudinal

asymmetry– Probe gluon polarization from heavy flavor production (gg fusion) via

electrons – Probe polarization of sea quarks via W boson single longitudinal asymmetry

Backup slides

USA Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN

Brazil University of São Paulo, São PauloChina Academia Sinica, Taipei, Taiwan China Institute of Atomic Energy, Beijing Peking University, BeijingFrance LPC, University de Clermont-Ferrand, Clermont-Ferrand Dapnia, CEA Saclay, Gif-sur-Yvette IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau SUBATECH, Ecòle des Mines at Nantes, NantesGermany University of Münster, MünsterHungary Central Research Institute for Physics (KFKI), Budapest Debrecen University, Debrecen Eötvös Loránd University (ELTE), Budapest India Banaras Hindu University, Banaras Bhabha Atomic Research Centre, BombayIsrael Weizmann Institute, RehovotJapan Center for Nuclear Study, University of Tokyo, Tokyo Hiroshima University, Higashi-Hiroshima KEK, Institute for High Energy Physics, Tsukuba Kyoto University, Kyoto Nagasaki Institute of Applied Science, Nagasaki RIKEN, Institute for Physical and Chemical Research, Wako RIKEN-BNL Research Center, Upton, NY University of Tokyo, Bunkyo-ku, Tokyo Tokyo Institute of Technology, Tokyo University of Tsukuba, Tsukuba Waseda University, Tokyo S. Korea Cyclotron Application Laboratory, KAERI, Seoul Kangnung National University, Kangnung Korea University, Seoul Myong Ji University, Yongin City System Electronics Laboratory, Seoul Nat. University, Seoul Yonsei University, SeoulRussia Institute of High Energy Physics, Protovino Joint Institute for Nuclear Research, Dubna Kurchatov Institute, Moscow PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg St. Petersburg State Technical University, St. PetersburgSweden Lund University, Lund

12 Countries; 57 Institutions; 460 Participants

PHENIX Detector

• Central Arms: ||<0.35, =2900

Charged particle ID and tracking; photon ID

• Muon Arm:1.2<||<2.4Muon ID and tracking

• Global Detectors Collision triggerCollision vertex characterizationRelative luminosityLocal Polarimetry

Philosophy: High rate capability & granularity Good mass resolution and particle ID Sacrifice acceptance

G: other experiments

GRSV-max

GRSV-std

HERMES

SMC

PHENIX x-range

Theory curves from W.Vogelsang

HERMES: high pt hadron pairs (PRL84, 2584, 2000)

Consistent with both GRSV-max and GRSV-std

SMC: high pt hadron pairs (hep-ex/0402010)

Consistent with GRSV-std

PHENIX: 0 ALL

Consistent with GRSV-std

So far all results are consistent with GRSV-std

G: Prompt Photons ALL

Statistics with full design luminosity and polarization ( Ldt=320 pb-1, P=70% )

prompt photon

GS95xG

x

GRSV: Frixione and Vogelsang, Nucl. Phys. B568:60 (2000)

GS95: Gehrmann and Stirling, PRD53, 6100 (1996)

AN

PRL 92 (2004) 171801

GeV 200at sXpp GeV 4.19at sXpp

E704

G: Heavy Flavor

Provides more independent G measurements in PHENIX» Helps control experimental and theoretical systematic errors

» Different channels cover different kinematic regions

bbeX

direct

cceX

H. Sato

gg QQA BLL LL

A B

G(x ) G(x ) ˆA aG(x ) G(x )

Decay channels:» e+e-, +-, e, e, , eD, D

Open heavy flavor productionOpen heavy flavor production

Flavor DecompositionDrell-Yan production of lepton pairs

– Maximal parton level asymmetry: aLL= -1 – Possible severe background from semi-leptonic

decays of open charm productions

qq qqA BLL LL

A B

q(x ) q(x )ˆA a

q(x ) q x

W production» Produced in parity violating V-A process

— Chirality / helicity of quarks defined» Couples to weak charge

— Flavor almost fixed: flavor analysis possible— Flavor ID reduces uncertainty in current pol-PDF models.

» PHENIX-Muon Arms

W a b a bL

a b a b

u(x )d(x ) d(x )u(x )A

u(x )d(x ) d(x )u(x )

W Production

x1>>x2: AL(W+) → u/u(x1) _x2>>x1: AL(W+) → - d/d(x1)

W

Z

800 pb-1

W dominates for muon pT>20 GeV/c

quark x from parton kinematics

PHENIX Local Polarimeter

SMD

Forward neutron transverse asymmetry (AN) measurements SMD (position) + ZDC (energy)

ZDC

Vertical ~ /2Radial ~ 0Longitudinal no asymmetry

distribution

Neutron Asymmetry

» Unexpectedly large asymmetry foundUnexpectedly large asymmetry found» EMCal & ZDC results are consistentEMCal & ZDC results are consistent

Y. Fukao

Upgrades

•Upgrades•Muon Trigger for W Bosons

•Measure sea quark polarization•Nose Cone Calorimeter

+ jet G, extends x-range•Silicon Vertex Tracker

•heavy flavor and jet reconstruction

Silicon Vertex Detector

13cm

20cm

Barrel: Two layers of pixels (2.5, 5cm) Two layers of strips (~10, 14cm)

Endcap: Four sets of mini-strip lampshades

Physics with Silicon VTX• Jet-axis for photon+jet-axis constraint on x

• ce, displaced vertex low-x S/B, DKhigh-x

• bdisplaced J/low/high-x, be, displaced vertexhigh -x