1
 By considering the joint probability distribution of 4 fields we have obtained an analytical expression for the correlation of the phase first derivative as a function of the field correlation function: And hence, the cumulative phase correlation function: Generating Transducer Hydrophone   Detector Fluidized Bed Liquid Flow Glass  Beads Distributor p-1 p p+1 p+2 p p+1 k p k p - 1  k p + 1 r p  (0) r p + 1  (0) r p+1  (τ) r (τ) • Setup: 0 5 10 15 20 25 30 35 -1 0 1 NORMALIZED FIELD TRANSIT TIME ( μs) -0.04 0.00 0.04 TRANSMITTED t S TRANSMITTED INPUT τ = 0 s τ = 0 s  FIELD PHASE AMPLITUDE  τ = .75 s TRANSIT TIME ( μs) τ = .75 s - π - π - π π π π 0 0 0 τ = 0 s τ = .75 s 17.5 18.0 18.5 17.5 18.0 18.5 τ = 1.5 s 17.5 18.0 18.5 τ = 1.5 s τ = 1.5 s • Experiment: By repeating this procedure for each pulse iwe measure the scattered field Ψ(t,τ), amplitude A(t,τ), wrapped phase Φ(t,τas a function of  “Field time” t – the propagation time of the pulse in the medium (μs) and “Fluctuation time” τ (= i×t rep –  the time scale of the dynamics (ms  s). Fit independent test for circular gaussian statistics Phase Statistics Phase Statistics   in disordered media in disordered media     Applications to acoustics and seismology D. Anache-Ménier , B. A. van Tiggelen (LPMMC, Grenoble), J. Page (Univ Manitoba), L. Margerin, P. Roux (LGIT, Grenoble) Application to ultrasound acoustics Application to seismology Web:  http://lpm2c.grenoble.cnrs.fr/People/Anache/ Complex scalar field: Sum of partial waves: References: [1] A.Z. Genack, A.A. Chabanov, P.Sebbah and B.A. van Tiggelen, Waves in random media, Encyclopedia of Condensed Matter Physics (2005, Elsevier), p 307-317. [2] M.L. Cowan, I.P. Jones, J.H. Page, and D.A. Weitz. Diffusing acoustic wave spectroscopy. Physical Review E, 65, June 2002. [3]  B. A. van Tiggelen, D. Anache et A. Ghysels, Role of Mean Free Path in Spatial Phase Correlation and Nodal Screening, Europhys. Lett. 74 999, 2006 . [4] P. Sebbah, O.Legrand, B.A van Tiggelen, A.Z. Genack, Statistics of the cumulative phase of microwaves in random media, Phys. Rev. Lett. E. 56, 1996. Conclusion: We studied theoretically the CGS statistics at higher order. Experiments extremely well modelled by circular gaussian statistics. Phase allows to investigate the dynamics of such strongly scattering materials at short and long time scales; provides more accurate information than the more traditional field correlation measurements. We currently study seismic data recorded at the Piñon Flat Observatory in California. Hope to measure the mean free path in the crust. Asymptotic power law decay Phase statistics  1  1  3 By considering the joint probability distribution of 4 fields we have obtained an analytical expression for the joint probability distribution of the first 3 derivatives: 3 fiting parameters Q R and S that depend in turn to derivatives of the field correlation function: Phase Correlations  2D: exponential decay toward the saymptotic value: -  3D: The asymptotic value varies logarithmically with    [3]  Unwrapped phase correlation: Circular gaussian statistics: after a few mean free path phase becomes random and partial waves become independent so aplying central limit theorem: Gaussian hypothesis source where the index denotes different times, position or frequencies. Direct consequences:   No more oscillations  mean free path= caracteristic length scale, new oportunity to measure the scattering mean free path.  Exponential decay due to multiple scattering  Oscillation on the scale of the wavelength originate from a superposition of plane waves incident with arbitrary directions but with equal amplitude. • Phase correlation and measure of the mean free path: Field correlation function: Correlation function of the phase derivative with respect to position: Probe of the early time behaviour of the particule motion: μDAWS t x τ / = with • Statistics of phase derivatives up to the 6 th  power in time with evolution time: DAWS field correlation function[2]: • Phase correlation: 0.1 1 10 1E-4 1E-3 0.01 0.1 1  EXPERIMENT  THEORY (no crossover)  THEORY ( t c  = 10 τ DAWS )  THEORY ( t c  =  7 τ DAWS )  THEORY ( t c  =  5 τ DAWS ) τ  / τ DAWS   C Φ  τ  2 DAWS 0.1 1 10 1E-4 1E-3 0.01 0.1 1  EXPERIMENT  THEORY (no crossover)  THEORY (t c  = 10τ DAWS )  THEORY (t c  =  5τ DAWS )  THEORY (t c  =  4τ DAWS ) τ  / τ DAWS   C Φ  τ  2 DAWS  m=1/2  Ballistic-stop crossover model: m=1 2 2 2 2 1 () m c rel rel V r 0 2 4 6 8 10 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  EXPERIMENT (error bars are                standard error for 9 trials)  THEORY ( τ c  = 10 τ DAWS )  THEORY ( τ c  = 7 τ DAWS )  THEORY ( τ c  = 5 τ DAWS )   < Φ C (- τ /2) Φ C ( τ /2)> τ  / τ DAWS Good overall agreement, need the cumulative correlation function to discriminate between the two crossover models A superposition of waves scattered by a disordered medium gives rise to a speckle pattern. It has already been shown that field correlations and intensity could provide information on the scatterers. Our motivation to study phase are the following: it is a genuine property of wave,  it provides additional information, there is no need to normalize the field with respect to the sensivity of sensors or to the source magnitude and finally, contrary to optics, in seismology, ultrasound acoustics and microwaves it is possible to measure the field directly; the wave length allows to compute the phase quite easily. Congrès général de la Société Française de Physique – 9-13 Juillet 2007  Phase statistics: Lamb waves scattered by cylindrical holes in a 2m 2  plexiglass plate: Setup: Preliminary results: k=111,8m -1 l=1,4m From the fitting parameters Q and R we can calculate: Good agreement betwenn theory and experiment.

Phase Statistics in disordered media - Centre national de ...lpm2c.grenoble.cnrs.fr/UserFiles/File/posterSFP07Anache.pdf · oportunity to measure the scattering mean free path. Exponential

Embed Size (px)

Citation preview

Page 1: Phase Statistics in disordered media - Centre national de ...lpm2c.grenoble.cnrs.fr/UserFiles/File/posterSFP07Anache.pdf · oportunity to measure the scattering mean free path. Exponential

   

By considering the joint probability distribution of 4 fields we have obtained an analytical expression for the correlation of the phase first derivative as a function of the field correlation function:

And hence, the cumulative phase correlation function:

GeneratingTransducer

Hydrophone  Detector

Fluidized Bed

Liquid Flow

Glass  Beads

Distributor

p­1p

p+1

p+2

p

p+1kp

kp ­ 1

 kp + 1

rp (0)rp + 1 (0)

∆rp+1 (τ)∆rp (τ)

• Setup:

0 5 10 15 20 25 30 35

­1

0

1

NO

RM

AL

IZE

D  

FIE

LD

T R A N S IT  T IM E  (µs)

­0 .04

0 .00

0.04T R A N S M IT T E D

tS

T R A N S M IT T E DIN P U T

τ =  0  s τ =  0  s

 

FIE L D PH A SEA M P L IT U D E

 

τ =  .75  s

TR A N SIT  TIM E (µs)

τ =  .75  s

­π

­π

­π

π

π

π

0

0

0

τ =  0  s

τ =  .75  s

17.5 18.0 18.5 17.5 18.0 18.5

τ =  1 .5  s

17.5 18.0 18.5

τ =  1 .5  s

τ =  1 .5  s

• Experiment:By repeating this procedure for each pulse i, we measure the

scattered field Ψ(t,τ), 

amplitude A(t,τ),

wrapped phase Φ(t,τ) 

as a function of “Field time” t – the propagation time of the pulse in the medium (µs) and

“Fluctuation time” τ (= i×trep ) –  the time scale of the dynamics (ms → s).  

Fit independent test for circular gaussian statistics 

Phase StatisticsPhase Statistics  in disordered mediain disordered media    Applications to acoustics and seismology

D. Anache­Ménier, B. A. van Tiggelen (LPMMC, Grenoble), J. Page (Univ Manitoba),

L. Margerin, P. Roux (LGIT, Grenoble)

Application to ultrasound acoustics Application to seismology

Web: http://lpm2c.grenoble.cnrs.fr/People/Anache/

Complex scalar field:

Sum of partial waves:

References:[1] A.Z. Genack, A.A. Chabanov, P.Sebbah and B.A. van Tiggelen, 

Waves in random media, Encyclopedia of Condensed Matter Physics (2005, Elsevier), p 307­317.

[2] M.L. Cowan, I.P. Jones, J.H. Page, and D.A. Weitz. Diffusing acoustic wave spectroscopy. Physical Review E, 65, June 2002.

[3]  B. A. van Tiggelen, D. Anache et A. Ghysels, Role of Mean Free Path in Spatial Phase Correlation and Nodal Screening, Europhys. Lett. 74 999, 2006 .

[4] P. Sebbah, O.Legrand, B.A van Tiggelen, A.Z. Genack, Statistics of the cumulative phase of microwaves in random media, Phys. Rev. Lett. E. 56, 1996.

Conclusion:We studied theoretically the CGS statistics at higher order.

Experiments extremely well modelled by circular gaussian statistics.

Phase allows to investigate the dynamics of such strongly scattering materials at short and long time scales; provides more accurate information than the more traditional field correlation measurements. 

We currently study seismic data recorded at the Piñon Flat Observatory in California.

Hope to measure the mean free path in the crust.

Asymptotic power law decayPhase statistics

• 1

• 1

• 3

By considering the joint probability distribution of 4 fields we have obtained an analytical expression for the joint probability distribution of the first 3 derivatives: 

3 fiting parameters Q R and S that depend in turn to derivatives of the field correlation function:

Phase Correlations

 2D: exponential decay toward the saymptotic value: ­ 3D: The asymptotic value varies logarithmically with         [3]

• Unwrapped phase correlation:

Circular gaussian statistics: after a few mean free path phase becomes random and partial waves become independent so aplying central limit theorem:

Gaussian hypothesis

source

where the index denotes different times, position or frequencies. 

Direct consequences: 

 No more oscillations mean free path= caracteristic length scale, new oportunity to measure the scattering mean free path.

 Exponential decay due to multiple scattering Oscillation on the scale of the wavelength originate from a superposition of plane waves incident with arbitrary directions but with equal amplitude.

• Phase correlation and measure of the mean free path:

Field correlation function:

Correlation function of the phase derivative with respect to position:Probe of the early time behaviour of the particule motion:

µm² DAWStx τ/=with

• Statistics of phase derivatives

up to the 6th power in time

with evolution time: DAWS field correlation function[2]:

• Phase correlation:

0 .1 1 101E ­4

1E ­3

0 .01

0 .1

1

 E X P E R IM E N T T H E O R Y  (no  cro ssover) T H E O R Y  (t

c =  1 0τ

D AW S)

 T H E O R Y  (tc =   7τ

D AW S)

 T H E O R Y  (tc =   5τ

D AW S)

τ / τD A W S

 

 

'  τ 2

DA

WS

0.1 1 101E ­4

1E ­3

0 .01

0 .1

1

 E X P E R IM E N T T H E O R Y  (no  crossover) T H E O R Y  ( t

c =  10τ

D A W S)

 T H E O R Y  ( tc =   5τ

D AW S)

 T H E O R Y  ( tc =   4τ

D AW S)

τ / τD A W S

 

 

'  τ 2

DA

WS

 m=1/2

 Ballistic­stop crossover model: m=1

2

2 22

1( ) m

c

relrel

Vr

0 2 4 6 8 1 0­0 .5

­0 .4

­0 .3

­0 .2

­0 .1

0 .0 E X P E R IM E N T  (e rro r  b a rs  a re  

                        s ta n d a rd  e rro r  fo r 9  tr ia ls ) T H E O R Y  (τ

c =  1 0 τ

D A W S)

 T H E O R Y  (τc =  7 τ

D A W S)

 T H E O R Y  (τc =  5 τ

D A W S)

 

 

C(­

τ /2

)  Φ

C(τ

 /2

)>

τ  /τD A W S

Good overall agreement, need the cumulative correlation function to discriminate between the two crossover models

A superposition of waves scattered by a disordered medium gives rise to a speckle pattern. It has already been shown that field correlations and intensity could provide information on the scatterers. Our motivation to study phase are the following: it is a genuine property of wave,  it provides additional 

information, there is no need to normalize the field with respect to the sensivity of sensors or to the source magnitude and finally, contrary to optics, in seismology, ultrasound acoustics and microwaves it is possible to measure the field directly; the wave length allows to compute the phase quite easily. 

Congrès général de la Société Française de Physique – 9­13 Juillet 2007

• Phase statistics:Lamb waves scattered by cylindrical holes in a 2m2 plexiglass plate:

Setup:

Preliminary results:

k=111,8m­1

l=1,4m

From the fitting parameters Q and R we can calculate:

Good agreement betwenn theory and experiment.