66
Drugs / Medication List Pharmacology And Therapeutics (Spring Term) Drug Name Action Use Reference ATROPINE Peripherally Acting Muscarinic Antagonist – HEART RATE (Antimuscarinic Drug) After myocardial infarction (where there is typically a lot of reflex vagus activity which depresses the heart activity/HR, and is therefore reversed by atropine) P&T Spring Lecture 1 IPRATROPIUM (bd, td) TIOTROPIUM (od) Peripherally Acting Muscarinic Antagonist – BRONCHI (Antimuscarinic Drug) The drugs used to modify bronchial function in clinical practice. Ideally administered via inhalation because: 1. Drug directed to the target tissue 2. By directly targeting bronchial tissue, a lower dose is required so fewer systemic effects. Clinically useful in conditions such as ASTHMA and COPD. OXYBUTYNIN TOLTERODINE Peripherally Acting Muscarinic Antagonist – BLADDER (Antimuscarinic Drug) Useful to modify bladder function. Tolterodine is relatively specific to bladder β 2 receptors than other drugs (like atropine). Clinically useful in: OVERACTIVE BLADDERS URINARY FREQUENCY INCONTINENCE The drug tightens the sphincter (increased sympathetic, decreased parasympathetic control), so decreased leakage. However, these drugs do not work on stress incontinence (i.e. increased intraabdominal pressure).

Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Embed Size (px)

Citation preview

Page 1: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Drugs  /  Medication  List    

Pharmacology  And  Therapeutics  (Spring  Term)  

Drug  Name   Action   Use   Reference  

ATROPINE   Peripherally  Acting  Muscarinic  Antagonist  –  HEART  RATE  

(Antimuscarinic  Drug)  

 

After  myocardial  infarction  (where  there  is  typically  a  lot  of  reflex  vagus  activity  which  depresses  the  heart  activity/HR,  and  is  therefore  reversed  by  atropine)    

P&T  Spring  Lecture  1  

IPRATROPIUM  (bd,  td)  

TIOTROPIUM  (od)    

Peripherally  Acting  Muscarinic  Antagonist  –  BRONCHI  

(Antimuscarinic  Drug)  

 

The  drugs  used  to  modify  bronchial  function  in  clinical  practice.    

Ideally  administered  via  inhalation  because:  

1. Drug  directed  to  the  target  tissue  2. By  directly  targeting  bronchial  tissue,  a  lower  dose  is  

required  so  fewer  systemic  effects.  

Clinically  useful  in  conditions  such  as  ASTHMA  and  COPD.    

OXYBUTYNIN  

TOLTERODINE  

Peripherally  Acting  Muscarinic  Antagonist  –  BLADDER  

(Antimuscarinic  Drug)  

 

Useful  to  modify  bladder  function.  

Tolterodine  is  relatively  specific  to  bladder  β2  receptors  than  other  drugs  (like  atropine).  

Clinically  useful  in:  

• OVERACTIVE  BLADDERS  • URINARY  FREQUENCY  • INCONTINENCE  

The  drug  tightens  the  sphincter  (increased  sympathetic,  decreased  parasympathetic  control),  so  decreased  leakage.  

However,  these  drugs  do  not  work  on  stress  incontinence  (i.e.  increased  intra-­‐abdominal  pressure).    

Page 2: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

TROPICAMIDE   Peripherally  Acting  Muscarinic  Antagonist  –  EYE  

(Antimuscarinic  Drug)  

 

GLAUCOMA  

DILATION  OF  THE  PUPILS  

Tropicamide  is  a  diagnostic  drug  which  is  designed  for  use  only  in  the  eye.    

P&T  Spring  Lecture  1  

ADVERSE  EFFECTS  OF  ALL  ANTIMUSCARINIC  DRUGS  GIVEN  SYSTEMICALLY:  

• Dry  mouth  (most  commonest  symptom)  • Erectile  dysfunction  • Bronchodilation  (perhaps  good  side  effect?)  • Constipation  • ‘Too  Good’  Sphincter  –  Decreased  detrussor  activity  so  increased  urinary  bladder  retention  • Dry  Eyes  • Blurred  vision  • Increased  intraocular  pressure  

 

HYOSCINE   Centrally  Acting  Muscarinic  Antagonist  

(Antimuscarinic  Drug)  

 

Acts  in  the  BRAIN.  

Hyoscine  is  similar  to  atropine,  but  more  sedating.  Widely  used  in  travel/sea-­‐sickness  (labyrinthine  sedative).    

P&T  Spring  Lecture  1  

BENZHEXOL   Centrally  Acting  Muscarinic  Antagonist  

(Antimuscarinic  Drug)  

 

Used  as  to  treat  Parkinson’s  Disease    

     

Page 3: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Angiotensin  Converting  Enzyme  Inhibitors  

(e.g.  ENALAPRIL,  LISINOPRIL)  

Angiotensin  Converting  Enzyme  Inhibitors  

(ACE-­‐Inhibitors  /  ACEI)  

 

These  inhibit  the  somatic  form  of  the  ACE  enzyme,  so  prevent  the  conversion  of  angiotensin  I  into  angiotensin  II.  

Uses:  

• Hypertension  • Heart  failure  • Post-­‐myocardial  infarction  • Diabetic  neuropathy  • Progressive  renal  insufficiency  • Patients  at  high  risk  of  cardiovascular  disease.  

Side  Effects:  

• Cough  • Hypotension  • Urticaria  /  Angioedema  • Hyperkalaemia  (Contraindications  –  take  care  if  the  

patient  is,  or  may  be  prescribed,  K+  supplements  or  K+  sparing  diuretics  which  may  further  increase  blood  K+  levels)  

• Foetal  Injury  • Renal  failure  in  patients  with  renal  artery  stenosis  

(secondary  to  fall  in  bp)    

P&T  Spring  Lecture  2  

Angiotensin  Receptor  Blockers  

(e.g.  LOSARTAN,  IRBESARTAN)  

Angiotensin  Receptor  Blockers  

(ARB/AIIA)  

Acts  as  antagonists  of  the  Type  I  Receptors  (AT1)  receptor  for  angiotensin  II.  

This  prevents  the  renal  and  vascular  actions  of  angiontensin  II.  

They  are  widely  used  in  hypertension  as  an  alternative  to  ACEI  (fewer  side  effects),  and  are  used  in  chronic  heart  failure  patients  who  cannot  tolerate  ACEI.  

Uses:  

• Similar  to  ACEI  • Alternative  therapeutic  intervention  

Page 4: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Side  Effects:  

• Hypotension  • Hyperkalaemia  (Contraindications  –  take  care  if  the  

patient  is,  or  may  be  prescribed,  K+  supplements  or  K+  sparing  diuretics  which  may  further  increase  blood  K+  levels)  

• Foetal  Injury  • Renal  Failure  in  patients  with  renal  artery  stenosis  

(secondary  to  a  fall  in  bp,  meaning  a  reduced  renal  perfusion)    

Direct  Renin  Antagonist  

(e.g.  ALISKIREN)  

Direct  Renin  Antagonist   • Inhibits  the  enzyme  activity  of  renin,  so  prevents  the  conversion  of  angiotensinogen  into  angiotensin  I  

• Ultimately  prevents  the  formation  of  angiotensin  II  • New  class  of  agents  

 

P&T  Spring  Lecture  2  

     

Page 5: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

 

PHENYLALKYLAMINES  (e.g.  Verapamil)  

Calcium  Channel  Blockers  (CCB)  

Rate  Slowing  Calcium  Antagonists  

Cardiac  and  Smooth  Muscle  Actions  

• Reduce  Ca2+  entry  into  cardiac  and  smooth  muscle  cells  

• Negative  inotropy  effects  (decrease  contractility)  • Inhibits  AV  Node  Conduction  

Uses:  

• HYPERTENSION  • ANGINA  • Treating  Paroxysmal  SVT  (Tachycardia  originating  

above  the  ventricular  tissue)  • Atrial  Fibrillation  

Unwanted  Actions:  

• Bradycardia  and  AV  Block  • Worsening  of  Heart  Failure  • Constipation  

Negative  Ionotropic  Effect:  Verapamil  >  Ditiazem    

P&T  Spring  Lecture  2  

BENZOTHIAZEPINES  (e.g.  Diltiazem)  

Calcium  Channel  Blockers  (CCB)  

Rate  Slowing  Calcium  Antagonist  

Cardiac  and  Smooth  Muscle  Actions  

• Reduce  Ca2+  entry  into  cardiac  and  smooth  muscle  cells  

Uses:  

• HYPERTENSION  • ANGINA  

Unwanted  Actions:  

• Bradycardia  and  AV  Block  • Worsening  of  Heart  Failure  • Constipation  

Negative  Ionotropic  Effect:  Verapamil  >  Ditiazem    

Page 6: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

DIHYDROPYRIDINES  (e.g.  Amlodipine)  

Calcium  Channel  Blockers  (CCB)  

Non-­‐Rate  Slowing  Calcium  Antagonist  

Smooth  Muscle  Actions  Only  

• Inhibits  Ca2+  entry  into  vascular  smooth  muscle  cells  

Uses:  

• HYPERTENSION  • ANGINA  (Dihydropyridines  are  preferred  here)  

Unwanted  Actions:  

• Ankle  Oedema  • Headache/Flushing  • Palpitations  (Reflex  tachycardia)  

   

Beta  Blockers  

(β-­‐Adrenoceptor  Antagonists)  

e.g.  ATENOLOL,  BISOPROLOL,  PROPRANOLOL  

Competitive  Antagonists  of  Beta-­‐Adrenoceptors  

Atenolol  –  Selective  β1  Blocker  

Bisoprolol  –  Selective  β1  blocker  

Propranolol  –  Non-­‐Selective  β-­‐Blocker  

Uses:  

• Angina  • Post  Myocardial-­‐Infarction  • Cardiac  Dysrhythmias  • Chronic  Heart  Failure  • Hypertension  • Also  in:  

o Thyrotoxicosis  o Glaucoma  o Anxiety  States  o Migraine  o Prophylaxis  o Benign  Essential  Tumour  

Mechanism  of  Action:  

• Competitive  antagonist  of  Beta  Adrenoceptors  • Many  clinically  used  agents  show  selectivity  (e.g.  

atenolol  for  B1)  

Use  in  Hypertension:  

• No  longer  1st  line  treatment  • Mechanism  not  fully  understood,  but  B1  antagonists  

P&T  Spring  Lecture  2  

Page 7: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

preferred  • They  do  not  reduce  PVR  

Effects:  

• Reduce  cardiac  output  • Reduce  renin  release  by  the  kidney  • May  diminish  NA  release  by  sympathetic  nerves  • Lipophilic  agents  (e.g.  propranolol)  exert  central  

sympatho-­‐inhibitory  actions.    

Unwanted  Actions:  

Can  be  due  to  either  the  actions  on  β1  and  sometimes  due  to  β2  in  partial  selectivity.  

• Worsening  of  cardiac  failure  • Bradycardia  (heart  block)  • Bronchoconstriction  • Hypoglycaemia  (in  diabetics  on  insulin)  • Increased  risk  of  new  onset  of  diabetes  • Fatigue  • Cold  extremities  and  worsened  peripheral  artery  

disease  • Impotence  • CNS  effects  (lipophilic  agents)  e.g.  nightmares  

 

ORGANIC  NITRATES  

(e.g.  glyceryl  trinitrate  (GTN)  and  nicorandil)  

  Mechanism  of  Action:  

• Stimulate  the  release  of  NO  in  smooth  muscle  cells  (nitrate  based  drugs)  

• Stimulate  guanylate  cyclase  (NICORANDIL)  • Causes  VASODILATION  

Uses:  

• Angina  • Acute  and  chronic  heart  failure  • BP  control  during  anaesthesia  

P&T  Spring  Lecture  2  

Page 8: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Effects:  

• Reduces  PRELOAD  (venous  return)  • Reduces  AFTERLOAD  (peripheral  resistance)  • Minor  Effects:  Antiplatelet  agents,  coronary  artery  

vasodilators  

Pharmacokinetics:  

• Nitrates  undergo  extensive  first  pass  metabolism  by  the  liver.  

• GTN  is  often  given  sublingually  for  rapid  angina  relief.  • Longer  acting  transdermal  patches  available  (e.g.  GTN  

and  isosorbide  mononitrate)  

Unwanted  Effects:  Hypotension,  headaches  and  flushing  associated  with  vasodilation.  

Excess  Use:  associated  with  tolerance.    

     

Page 9: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Anti-­‐Arrhythmic  Drugs   Treat:  SUPRAVENTRICULAR  ARRHYTHMIAS  e.g.  adenosine,  amidoarone,  dronedarone    

Verapamil  (CCB)  

ADENOSINE:  

• Used  i.v.  to  terminate  supraventricular  tachyarrhythmias  (SVT)  

• Short-­‐lived  action  (20-­‐30s)  • Safer  to  use  than  verapamil.  

Mechanism  of  Action  

• Adenosine  is  an  endogenous  mediator  produced  by  the  metabolism  of  ATP.  

• Acts  on  adenosine  receptor  (A1)  to  hyperpolarise  cardiac  tissue  and  slow  conduction  through  AV  node.  

Adverse  Effects:  

• Chest  pain  • Dyspnoea  (shortness  of  breath)  • Dizziness  • Nausea  

AMIODARONE  &  DRONEDARONE:  

• Used  in  supraventricular  and  ventricular  tachyarrhythmias  

• Complex  mechanism  of  action  –  probably  involves  multiple  ion  channel  block.  

Adverse  Effects:  

• Amiodarone  accumulates  in  the  body  (t1/2  10-­‐100d)  • Has  a  number  of  important  adverse  effects:  

o Photosensitive  skin  rashes  o Hypo-­‐  and  Hyper-­‐  thyroidism  

• Pulmonary  fibrosis  • Corneal  deposits  • Neurological  and  gastrointestinal  disturbances  

 • Dronedarone  is  non-­‐iodinated  and  less  toxic  than  

amidarone,  but  less  effective.  

P&T  Spring  Lecture  3  

Page 10: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

 

Treat:  VENTRICULAR  ARRHYTHMIAS  e.g.  flecainide,  lidocaine,  

(Amidarone,  Dronedarone)    

 

Treat:  COMPLEX  (e.g.  supraventricular  arrhythmias  and  ventricular  arrhythmias)  disopyramide  

 

 

DIGOXIN  and  CARDIAC  GLYCOSIDES  

Cardiac  Glycosides   • Digoxin  slows  ventricular  rate  in  ATRIAL  FIBRILLATION  and  relieves  the  symptoms  of  CHRONIC  HEART  FAILURE.    

• Long  t1/2  of  ~40hours  • Narrow  therapeutic  window  • An  immune  Fab  (Digibind)  is  available  for  digoxin  

toxicity.  

Mechanism  of  Action:  

• Inhibits  Na-­‐K-­‐ATPase  (Na/K  Pump)  • This  results  in  the  increased  accumulation  of  

intracellular  Na+,  so  increases  intracellular  Ca2+  (as  more  Na+  can  be  exchanged  out  of  the  cell  for  Ca2+  via  the  Na+/Ca2+  exchanger)  

 

P&T  Spring  Lecture  3  

Page 11: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

• So  POSITIVE  INOTROPIC  EFFECT.  • Central  vagal  stimulation  causes  reduced  rate  of  

conduction  through  AV  node  

Adverse  Effects:  (Common  and  severe)  

• Dysrhythmias  (e.g.  AV  Conduction  block,  ectopic  pacemaker  activity)    

• N.B.  hypokalaemia  and  hypomagnaesia  (usually  a  consequence  of  diuretic  use),  lower  the  threshold  for  digoxin  toxicity.      

IVABRADINE     Use:  

• Treating  angina  in  patients  with  normal  sinus  rhythm.  

Mechanism  of  Action:  

• Blocks  If  Channel  (f-­‐funny)  (an  Na-­‐K  channel  important  in  the  SA  node)  

• Slows  heart  rate.  

Contraindications:  

• Severe  bradycardia  • Sick  Sinus  Syndrome  • 2-­‐3rd  degree  heart  block  • Cardiogenic  Shock  • Recent  MI  

Adverse  Effects:  

• Bradycardia  • First-­‐degree  heart  block  • Ventricular  and  supraventricular  arrhythmias  

P&T  Spring  Lecture  3  

Page 12: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

CARDIAC  INOTROPES  (e.g.  Dobutamine  and  Milrinone)  

Dobutamine  –  β1  adrenoceptor  AGONIST  (with  little  effect  on  heart  rate)  

 

Milrinone  –  Phosphodiesterase  inhibitors.    Have  inotropic  effects  by  inhibiting  breakdown  of  cAMP  in  cardiac  myocytes.  

Agents  that  INCREASE  THE  FORCE  OF  CARDIAC  CONTRACTION    

Used  to  treat  acute  heart  failure  in  some  situations  (e.g.  after  cardiac  surgery  or  in  cardiogenic/septic  shock).  

Despite  increasing  cardiac  contractile  function,  so  far  all  inotropes  have  reduced  survival  in  chronic  heart  failure.  

 

 

ALPHA  BLOCKERS  (e.g.  doxazosin  and  phenoxybenzamine)  

and  SYMPATHOLYTICS  (clonidine,  moxonidine)  

Alpha  Blockers  –  antagonists  of  α1-­‐adrenoceptors      

Alpha  blockers  can  be:  

• COMPETITIVE  e.g.  dozazosin  • IRREVERSIBLE  e.g.  phenoxybenzamine  

Used  occasionally  in  combination  with  anti-­‐hypertensives  in  resistant  hypertension,  but  routine  use  has  declined  since  shown  to  be  associated  with  increased  rates  of  chronic  heart  failure.  

Phenoxybenzamine  –  combined  with  a  beta-­‐blocker,  provides  long-­‐lasting  alpha  blockade  in  catecholamine-­‐secreting  tumours  (e.g.  phaeochromacytoma)  

 

Sympatholytics  

Centrally  acting  anti-­‐hypertensive  agents  e.g.  clonidine  (α2*  adrenoceptor  agonist)  and  moxonidine  (imadazoline  agonist)  inhibit  sympathetic  outflow  from  the  brain,  and  occasionally  used  as  antihypertensive  agents.    

(*α2  is  an  inhibitory  alpha  adrenergic  receptor)  

 

P&T  Spring  Lecture  3  

Page 13: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

VASOCONSTRICTORS  

e.g.  Sumitriptan  

Sumitriptan  used  in  migrane  treatment   SUMITRIPTAN  

• Agonst  at  5HT1D  Receptor  (Serotonin  Receptor)  • Constricts  some  large  arteries  and  inhibits  trigeminal  

nerve  transmission  • Used  to  treat  migraine  attacks.  • Contraindication  in  patients  with  coronary  disease.  

Other  ergot  alkaloids  are  also  used  in  migraine  (usually  act  as  partial  agonist  of  5HT1  receptors)    

P&T  Spring  Lecture  3  

ADRENALINE   Endogenous  catecholamine   Produced  by  the  adrenal  gland,  used  in  cardiac  arrest  and  anaphylactic  shock.  

P&T  Spring  Lecture  3  

 

PROMETHAZONE  

-­‐  ANTI-­‐EMETIC  

Anti-­‐emetic  

• Acts  as  a  competitive  antagonist  at  Histaminergic  (H1),  Muscarinic  Cholinergic  (M)  and  Dopaminergic  (D2)  Receptors  

• Potency:  H1  >  M  >  D2  

 

Acts  centrally  (labyrinth,  NTS  and  vomiting  centres)  to  block  activation  of  the  vomiting  centre.  

Use  an  anti-­‐emetic  in:  

• Motion  Sickness  (Prophylaxis,  and  during  onset)  • Disorders  of  Labyrinth  (e.g.  Meniere’s)  • Hyperemesis  Gravidarium  • Pre  &  Post-­‐Operatively  (sedative  and  anti-­‐muscarinic  

effects  are  also  useful)  

Other  Uses:  

• Relief  of  allergic  symptoms  • Anaphylactic  emergency  • Night  sedation  and  insomnia  

P&T  Spring  Lecture  10  

Page 14: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Unwanted  Effects:  

• Dizziness  • Tinnitus  • Fatigue  • Sedation  • Excitation  in  excess  • Convulsions  (children  more  susceptible)  • Antimuscarinic  side-­‐effects  

Pharmacokinetics:  

• Oral  administration  • Onset  of  action  1-­‐2h  • Maximum  effect  at  around  4h  • Duration  of  action  –  24h  

 

METACLOPRAMIDE  

-­‐  ANTI-­‐EMETIC  

Primarily  Dopamine  Receptor  Antagonist  

Potency:  D2  >>  H1  >>  Muscarinic  Receptors  

• Order  of  antagonistic  potency:  D2  >>  H1  >>  Muscarinic  Receptors    

• Acts  centrally,  especially  at  the  Chemoreceptor  Trigger  Zone  (CTZ)  

 • Acts  in  the  Gastrointestinal  Tract:  

o INCREASES  SMOOTH  MUSCLE  MOTILITY  (from  oesophagus  to  small  intestine)  

o ACCELERATED  GASTRIC  EMPTYING  o ACCELERATED  TRANSIT  OF  INTESTINAL  

CONTENTS  (from  duodenum  to  ileo-­‐coecal  valve)    

NOTE  –  Care  must  be  taken  with  bioavailability  of  co-­‐administered  drugs  e.g.  adsorption  and  hence  effectiveness  of  digoxin  may  be  reduced.  Nutrient  supply  may  be  compromised  –  especially  important  in  conditions  such  as  diabetes  mellitus.        

P&T  Spring  Lecture  10  

Page 15: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

 Use:  Used  to  treat  nausea  and  vomiting  associated  with:  

• Uraemia  –  Severe  renal  failure  • Radiation  Sickness  • Gastrointestinal  Disorders  • Cancer  Chemotherapy  (high  doses)  e.g.  cisplatin  

(intractable  vomiting)    

Unwanted  Effects:  • Drowsiness  • Dizziness  • Anxiety  • Extrapyramidal  reactions:  

o Children  more  susceptible  than  adults  (Parkinsonian-­‐like  syndrome:  rigidity,  tremor  and  motor  restlessness)  

• Note:  No  Anti-­‐Psychotic  Actions  • In  the  endocrine  system:  

o Hyperprolactinaemia  o Galatorrhoea  o Disorders  of  menstruation  

Pharmacokinetic  Considerations:  • May  be  administered  orally  –  rapidly  absorbed  • Extensive  first  pass  metabolism  • May  also  be  given  intravenously  • Crosses  BBB  • Crosses  Placenta  

 

 

Page 16: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

HYOSCINE  

 -­‐  (ANTI-­‐EMETIC)  

Muscarinic  Receptor  Antagonist  (Anti-­‐Muscarinic)  Mode  of  action  

• Order  of  antagonistic  potency:  Muscarinic  >>>  D2  =  H1  Receptors  

• Acts  centrally,  especially  in  the  VESTIBULAR  NUCLEI,  NTS,  VOMITING  CENTRES  to  block  activation  of  vomiting  centres.    

Use  as  an  Anti-­‐Emetic  • Prevention  of  motion  sickness  • Has  little  effects  once  nausea/emesis  is  established  • In  operative  pre-­‐medication  

N.B  Atropine  is  less  effective    Unwanted  Effects:  

• Typical  Anti-­‐Muscarinic  Side-­‐Effects:  o Drowsiness,  Dry  Mouth  o Cyclopegia  (Paralysis  of  cilliary  muscles  of  the  

eye)  o Mydriasis  o Constipation  (not  usually  at  anti-­‐emetic  

doses)    

Pharmacokinetic  Considerations  • Can  be  administered  orally  (peak  effect  in  1-­‐2  hours)  • Intravenous  • Transdermally  

 

P&T  Spring  Lecture  10  

ONDANSETRON   5HT3  RECEPTOR  ANTAGONIST    Mode  of  action:  

• Acts  to  BLOCK  TRANSMISSION  IN  VISCERAL  AFFERENTS  and  CTZ  

 

 Use  as  an  anti-­‐emetic:  

• Main  use  in  preventing  anti-­‐cancer  drug-­‐induced  vomiting,  especially  cisplatin  

• Radiotherapy-­‐induced  sickness  • Post-­‐Operative  nausea  and  vomiting  

Unwanted  Effects:  • Headache  • Sensation  of  flushing  and  warmth  • Increased  large  bowel  transit  time  (constipation)  

Pharmacokinetic  considerations:  • Administer  Orally  • Well  absorbed,  excreted  in  the  urine.  

 

Page 17: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

 

DIURETIC:  

OSMOTIC  DIURETIC  e.g.  Mannitol  

Osmotic  Diuretics  are:  

• Pharmacologically  inert  • Filtered  by  the  glomerulus,  but  not  

reabsorbed.  • Increase  the  osmolarity  of  tubular  fluid  (and  

plasma)  so  reduce  the  osmotic  gradient.      

Therefore,  they  DECREASE  water  reabsorption  where  the  nephron  is  freely  permeable  to  water:    • Proximal  Tubule  • Descending  Limb  of  Loop  of  Henle  • Collecting  Duct  

 This  causes  a  DECREASED  H2O  REABSORPTION  and  INCREASED  H2O  EXCRETION  (There  is  also  a  small  increase  in  Na+/Cl-­‐  loss)  

 

 • Clinical  uses:  

o Prevent  ACUTE  renal  failure  (by  increase  H2O  excretion)  (urine  production  ceases)    

o Reduce  INTRA-­‐CRANIAL  PRESSURE  o Reduce  INTRA-­‐OCULAR  PRESSURE  o Increase  Plasma  Osmolarity  

 • Unwanted  Effects:  

o Increased  EXTRACELLULAR  FLUID  volume  which  can  lead  to:  

§ Hyponatraemia  (associated  with  nausea,  vomiting  and  pulmonary  oedema)  

 

 

DIURETIC  

CARBONIC  ANHYDRASE  INHIBITORS    

 

e.g.  Acetazolamine  

 Carbonic  anhydrase  inhibitors  are  weak  diuretics.  They  act  mainly  on  the  PROXIMAL  TUBULE,  to:    • Prevent  the  reabsorption  of  HCO3

-­‐  and  Na+  • H2O  reabsorption  is  therefore  reduced.  

   

Increased  delivery  of  HCO3-­‐  and  Na+  to  the  distal  tubule,  so  an  increased  K+  loss.    INCREASED  TUBULAR  FLUID  OSMOLARITY  and  DECREASED  H2O  REABSORPTION  IN  THE  COLLECTING  DUCT.    Therefore,  they  INCREASE  URINE  VOLUME  (increased  H2O  excretion  –  alkaline  urine  due  to  HCO3

-­‐)  and  K+,  Na+  and  HCO3-­‐  

Excretion    

• Clinical  Uses:  o Renal  Stones  –  Uric  Acid  o Metabolic  Alkalosis  –  Increased  HCO3

-­‐  loss  o Decreased  intraocular  pressure  

• Unwanted  Effects:  o K+  Loss  o Metabolic  Acidosis  

 

Page 18: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

DIURETIC  

LOOP  DIURETICS  

 

e.g.  Frusemide  (Furosemide)  

 Loop  Diuretics  are  POWERFUL  Diuretics  that  act  on  the  ascending  limb  of  the  loop  of  Henle.    INHIBIT  Na+  and  Cl-­‐  Reabsorption  in  the  ascending  limb  by  30%    Ca2+  and  Mg2+  Loss  -­‐  Loss  of  K+  Recycling    Therefore,  they  DECREASE  THE  OSMOLARITY  of  the  medullary  interstitium.  

 Increase  the  delivery  of  Na+  to  the  distal  tubule,  so  increased  K+  loss  (due  to  increased  Na+/K+  Exchange)    Increased  tubular  fluid  osmolarity  (and  so  decrease  the  osmolarity  of  the  medullary  interstitium),  which  leads  to  decreased  H2O  reabsorption  at  the  collecting  duct.    

 Effects  of  Loop  Diuretics  (e.g.  Frusemide)    Large  increase  in  urine  volume  and  Na+,  Cl-­‐  and  K+  loss  (+Ca2+  and  Mg2+  Loss)    CLINICAL  USES:  

• OEDEMA  –  Heart  failure,  pulmonary,  renal,  hepatic  and  cerebral  

• MODERATE  HYPERTENSION  –  Piretanide  • HYPERCALCAEMIA  • HYPERKALAEMIA  

 UNWANTED  EFFECTS:  

• HYPERVOLAEMIA  • HYPERTENSION  • K+  Loss  (Ca2+/Mg2+),  Metabolic  Alkalosis  

   

 

DIURETIC  

THIAZIDES  

 

e.g.  Bendrofluazide  (Bendroflymethiazide  

 These  are  moderately  powerful  diuretics,  which  act  on  the  early  distal  tubule.    Inhibit  Na+  and  Cl-­‐  reabsorption  in  the  early  distal  tubule  (by  about  5-­‐10%)    So  there  is  an  increased  delivery  of  Na+  to  the  distal  tubules,  so  an  increased  K+  Loss  (as  there  is  an  increased  Na+/K+  exchange)    There  is  an  increased  Mg2+  loss  and  increased  Ca2+  reabsorption  (REDUCED  LOSS  OF  CALCIUM)  Increased  tubular  fluid  osmolarity,  so  decreased  water  reabsorption  in  the  collecting  duct.    Thiazide  diuretics  lead  to    moderate  increase  in  urine  volume  and  Na+,  Cl-­‐  and  K+  loss  (Mg2+  loss)      

 Clinical  Uses  

• Cardiac  Failure  • Hypertension  (Initially  a  decreased  blood  volume  

decreases  –  in  the  long  term,  thiazides  cause  vasodilation)  

• Severe  Resistant  Oedema  • Idiopathic  Hypercalciuria  (Stone  Formation)  • Nephrogenic  Diabetes  Insipidus  (Paradoxical)  

bhj  Unwanted  Effects  

• K+  loss  • Metabolic  Alkalosis  • Diabetes  Mellitus  (Inhibits  insulin  secretion)  

 

 

Page 19: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

DIURETIC  

POTASSIUM  SPARING  DIURETICS  

e.g.  Amiloride,  Spironolactone  

Classes  of  K+  Sparing  Drugs  • ALDOSTERONE  RECEPTOR  ANTAGONISTS  

o e.g.  SPIRONOLACTONE    

• INHIBITORS  of  ALDOSTERONE-­‐SENSITIVE  Na+  CHANNELS  

o e.g.  amiloride    

Potassium  Sparing  Diuretics  e.g.  Amiloride,  Spironolactone  • INHIBIT  Na+  REABSORPTION  –  (and  therefore  the  

secretion  of  K+)  in  the  early  distal  tubule  (by  5%)    

• INCREASED  TUBULAR  FLUID  OSMOLARITY  –  so  decreased  H2O  reabsorption  in  the  collecting  duct    

• DECREASED  REABSORPTION  OF  Na+  TO  DISTAL  TUBULE  –  so  increased  H+  retention  (Na+  /  H+  exchanger)  

• INCREASED  URIC  ACID  LOSS    

SMALL  INCREASE  IN  URINE  VOLUME  and  Na+  Loss    Clinical  Uses:  

• For  use  with  K+  losing  diuretics  –  use  Amiloride  • Primary  and  Secondary  Hyperaldosteronism  –  use  

spironolactone    

Unwanted  Effects:  • Hyperkalaemia  • Metabolic  Acidosis  • Spironolactone  –  Gynaecomastia,  Menstrual  

Disorders,  Testicular  Atrophy    

 

 

TRIPLE  THERAPY:  

ANTIBIOTICS  +  PPI  

(FOR  PEPTIC  ULCERS  –  AGAINST  H.  PYLORI)  

ANTI-­‐ULCER  DRUGS  –  ANTIBIOTICS    Triple  Therapy  -­‐  Example  1    

• METRONIDAZOLE  (active  against  anaerobic  bacteria  and  protozoa)  or  AMOXYCILLIN  (broad  spectrum  antibiotic)  –  depending  on  pattern  of  local  resistance.    

• CLARITHROMYCIN  antibiotics  with  a  macrolide  structure  –  inhibits  translocation  of  bacterial  tRNA.    

‘Triple  Therapy’  is  currently  the  best  practice  in  treating  peptic  ulcer  disease  

• A  single  antibiotic  is  not  sufficiently  effective  –  partly  due  to  the  development  of  resistance.  

•  THREE  PROBLEMS  WITH  TRIPLE  THERAPY:  

• COMPLIANCE  • DEVELOPMENT  OF  RESISTANCE  (Vaccinations  may  

soon  be  available)  • ADVERSE  RESPONSE  TO  ALCOHOL  –  especially  with  

metronidazole  (interferes  with  alcohol  metabolism)      

 

Page 20: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

• PROTON  PUMP  INHIBITOR  (PPI)  improves  antibiotic  efficiency  possibly  by  increasing  gastric  pH  which  improves  stability  and  absorption.    

Triple  Therapy  –  Example  2  • H2  Receptor  Antagonist  • Clarithromycin  • Bismuth  

 

PROTEIN  PUMP  INHIBITORS  

e.g.  OMEPRAZOLE  

 

ANTI-­‐ULCER  DRUGS  –  INHIBITORS  OF  GASTRIC  ACID  SECRETION    TREATMENT  OF  GASTRIC  ULCERS    Inhibit  basal  and  stimulated  gastric  acid  secretion  from  the  parietal  cell  by  >90%  

Mechanism  of  Action:  • PPIs  are  irreversible  inhibitors  of  the  H+/K+  ATPase  • Inactive  at  neutral  pH  • As  it  is  a  weak  base,  it  accumulates  in  the  cannaliculi  

of  parietal  cells:  this  concentrates  its  action  there  and  prolongs  its  duration  of  action  (2-­‐3  days)  and  minimises  its  effects  on  ion  pumps  elsewhere  in  the  body.    

Uses  • Component  of  Triple  Therapy  • Peptic  Ulcers  resistant  to  H2  Antagonists  • Reflux  Oesophagitis  

 Pharmacokinetics  

• Orally  active  • Administered  as  enteric-­‐coated  slow-­‐release  

formulations    

Unwanted  Effects  –  Rare    

 

Page 21: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

HISTAMINE  TYPE  2  (H2)  RECEPTOR  ANTAGONISTS  

e.g.  CIMETIDINE,  RANITIDINE  

ANTI-­‐ULCER  DRUGS  –  INHIBITORS  OF  GASTRIC  ACID  SECRETION    Inhibit  gastric  acid  secretion  by  approximately  60%  and  are  less  effective  at  healing  ulcers  than  PPIs    

 • Orally  administered  • Well  absorbed  • Unwanted  effects  are  rare  

 Relapses  likely  after  withdrawal  of  treatment  

 

CYTOPROTECTIVE  DRUGS  

e.g.  SULCRAFATE  

ANTI-­‐ULCER  DRUGS  –  CYTOPROTECTIVE  DRUGS    These  drugs  ENHANCE  MUCOSAL  PROTECTION  MECHANISMS  and/or  BUILD  A  PHYSICAL  BARRIER  over  the  ulcer.  

 This  is  a  polymer  containing  aluminium  hydroxide  and  sucrose  octa-­‐sulphate.  

 

Mechanism  of  Action:  • Acquires  a  strong  negative  charge  in  an  acid  

environment  • Binds  to  positively  charged  groups  in  large  molecules  

(proteins,  glycoproteins)  resulting  in  gel-­‐like  complexes.  

• These  coat  and  protect  the  ulcer,  limit  H+  diffusion  and  pepsin  degradation  of  mucus.  

• Increases  PG,  mucus  and  HCO3-­‐  secretion  and  reduces  

the  number  of  H.  Pylori    

Side  Effects:  • Most  of  orally  administered  drug  remains  in  the  

gastrointestinal  tract  • May  cause  constipation  • Reduces  absorption  of  some  other  drugs  (e.g.  

antibiotics  and  digoxin)    

 

CYTOPROTECTIVE  DRUGS  

e.g.  BISMUTH  CHELATE  

ANTI-­‐ULCER  DRUGS  –  CYTOPROTECTIVE  DRUGS    These  drugs  ENHANCE  MUCOSAL  PROTECTION  MECHANISMS  and/or  BUILD  A  PHYSICAL  BARRIER  over  the  ulcer.  

 Acts  like  sulcrafate    Used  in  triple  therapy  (resistant  cases    

 

Page 22: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

CYTOPROTECTIVE  DRUGS  

e.g.  MISOPROSTAL  

ANTI-­‐ULCER  DRUGS  –  CYTOPROTECTIVE  DRUGS    (A  stable  prostaglandin  analogue)    Mimics  the  action  of  locally  produced  prostaglandins  to  maintain  the  gastroduodenal  mucosal  barrier.  

 

Misoprostal  may  be  co-­‐prescribed  with  oral  NSAIDs  (non-­‐steroidal  anti-­‐inflammatory  drugs),  when  used  chronically:    

• NSAIDs  block  the  COX  enzyme  required  for  PG  synthesis  from  arachidonic  acid  

• Therefore,  there  is  a  REDUCTION  in  the  natural  factors  that  inhibit  gastric  secretion,  and  stimulate  mucus  and  HCO3

-­‐  production    

Unwanted  Effects:  • Diarrhoea,  Abdominal  Cramps,  Uterine  Contractions  • DO  NOT  USE  IN  PREGNANCY  

 

 

ANTACIDS  ANTI-­‐ULCER  DRUGS  –  ANTACIDS    

• Mainly  salts  of  Al3+  and  Mg2+  • Neutralises  acid,  raises  gastric  pH,  reduces  

pepsin  activity    

 • Primarily  used  for  NON-­‐ULCER  DYSPEPSIA  • May  be  effective  in  reducing  duodenal  ulcer  

recurrence  rates    

 

 

LIPID  LOWERING  DRUGS  -­‐    

Bile  Acid  Sequestrants  

  Bile  Acid  Sequestrants:  • Decrease  LDL  to  some  extent  • However,  they  increase  hepatic  synthesis  of  LDL  • Therefore,  they  are  not  very  effective  

     

 

 

Page 23: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

LIPID  LOWERING  DRUGS  -­‐    

STATINS  

(e.g.  Rosuvastatin,  Atorvastatin,  Simvastatin,  Pravastatin,  Fluvastatin)    

 Mechanism  of  Action:    Statins  block  the  HMG-­‐CoA  Reductase  Enzyme    

 Cholesterol  Synthesis  Pathway:  

• Geranyl  pyrophosphate  and  Farnesyl  Pyrophosphate  –  these  are  lipids  involved  in  the  modification  of  proteins  (e.g.  rho  and  ras)  

• These  lipids  can  only  by  synthesised  within  the  cell.  • Statins  inhibit  the  production  of  these  lipids.  

 Mechanism  by  which  Statins  reduce  elevated  LDL:  

• Inhibition  of  HMG-­‐CoA  Reductase  and  hence,  decrease  cholesterol  synthesis  within  hepatocytes.  

• Increase  the  expression  of  LDL  Receptors  on  hepatocytes:  

o This  means  more  LDL  Receptors  bind  to,  and  internalise  more  circulating  LDLs  

 Summary  of  Statin  Effects:  

• All  statins  are  similar:  they  bring  about  the  same  reduction  in  risk.  

• There  is  a  strong  correlation  between  LDL  level  and  risk.  

• Relatively  safe.  • Improves  survival  ad  reduces  risk  in  everyone.  • Anti-­‐inflammatory  actions  (same  molecule  

mechanism  of  action,  but  acts  on  different  cell  types)  • Focus  on  patients  with  high  LDL  and  high  CRP  (these  

are  potentially  the  highest  risk  patients)          

 

LIPID  LOWERING  DRUGS  -­‐    

FIBRATES  

 Mechanism  of  Action:      Activate  PPAR  Alpha  receptors  à  Decrease  in  fatty  acids  and  triglycerides  

 • PPAR  –  Perioxisome  Proliferator  Activated  Receptors  • Thiazolidinediones  (glitazones)  are  PPAR  gamma  

activators  (and  are  used  in  diabetes)  • Anti-­‐inflammatory  action  • Shown  to  reduce  mortality  (by  1  trial)  • 2nd  choice  to  statins.  

 

 

Page 24: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

LIPID  LOWERING  DRUGS  –    

NICOTINIC  ACID  

 Decreases  cholesterol,  LDL  and  triglyceride  levels  and  increases  HDL  levels    

 • Other  effects:    

o Anti-­‐Coagulant  o Anti-­‐Platelet  o Anti-­‐Inflammatory  

• Shown  to  reduce  risk  in  trials  • Side  effects  include:  

o Flushing  and  Hepatic  Effects    

 

LIPID  LOWERING  DRUGS  –    

EZETIMIBE  

 Mechanism  of  action:  inhibits  cholesterol  absorption    

 • Must  be  activated  by  the  liver,  secreted  into  the  bile  

and  reabsorbed.  • Reduces  cholesterol  levels  by  15-­‐20%  • May  be  used  in  combination  with  statins  

e.g.  Atorvastatin  +  Ezetimibe  à  Extra  12%  reduction  in  cholesterol  levels  

• But  –  o No  effect  on  carotid-­‐intima  media  thickness  o Unknown  effects  on  events/survival  

 Not  shown  to  work  very  well  in  practice    

 

LIPID  LOWERING  DRUGS  –      Cholesterol  Ester  Transfer  Protein  (CETP)  and  reverse  cholesterol  transport  

 

 • CETP  inhibitors  increase  HDL  levels  (since  

they  cannot  be  broken  down)  • However  –  they  increase  blood  pressure  

(therefore  increase  mortality,  and  hence  are  no  longer  used)  

 

   

     

Page 25: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

ANTICOAGULANTS:    Warfarin  

Mechanism  of  Action:  PREVENTS  activation  of  VITAMIN  K    Vitamin  K  required  as  a  cofactor  in  synthesis/post-­‐translational  modification  of  Factors  VII,  IX,  X  and  II  (Thrombin)      Administration:  Oral,  absorbed  quickly  from  the  GI  tract.    Peak  blood  concentration  within  1  hour    Pharmacological  effects  are  delayed  12-­‐16h,  peak  after  48h  and  lasts  4-­‐5  days.    This  is  because  of  the  slow  turnover  of  clotting  factors.      

Pharmacokinetics:  Binds  strongly  to  plasma  proteins  (99%  bound  to  albumin)  Results  in  a  small  volume  of  distribution.    Metabolised  by  HEPATIC  MIXED  FUNTION  CYTOCHROME  P450    Anticoagulant  activity  is  monitored  by  the  International  Normalised  Ratio  (a  measure  of  prothrombin  time)    Adverse  Effects:  Haemorrhage  (especially  into  the  brain  or  bowel)  Teratogenicity  (NOT  GIVEN  in  pregnant  mothers)    Reversal  of  Effects:  • Low  doses  of  Vitamin  K  • Fresh  Frozen  Plasma  (FFP)  or  prothrombin  complex  

concentrate  can  be  infused  if  a  rapid  reversal  of  warfarin  effect  is  needed.  

 Drug  Interactions:    With  drugs  that  inhibit  cytochrome  p450  

Antibacterial  agents  e.g.  Erythromycin  Antifungal  agents  e.g.  Fluconazole      

With  drugs  that  induce  cytochrome  p450  Anticonvulsants  e.g.  Phenobarbital    

With  drugs  that  inhibit  platelet  function  E.g.  Aspirin    

With  drugs  that  displace  warfarin  from  plasma  proteins  (binding  globulins)  

E.g.  Aspirin    

 

Page 26: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

ANTICOAGULANTS:    Heparin  and  Low  Molecular  Weight  Heparin  

Mechanism  of  Action:    Activates  Anti-­‐Thrombin  III  Anti-­‐Thrombin  III  then  INHIBITS  FACTOR  Xa  and  THROMBIN  (FIIa)  by  binding  to  the  active  serine  sites.  

 LMWH  has  a  similar  effect  on  Xa,  but  less  of  an  effect  on  thrombin.    

Administration  • Poorly  absorbed  after  oral  administration  • Therefore,  given  either:  

o SUBCUTANEOUSLY  o INTRAVENOUSLY  

 Pharmacokinetics  

• Immediate  onset  when  given  Intravenously  (I.V.)  Delayed  by  about  1  hour  if  given  subcutaneously  (LMWH)  

• Short  Half-­‐Life  • Heparin  exhibits  saturation  kinetics  (apparent  1/2  

life  increases  with  increasing  dose).  • Anticoagulant  activity  is  measured.  

 • LMWH  has  a  longer  half-­‐life,  exhibits  1st  Order  

kinetics.  Its  activity  does  not  require  monitoring.    

Adverse  Effects  • Bleeding  • Thrombocytopenia  • Osteoporosis  (associated  with  long  term  therapy  

over  3  months)  • Hypersensitivity  

o Chills,  fever,  urticaria,  possibly  anaphylaxis    

Reversal  of  Effects  • Stop  I.V.  Heparin  and  LMWH.  • Give  IV  PROTAMINE  

o Protamine  binds  to  heparin  to  produce  an  inactive  complex.  

 

 

ANTIPLATELET  DRUGS:    Aspirin  

Mechanism  of  Action:  Irreversibly  inhibits  COX-­‐1  Enzyme    Inhibits  the  production  of  TXA2  (Thromboxane  A2)  in  platelets      However,  production  of  PGI2  by  endothelium  is  not  severely  affected    

Administration:  • Oral  

 Pharmacokinetics:  

• Highly  plasma  protein  bound    

Adverse  Effects:  • GI  Sensitivity  

 

 

Page 27: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

ANTIPLATELET  DRUGS:    Clopidogrel  

Mechanism  of  Action:    A  pro-­‐drug  which  inhibits  fibrinogen  binding  to  glycoprotein  IIb/IIIa  Receptors.  

 

Administration:  • Oral  

 Pharmacokinetics:  

• Peak  plasma  concentration  4hours  after  a  single  dose  

• Inhibitory  effect  on  platelet  not  seen  until  4  days  of  regular  dosing.    

Adverse  Effects:  • Bleeding  –  GI  Haemorrhage,  Diarrhoea,  Rash  • In  some  patients,  neutropenia  

 

 

ANTIPLATELET  DRUGS:    Abciximab  

Mechanism  of  Action:    Antagonist  of  the  Glycoprotein  IIb/IIIa  Receptor.    This  is  a  hybrid  murine/human  MONOCLONAL  ANTIBODY  which  is  licensed  for  use  in  ACUTE  CORONARY  SYNDROMES.    Used  in  combination  with  heparin  and  aspirin  to  prevent  ischaemia  is  patients  with  unstable  angina.    

Administration:  • Intravenously  (I.V.)  

Pharmacokinetics:  • Binds  rapidly  to  platelets.  • Cleared  with  platelets.  • Antiplatelet  effect  persists  for  24-­‐48  hours.  

Adverse  Effects:  • Bleeding  • May  potentially  be  IMMUNOGENIC  

 

 

FIBRINOLYTIC  (THROMBOLYTIC)  DRUGS    Streptokinase  

Mechanism  of  Action:    Non-­‐Enzyme  Protein    Derived  from  culture  of  β-­‐Haemolytic  Streptococci    Binds  to  plasminogen,  causing  a  conformational  change  –  this  exposes  the  active  site  and  causes  plasmin  activity.    Activated  plasmin  degrades  fibrin.    

Administration:  • Intravenous  (I.V.)  • 30-­‐60  minutes  infusion.  

 Pharmacokinetics:  

• Rapidly  cleared  • t1/2  12-­‐18  minutes  

 Adverse  Effects:  

• Bleeding  • May  potentially  be  antigenic  

 

 

Page 28: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

FIBRINOLYTIC  (THROMBOLYTIC)  DRUGS    Alteplase  

Mechanism  of  Action:  Is  recombinant  tPA  (Tissue  Plasminogen  Activator)  It  works  better  on  plasminogen  bound  to  fibrin  than  on  soluble  plasminogen  in  the  plasma  –  and  is  therefore  said  to  be  CLOT  SENSITIVE.      It  activates  plasmin  that  then  degrades  fibrin  and  dissolves  the  clot.    

Administration:  • Intravenous  (I.V.)  30  minute  infusion  

 Pharmacokinetics:  

• Rapidly  cleared  • t1/2  12-­‐18  minutes  

 Adverse  Effects:  

• Bleeding    

 

 Ibuprofen  Indomethacin    (NSAID)  

Non-­‐Steroidal  Anti-­‐Inflammatory  Drugs   • Typical  non-­‐selective  NSAIDs  • Inhibit    cyclo-­‐oxygenase  REVERSIBLY  • Inhibit  both  COX-­‐1  and  COX2  • Have  anti-­‐inflammatory,  analgesic  and  

antipyretic  actions  

 

Aspirin    (NSAID)  

Non-­‐Steroidal  Anti-­‐Inflammatory  Drugs    

• Binds  more  avidly  to  COX-­‐1  than  COX-­‐2  • Binds  irreversibly  to  COX  enzymes    -­‐  A  

unique  property  among  the  NSAIDs  o It  acetylates  an  amino  acid  in  the  

active  site  of  COX  (making  its  actions  long  lasting)  

o Its  actions  can  only  be  reversed  by  the  synthesis  of  new  COX  (as  part  of  a  continuous  production)  

 

 • Serious  side-­‐effects  at  therapeutic  doses  • As  well  as  usual  NSAID  actions,  they  also  reduce  

platelet  aggregation    

Aspirin  –  Mechanism  of  Action  • Aspirin  inhibits  TXA2  Production  by  platelets  and  

prostacyclin  production  by  endothelial  cells  (NOTE  –  Prsostacyclin  is  DIFFERENT  to  Prostaglandin)    

• However,  as  platelets  have  no  nucleus,  COX1  is  not  re-­‐synthesised  and  therefore  TXA2  synthesis  stops  until  a  new  batch  of  platelets  are  produced.    

• As  endothelial  cells  have  nuclei,  they  can  therefore  replenish  COX1  and  prostacyclin  synthesis  continues.  

 Covalent  binding  of  aspirin  confers  its  anti-­‐platelet  property  which  is  unique  among  NSAIDs.    

 

Page 29: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

    Anti-­‐Platelet  Actions  of  Aspirin  is  due  to:  • Very  high  degree  of  COX-­‐1  inhibition  which  

effectively  suppresses  TXA2  production  by  platelets  

• Covalent  binding  which  permanently  inhibits  platelet  COX-­‐1  

• Relatively  low  capacity  to  inhibit  COX-­‐2    Major  Side-­‐Effects  of  Aspirin  seen  at  therapeutic  doses  are:  

• Gastric  irritation  and  ulceration  • Bronchospasm  in  sensitive  asthmatics  • Prolonged  bleeding  times  • Nephrotoxicity  

 Side  effects  are  more  likely  with  aspirin  than  other  NSAIDs  because  it  inhibits  COX  covalently.  

 

 

Celecoxib    (NSAID)  

Non-­‐Steroidal  Anti-­‐Inflammatory  Drugs    

• Selectively  inhibits  COX-­‐2  • Less  effective  on  COX-­‐1  mediated  processes  than  

conventional  NSAIDs  such  as  ibuprofen  and  indomethacin  

• Fewer  ulcers  (c.f.  non-­‐selective  NSAIDS)  • But  not  all  COX2  activity  is  pathological  • COX2  regulates  –  ovulation,  parturition,  renal  

blood  flow,  blood  pressure  (therefore  COX2  inhibition  is  not  always  desirable)    

COX-­‐2  Inhibitors:  • Have  a  good  GIT  safety  profile  • Are  well  tolerated  (but  not  recommended)  for  

patients  with  asthma  • BUT  have  unwanted  CVS  effects  

o Increased  risk  of  myocardial  infarction  in  5  out  of  8  trials  when  compared  with  non-­‐selective  NSAID  

 Cardiovascular  Effects  of  COX-­‐2  Inhibitors:  

• May  selectively  inhibit  PGI2  production  and  spare  TXA2  production  leading  to  more  aggregation  

• It  is  not  the  only  mechanism  –  since  MIs  still  occur  even  in  patients  taking  aspirin.  

 

Page 30: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

• Non-­‐selective  NSAIDS  also  inhibit  COX-­‐2    

• There  is  increasing  evidence  that  COX-­‐2  inhibitors  pose  higher  risk  of  cardiovascular  disease  than  conventional  NSAIDS  even  though  mechanism  is  unclear.  

• Debate  over  the  safety  of  the  COX-­‐2  inhibitors  is  continuing.  

   

Paracetamol    Analgesic,  Antipyretic  

• Is  a  good  analgesic  for  mild-­‐to-­‐moderate  pain  

• Has  ANTI-­‐PYRETIC  ACTION  • However,  it  does  NOT  HAVE  ANY  ANTI-­‐

INFLAMMATORY  EFFECT  • Therefore,  it  is  not  an  NSAID  

 

Mechanism  of  Action  • The  mechanism  of  action  of  paracetamol  is  

unclear  –  several  mechanisms  have  been  postulated.    

• The  most  likely  mechanism  in  man  is:  Paracetamol  acts    to  inhibit  the  peroxidation  of  PGG2  into  PGH2  (also  catalysed  by  COX)    

Side  Effects  of  Paracetamol  • Paracetamol  is  generally  a  very  safe  drug  • However,  in  overdose  it  may  cause  IRREVERSIBLE  

LIVER  FAILURE  o A  reactive,  but  minor  metabolite  (NAPQI)  is  

normally  safely  conjugated  with  glutathione  o If  glutathione  is  depleted,  the  metabolite  

oxidises  thiol  groups  of  key  hepatic  enzymes  and  causes  cell  death  

 Antidote  for  Paracetamol  Poisoning  

• Add  compound  with  –SH  Groups  • Usually  intravenous  acetylcysteine  • Occasionally  oral  methionine  • Far  fewer  successful  suicides  with  paracetamol  

since  purchase  has  been  limited    

 

     

Page 31: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Morphine  (OPIATE)   Opiate,  as  it  is  a  direct  derivative  of  the  Poppy  resin.   Administration:  Oral  –  40-­‐50%  absorbed  into  the  bloodstream  Slow  acting  –  may  take  up  to  30  minutes  to  have  an  effect    Can  be  administered  i.v.      Distribution:  Limited  access  to  the  brain    Largely  ionised  at  physiological  pH  (so  becomes  polar),  and  diffuses  across  the  lipid  membranes  slowly    A  large  proportion  of  the  administered  dose  does  not  access  the  brain.    Metabolism:  Rapid  hepatic  metabolism  (GLUCORONIDATION  at  the  6’  position)    Morphine  is  converted  to  morphine-­‐6-­‐glucuronide,  but  this  compound  ‘gives  a  handle’  for  the  kidney  to  easily  clear/filter.    Morphine-­‐6-­‐glucuronide,  however,  is  more  potent  (so  increased  effect)  and  is  subject  to  ENTEROHEPATIC  CIRCULATION.    Therefore  morphine-­‐6-­‐glucuronidde  may  be  secreted  into  the  bile,  and  morphine  may  be  regenerated  in  the  GI  Tract  and  reabsorbed.    Excretion:  Urine    

 

Page 32: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Codeine  (Opiate)     Codeine  Pharmacokinetics  • Structurally  similar  to  morphine  (except  for  the  

methyl  group  in  the  3’  position)  • Far  less  potent  than  morphine  • Oral  codeine  is  about  5-­‐10%  the  strength  of  i.v.  

morphine    

 

Heroin  (Semi-­‐Synthetic  Opioid)  

  Heroin  Administration  

• Oral    

Distribution  • Very  LIPID  SOLUBLE    • Enters  the  brain  quicker  than  morphine  • Converted  to  morphine  in  cells  

 Metabolism  

• Metabolised  by  plasma  esterases  • Heroin  is  broken  down  more  rapidly  than  morphine  

 Short-­‐acting  (high  abuse  potential  because  the  euphoric  effect  wears  off  quickly)    

 

Fentanyl  (Opioid)   Opioid  –  Synthetic  compound  that  does  not  generally  resemble  morphine  in  structure.  

Administration  Buccal  (lollipop)  or  Intradermal  (patch)    Absorption  -­‐  50-­‐100%  Absorption    Distribution  Very  LIPID  SOLUBLE  and  is  more  potent  orally  (a  lot  is  reabsorbed  the  mouth  and  intranasally,  so  more  gets  into  the  system).    Enters  the  bloodstream  via  the  mucus  membranes/skin    Metabolism  -­‐  Hepatic  metabolism  (oxidation)    Excretion  -­‐  Excreted  in  the  Urine  

 

Page 33: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Methadone  (Opioid)   Opioid  –  Synthetic  compound  that  does  not  generally  resemble  morphine  in  structure.  

• Administration  o Oral  

 • Distribution  

o The  most  lipid  soluble  opioid,  therefore  dissipates  into  fat  very  quickly.  

o Methadone  is  commonly  used  as  a  morphine/heroin  substitute  (e.g.  in  weaning  off  addicts)  because  of  the  fact  that  it  distributes  into  the  fat  very  quickly.    

o So  the  half-­‐life  of  methadone  is  MUCH  LONGER  (150h),  and  can  be  given  to  morphine  addicts  as  it  is  released  slowly  (hence  a  low  constant  background  level  of  opiates)    

o Therefore  long  acting,  with  a  prolonged  euphoric  effect.  

 

 

Naloxone      (Opioid  Receptor  Antagonist)  

Opioid  Receptor  Antagonist   • Naloxone  (Opioid  Antagonist)  • i.v.  administration  • Short  acting  • Used  in  opioid  overdose  

 

     

Page 34: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Prednisolone,  Fluticasone,  Budesonide    (Glucocorticoids)  

Glucocorticoids  –  used  in  the  TREATMENT  OF  INFLAMMATORY  BOWEL  DISEASE  (CD  &  IBD)    Derived  from  cortisol                                          Unwanted  Effects  of  Glucocorticoids:  

• Osteoporosis  • Increased  risk  of  gastric  ulceration  • Suppression  of  the  HPA  (Hypothalamo-­‐

Pituitary-­‐Adrenal)  Axis  • Type  II  Diabetes  • Hypertension  • Susceptibility  to  infection  • Skin  thinning,  bruising  and  slow  wound  

healing  • Muscle  wasting  and  buffalo  hump  (c.f.  

Cushing’s)    

The  activation  of  glucocorticoid  receptors  can  lead  to:  • Increase  the  expression  of  anti-­‐inflammatory  genes  

(GCR  acting  as  a  positive  transcription  factor)    • Decrease  the  expression  of  pro-­‐inflammatory  genes  

(GCR  acting  as  a  negative  transcription  factor)    Glucocorticoids  as  anti-­‐inflammatory  Reduce  influx  and  activation  of  pro-­‐inflammatory  cells  

• Reduce  expression  of  adhesion  molecules  on  endothelial  cells  and  leukocytes  

• Reduce  synthesis  of  some  chemokines    

Reduced  production  of  inflammatory  mediators  (e.g.  IL-­‐2,  IL-­‐4,  IFN-­‐γ)  that  normally  cause  vasodilation,  fluid  exudation  (swelling),  further  inflammatory  cell  recruitment  and  tissue  degradation.    This  essentially  is  a  reduced  synthesis  of  the  following  mediators:  

• Some  cytokines  and  cytokine  receptors  (e.g.  IL-­‐1  and  TNF-­‐α)  

• Proteolytic  enzymes  (e.g.  elastase)  • Enzymes  that  catalyse  mediator  synthesis  (e.g.  

cyclooxygenase)  • Eicosanoids  (e.g.  prostaglandins  and  leukotrienes)  • Nitric  Oxide  

 Glucocorticoids  as  immunosuppressives  Glucocorticoids  are  potent  immunosuppressives  which  cause  :  

• Reduction  in  antigen  presentation  • Reduction  in  production  of  certain  mediators  (e.g.  IL-­‐

2,  IL-­‐4  and  IFN-­‐γ)  • Reduction  in  cell  proliferation  and  clonal  expansion  

 Glucocorticoids  virtually  suppress  all  types  of  inflammation.        

 

     

Page 35: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Mesealazine  (5-­‐ASA)  Olsalazine  (2x  5-­‐ASA)    (Sulfalazine)    (Aminosalicylates)  

These  are  all  types  of  aminosalicylates  –  ONLY  EFFECTIVE  IN  ULCERATIVE  COLITIS.    Anti-­‐inflammatory,  but  NOT  IMMUNOSUPPRESSIVE    They  are  useful  in  the  treatment  of  active  ulcerative  colitis  and  for  maintenance  of  remission    However,  they  are  ineffective  in  Crohn’s  Disease      

Mechanisms  of  Anti-­‐Inflammatory  Actions:  • Reduce    synthesis  of  eicosanoids  • Reduce  free  radical  levels  • Reduce  inflammatory  cytokine  production  • Reduce  leukocyte  infiltration  

    Metabolised  by:   Site  of  

Absorption:  

Mesalazine   (Not  absorbed  as  it  is  in  the  most  basic  form  –  c.f.  sulfasalazine)  

Small  bowel  and  colon  

Olsalazine   Colonic  flora   Colon  

(Sulfasalazine)   Colonic  Flora,  Liver  

Colon  

   

 

Azothioprine    Immunosuppressive  Agent    Effective  in  BOTH  CROHN’s  DISEASE  and  ULCERATIVE  COLITIS    Can  be  used  to  induce  remission  in  Crohn’s  Disease  (Treatment  >17  Weeks)    May  enable  reduction  of  glucocorticoid  dose  or  postponement  of  colostomy.    Useful  for  maintaining  remission  in  Crohn’s  Disease  and  some  patients  with  Ulcerative  Colitis.    

 Mechanism  of  Immunosuppression  

• Azothioprine  is  a  PRODRUG  activated  in  vivo  by  gut  flora  to  6-­‐MERCAPTOPURINE    

• This  interferes  with  purine  biosynthesis  • Interferes  with  DNA  SYNTHESIS  and  CELL  

REPLICATION    

• It  impairs:  o Cell-­‐  and  Antibody-­‐  mediated  immune  

responses  o Lymphocyte  proliferation  o Mononuclear  cell  infiltration  o Synthesis  of  antibodies  

 • It  enhances:  

o T-­‐Cell  Apoptosis    

 

Page 36: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Unwanted  Effects  • Bone  marrow  suppression  • Metabolised  by  xanthine  oxidase  

 • Care  must  be  taken  to  check  whether  there  is  a  co-­‐

administration  of  drugs  which  INHIBIT  XANTHINE  OXIDASE  e.g.  allopurinol  which  can  cause  a  build-­‐up  of  6-­‐Mercaptopurine  leading  to  blood  disorders.  

 Anti-­‐TNFα    INFLIXMAB  (i.v.)  

Used  successfully  in  the  treatment  of  Crohn’s  Disease  Some  evidence  of  effectiveness  in  Ulcerative  Colitis      Potentially  curative,  rather  than  just  simply  palliative    Successful  in  some  patients  with  refractory  disease  and  fistulae      

Mechanism  of  Action  of  Infliximab  (Anti-­‐TNFα)  • Indicates  that  TNFα  plays  an  important  role  in  the  

pathogenesis  of  IBD  • Anti-­‐TNFα  reduces  activation  of  TNDα  receptors  in  the  

gut.  • Production  of  other  cytokines,  infiltration  and  

activation  of  leukocytes  is  also  reduced.    

• Anti-­‐TNFα  also  binds  to  membrane  associated  TNFα  • Mediates  complement  activation  and  induces  

cytolysis  of  cells  expressing  TNFα  • This  promotes  apoptosis  of  activated  T-­‐Cells  

 Pharmacokinetics  of  Infliximab  (Anti-­‐TNFα)  

• Given  intravenously  • Very  long  half-­‐life  (9.5  days)  • Benefits  can  last  for  30  weeks  after  a  single  infusion  • Most  patients  relapse  after  8-­‐12  weeks  • Therefore,  it  is  important  to  repeat  infusion  every  8  

weeks.    

Adverse  Effects  of  Infliximab  (Anti-­‐TNFα)  • 4x  to  5x  increase  in  incidence  of  Tuberculosis  and  

other  infections  • Also  risk  of  reactivating  dormant  TB  • Increased  risk  of  SEPTICAEMIA  –  therefore,  

contraindications  if  abscesses  are  present  • Worsening  of  heart  failure  • Increased  risk  of  demyelinating  disease  • Increased  risk  of  malignancy  

 

 

Page 37: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

• Can  be  immunogenic  (monoclonal  antibody)  –  therefore  given  with  azathioprine  

• Should  only  be  used  by  specialists  where  adequate  resuscitation  facilities  are  available  –  due  to  a  RISK  OF  ANAPHYLAXIS  

• 2-­‐4%  risk  of  serious  side-­‐effect    

Infliximab  Summary  • In  steroid-­‐dependent  patients  infliximab  +  AZA  

doubles  the  number  of  patients  in  steroid-­‐free  remission  after  1  year  of  treatment,  but  still  only  by  40%.  

• This  combination  delays  relapse  • It  is  most  beneficial  in  patients  who:  

o Have  not  taken  thiopurines  before  o Are  young  (~26  years)  o Have  colonic  CD  

 Adalimumab  (sc.)   TNF  Inhibitor   Binds  to  TNFα  and  prevents  activation  

 

Natalizumab   Antibody  against  alpha-­‐4-­‐integrin   • Antibody  against  alpha-­‐4-­‐integrin  • Cell  adhesion  molecule  • Evidence  that  it  induces  remission  in  some  patients  

with  Crohn’s  Disease  • Generally  well  tolerated  • Rarely  (1:1000)  encephalopathy  if  taken  in  

combination  with  other  drugs.    

 

 

Page 38: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Muscimol   GABAA  Agonist      (I.e.  Post-­‐Synaptic  GABA  Receptor)  

• This  is  a  selective  GABAA  Receptor  agonist  (i.e.  does  not  stimulate  GABAB  receptors  etc.)  

 Cellular  Mechanism  of  Action:  

• Binding  of  GABA  (or  GABAR  Agonist)  to  GABAA  Receptors  causes  an  activation  of  the  Cl-­‐  channel  on  the  same  post-­‐synaptic  knob  

• This  leads  to  hyperpolarisation  and  an  INHIBITORY  POST-­‐SYNAPTIC  POTENTIAL  

• Therefore,  this  causes  an  inhibition  of  firing  by  the  post-­‐synaptic  knob  

 

Principles  of  GABA-­‐ergic  Transmission  

Bicuculline   GABAA  Antagonist   • Competitive  Antagonsist  Principles  of  GABA-­‐ergic  Transmission  

Picrotoxin   GABAA  Antagonist   • Non-­‐competitive  • Binds  to  chloride  channel  itself  and  blocks  the  action  

of  GABA  receptors  non-­‐competitively  • Inhibits  hyperpolarisation  

 

Principles  of  GABA-­‐ergic  Transmission  

Convulsants   GABAA  Antagonists   • Not  used  clinically  Principles  of  GABA-­‐ergic  Transmission  

Benzodiazepines  and  Barbiturates  

GABAA  Antagonists   • Clinically  used  drugs  (see  other  lecture)  Principles  of  GABA-­‐ergic  Transmission  

 Baclofen   GABAB  Agonist  

(I.e.  Pre-­‐Synaptic  GABA  Receptor)    Selective  GABAB  Agonist    Inhibit  neurotransmitter  release  and  function  in  two  ways:  

• AUTORECEPTORS  –  (Negative  Feedback  on  the  presynaptic  knob)    

• HETERORECEPTORS  –  (Sit  on  neurones  of  other  terminals  e.g.  Dopaminergic  Neurones,  and  regulate  other  neurones,  such  as  by  decreasing  dopamine  release)  

Principles  of  GABA-­‐ergic  Transmission  

Page 39: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Cellular  Mechanism  of  Action:  • G-­‐Protein  linked  • Decreased  Calcium  Conductance  (i.e.  Influx  of  Ca2+  

decreased)  so  decreased  neurotransmitter  release  (reduce  vesicular  transport)  

• Increased  K+  conductance,  (so  efflux  of  K+  increased)  and  therefore  more  hyperpolarisation    

• Used  as  a  muscle  relaxant  (effects  in  the  spinal  cord)  • Used  also  as  a  spasmolytic  drug  (Anti-­‐Spastic  Drug)  

   

Phaclofen   GABAB  Antagonist   Antagonises  GABAB  Receptor  Principles  of  GABA-­‐ergic  Transmission  

Saclofen   GABAB  Antagonist   Competitive  Antagonist  (most  commonly  used)  Principles  of  GABA-­‐ergic  Transmission  

 Flumazenil   Competitive  Benzodiazepine  Antagonist   Acts  on  BDZ  Receptor  on  GABAA  Receptor  Protein    

• Benzodiazepine  binding  to  the  BDZ  receptor  leads  to  enhanced  GABA  Action  

• Enhanced  GABA  Binding  to  the  GABA  receptor  protein  (reciprocated)  

 

Anxiolytics,  Sedatives  and  Hypnotics  

Anaesthetics  Barbiturates  e.g.  THIOPENTONE  

These  are  all  barbiturates  producing  such  effects.   • Unwanted  Side  Effects  of  Barbiturates  o They  are  not  the  1st  drug  of  choice  due  to  

their  unwanted  effects  o Low  Safety  Margins:  

§ Depress  Respiration  § Overdosing  is  lethal  (Treated  with  

forced  alkaline  diuresis  to  promote  excretion)  

o Alters  natural  sleep  (Decreased  REM  Sleep)  à  hangovers/irritability  

o Enzyme  inducers  o Potentiate  the  effect  of  other  CNS  

depressants  e.g.  Alcohol  

Anxiolytics,  Sedatives  and  Hypnotics  

Anticonvulsants  Barbiturates  e.g.  Phenobarbital    

Anxiolytics,  Sedatives  and  Hypnotics  

Anti-­‐spastic  Barbiturates  e.g.  Diazepam    

Anxiolytics,  Sedatives  and  Hypnotics  

Page 40: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

o Development  of  Tolerance  (both  pharmacokinetics  and  tissue  tolerance)    

o Dependence:  Withdrawal  Syndrome  Causes:  § Insomnia  § Anxiety  § Tremor  § Convulsions  § Death  

 Sedatives  /  Hypnotics  e.g.  Amobarbital  

Used  for  severe  intractable  insomnia  Half-­‐Life  20-­‐25  Hours    Side  effects  –  see  above.  

Anxiolytics,  Sedatives  and  Hypnotics  

Benzodiazepines   All  benzodiazepines  act  at  GABAA  Receptors   Pharmacokinetics:  Administration:  

• Well  absorbed  P.O.  (Orally)  • Plasma  concentration  peaks  at  around  1  hour  

(oxazepam  is  slower)  • I.v.  administration  for  status  epilepticus  (prolonged  

tonic  clonic  seizure  activity  >30minutes)    

Absorption:  • Well  absorbed  following  oral  administration  

 Distribution:  

• Binds  to  plasma  proteins  strongly  • Highly  lipid  soluble  –  wide  distribution  

 Metabolism:  

• Extensive  hepatic  metabolism  (glucoronidation)    

Excretion:  • Excreted  in  the  urine  as  glucoronide  conjugates  

 Duration  of  action:  

• Varies  greatly  • Short  Acting  • Long  Acting  (due  to  slow  metabolism  and/or  active  

metabolites)  

Anxiolytics,  Sedatives  and  Hypnotics  

Page 41: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Anxiolytics    e.g.  Diazepam,    Chloridazepoxide  (Librium),  Nitrazepam,  Oxazepam    

  Advantages  of  Benzodiazepines:  • Wide  margin  of  safety:  

o Overdose  leads  to  prolonged  sleep  which  is  rousable  

o No  respiratory  depression    o Flumazenil  

• Mild  effect  on  REM  Sleep  • Do  not  induce  liver  enzymes  

 Unwanted  Effects  of  Benzodiazepines  

• Sedation,  Confusion,  Ataxia  (Impaired  manual  skills)  • Potentiate  the  effects  of  other  CNS  Depressants  

(Alcohols,  BARBs)  • Tolerance  (Less  than  BARBs,  ‘tissue’  tolerance  only,  so  

no  pharmacokinetic  tolerance)  • Dependence:  

o Withdrawal  Syndrome  (similar  to  barbiturates,  but  less  intense)  

o Withdraw  slowly  • Free  plasma  concentrations  are  increased  by  certain  

drugs  e.g.  aspirin  and  heparin    

Anxiolytics,  Sedatives  and  Hypnotics  

Sedatives/Hypnotics  e.g.  Temazepam,  Oxazepam,  Lorazepam,  Nitrazepam  

 Anxiolytics,  Sedatives  and  Hypnotics  

Other  Sedatives  /  Hypnotics    Chloral  Hydrate  

  • Liver  à  Trichloroethanol  • Mechanism  of  action  –  unknown  • Wide  margin  of  safety  (safe  for  use  in  children  and  the  

elderly)    

Anxiolytics,  Sedatives  and  Hypnotics  

Other  Anxiolytics:  Propranolol  

  • Improves  physical  symptoms  Tachycardia  –  β1  

Tremor  –  β2  

 • Commonly  used  to  ‘cure’  stage  fright  

 

Anxiolytics,  Sedatives  and  Hypnotics  

Other  Anxiolytics:  Buspirone  

  • 5HT1A  Agonist  • Slow  Onset  of  Action  (Days/Weeks)  • Few  Side-­‐Effects  

 

Anxiolytics,  Sedatives  and  Hypnotics  

     

Page 42: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

L-­‐DOPA    (SINAMET,  MADOPAR  –  with  peripheral  inhibitors)  

Dopamine  Replacement  Therapy    DOPA  is  the  precursor  to  dopamine,  and  is  converted  to  dopamine  in  the  brain.    However,  the  enzyme  DOPA  Decarboxylase  is  also  present  in  peripheral  tissues  Therefore,  95%  of  administered  L-­‐DOPA  would  be  metabolised  to  dopamine  in  the  periphery  with  major  side  effects  of  nausea  and  vomiting.    Therefore  L-­‐DOPA  is  commonly  prescribed  with  a  peripheral  DOPA  decarboxylase  inhibitor    Preparations  include:  

• SINAMET  (Carbidopa  +  L-­‐DOPA)  • MADOPAR  (Benserazide  +  L-­‐DOPA)  

 

L-­‐DOPA  Clinical  Uses:  • Hypokinesia,  rigidity  &  tremor  • Start  with  low  doses  of  the  drug,  and  increase  dose  

until  the  maximum  benefit  is  achieved  without  side-­‐effects  

• Effectiveness  of  L-­‐DOPA  declines  with  time,  however  Side  Effects:  

• Acute  o Nausea  –  prevented  by  doperidone    

(peripheral  acting  antagonist)  o Hypotension  o Psychological  effects  –  Schizophrenia-­‐like  

syndrome  with  delusions,  hallucinations,  also  confusion,  disorientation  and  nightmares      

• Chronic  o Dyskinesias  –  abnormal  movements  of  the  

limbs  and  face.  Can  occur  within  2  years  of  treatment.  Disappear  if  the  doses  are  reduced,  but  clinical  symptoms  then  reappear.    

o “On-­‐Off”  Effects  –  Rapid  fluctuation  in  clinical  states.  Off  periods  may  last  from  minutes  to  hours.  Occurs  more  with  L-­‐DOPA.  

 

Dopaminergic  Pathways  and  Anti-­‐Parkinson  and  Schziophrenic  Drugs    

Bromocriptine  Pergolide  Ropinerol  

Dopamine  Agonists    Actions:  

• Act  on  D2  Receptors    

Dopamine  Agonists:  Actions  • Act  on  D2  Receptors  • Longer  duration  of  action  than  L-­‐DOPA  • Smoother  and  more  sustained  response  • Actions  independent  of  dopaminergic  neurons  • Incidence  of  dyskinesias  is  less  • Can  be  used  in  conjunction  with  L-­‐DOPA  

 Adverse  Effects:  

• Common  –  Confusion,  Dizziness,  Nausea/Vomiting,  Hallucinations  

• Rare  –  Constipation,  Headache,  Dyskinesias    

Dopaminergic  Pathways  and  Anti-­‐Parkinson  and  Schziophrenic  Drugs  

Page 43: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Deprenyl  (Selegiline)    

MAO  Inhibitors    

Deprenyl  (Selegiline)  • Selectively  inhibits  MAO-­‐B  (and  hence  inhibits  

dopamine  breakdown)  • Predominantly  acts  in  dopaminergic  areas  of  the  CNS.  • Actions  are  without  peripheral  side  effects  of  non-­‐

selective  MAO-­‐I’s    

• Clinical  Uses  o It  can  be  given  alone  in  the  early  stages  of  

Parkinson’s  Disease  o Alternatively,  it  can  be  given  in  combination  

with  L-­‐DOPA  (reduce  the  dose  of  L-­‐DOPA  by  30-­‐50%)    

• Side  Effects  (Rare)  o Hypotension  o Nausea/Vomiting  o Confusion  o Agitation  

 

Dopaminergic  Pathways  and  Anti-­‐Parkinson  and  Schziophrenic  Drugs  

Resagiline    

MAO  Inhibitors    

• Shown  to  have  neuroprotective  properties  by  inhibiting  apoptosis  

• Promotes  anti-­‐apoptosis  genes  leading  to  increased  cell  survival  

• Early  clinical  trials  suggest  that  Resagiline  may  slow  the  progression  of  Parkinson’s  disease  

Dopaminergic  Pathways  and  Anti-­‐Parkinson  and  Schziophrenic  Drugs  

 Tolocapone  (CNS  &  Peripheral)    Entacapone  (Peripheral  only)    

COMT  Inhibitors    

CNS  Effects  Prevents  the  breakdown  of  dopamine  in  the  brain  

 Peripheral  Effects  COMT  in  the  periphery  converts  L-­‐DOPA  to  3-­‐0-­‐methyl-­‐DOPA  (3-­‐0MD).  3-­‐0MD  and  L-­‐DOPA  compete  for  the  same  transport  system  into  the  brain.    COMT  inhibitors  stop  3-­‐0MD  formation,  thus  increasing  the  bioavailability  of  L-­‐DOPA,  thus  more  L-­‐DOPA  crosses  into  the  brain  and  is  converted  to  dopamine  in  the  CNS.    Therefore,  this  reduces  L-­‐DOPA  dosage.  

Dopaminergic  Pathways  and  Anti-­‐Parkinson  and  Schziophrenic  Drugs  

 

Page 44: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Neuroleptics   • Mechanism  of  action  –  dopamine  antagonists  • Site  of  action  –  ‘D2-­‐like’  receptors  • Most  neuroleptics  block  other  receptors  e.g.  

5-­‐HT,  thus  accounting  for  some  of  their  side  effects    

• Clozapine  is  relatively  non-­‐selective  between  D1  and  D2  receptors,  but  does  have  a  high  affinity  for  D4  receptors  that  have  been  shown  to  be  increased  in  schizophrenia.    

• Drugs  treat  positive  symptoms,  but  not  negative  ones.  

• Delayed  effects  –  takes  weeks  to  work.  • Initially  neuroleptics  induce  an  increase  in  DA  

synthesis  and  neuronal  activity.  This  declines  with  time.  

 

Other  Actions/Side  Effects:  • Anti-­‐emetic  effect  • Blocking  dopamine  receptors  in  the  chemoreceptor  

trigger  zone.  • Neuroleptic  Phenothiazine  –  effective  at  controlling  

vomiting  and  nausea  induced  by  drugs  (e.g.  chemotherapy),  renal  failure  

• Many  neuroleptics  also  have  a  blocking  action  at  histamine  receptors.  

• Effective  at  controlling  motion  sickness.    

• Extrapyramidal  side  effects  –  Blockade  of  dopamine  receptors  in  the  nigrostriatal  system  can  induce  ‘Parkinson’  like  side-­‐effects    

Acute  dyskinesias  –  Related  to  blockade  of  dopamine  receptors  in  the  striatum  which  leads  to  an  increase  in  cholinergic  function.  Develop  at  onset  of  treatment,  reversible  on  drug  withdrawal  or  anti-­‐cholinergic  drugs.    Tardive  dyskinesias  –  Involuntary  movements,  often  involving  the  face  and  tongue.  Occur  in  about  20%  of  patients  after  several  months  or  years  of  therapy.  

• Made  worse  by  drug  withdrawal  or  anti-­‐cholinergics.  • May  be  related  to  proliferation  in  presynaptic  DA  

receptors  or  drug  toxicity.  • Incidence  is  less  with  atypical  drugs.  

 Endocrine  Effects:  

• DA  is  involved  in  the  tuberoinfundibular  system  that  regulates  prolactin  secretion.  

• Neuroleptics  increase  serum  prolactin  levels  –  this  can  lead  to  gynaecomastia  (men  and  women)  and  lactation  (women)    

Blockade  of  Muscarinic  Cholinergic  Receptors  • Leads  to  typical  peripheral  anti-­‐muscarinic  side-­‐

effects  e.g.  blurred  vision,  increased  intraocular  pressure,  dry  mouth,  constipation,  urinary  retention  

Dopaminergic  Pathways  and  Anti-­‐Parkinson  and  Schziophrenic  Drugs  

 

Page 45: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

General  Anaesthetics    

Clinical  setting:  

Desired  effect   Drug  

Loss  of  consciousness   Induction:  propofol  (i.v.)  

Maintenance:  enflurane  (inhalation)  Suppression  of  reflex  responses  

Analgesia   Opioid  (e.g.  i.v.  fentanyl)  

Muscle  relaxation   Neuromuscular  blocking  drugs  (e.g.  suxamethonium)  

Amnesia   Benzodiazepines  (e.g.  i.v.  midazolam)  

   

Principles  of  General  Anaesthesia                    

 

   

Page 46: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Local  Anaesthetics   Ester:  Cocaine  /    Amide:  Lidocaine    Routes/Methods  of  Administration  

1. Surface  Anaesthesia  Mucosal  surface  (mouth,  bronchial  tree),  Spray  (powder),  High  concentrations  –  can  lead  to  systemic  toxicity      

2. Infiltration  Anaesthesia  Directly  into  tissues  à  sensory  nerve  terminals,  Used  in  minor  surgery  Adrenaline  Co-­‐Injection  (NOT  in  EXTREMITIES  i.e.  fingers  or  toes,  as  it  can  cause  ischaemic  damage  due  to  its  potent  vasoconstrictor  effects  in  extremities)    

3. Intravenous  Regional  Anaesthesia  Intravenous,  distal  to  a  pressure  cuff  (which  is  also  administered)  e.g.  during  limb  surgery  System  toxicity  can  be  caused  by  premature  cuff  release  (so  the  local  anaesthetic  reaches  systemic  circulation)    

4. Nerve  Block  Anaesthesia  Close  to  nerve  trunks  (e.g.  dental  nerves),  Widely  used  in  low  doses,  with  slow  onset,    Co-­‐injected  with  a  vasoconstrictor    

5. Spinal  Anaesthesia  Administered  in  the  sub-­‐arachnoid  space  (spinal  roots),  Used  in  abdominal,  pelvic,  lower  limb  surgery  Causes  a  decrease  in  blood  pressure;  prolonged  headache    

6. Epidural  Anaesthesia  Fatty  tissue  of  epidural  space  –  spinal  roots,  Uses  similar  to  spinal  anaesthesia  (abdominal,  pelvic,  lower  limb  surgery)  and  painless  childbirth,  Slower  onset  –  higher  doses  

 

Lidocaine  and  cocaine:  pharmacokinetics  

  Lidocaine  (amide)   Cocaine  (ester)  

Absorption  (across  mucous  membranes)   Good   Good  

Plasma  protein  binding   70%   90%  

Metabolism  Hepatic  

N-­‐dealkylation  

Hepatic  and  plasma  

Non-­‐specific  esterases  

Plasma  half-­‐life   2  hours   1  hour    

Principles  of  Local  Anaesthesia  

Page 47: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Administration:  • Cocaine:  Now  only  used  as  a  surface  anaesthetic  (in  ophthalmology)  • Lidocaine:  may  be  administered  by  any  route  

Metabolism:  • Cocaine:  Metabolised  rapidly  • Lidocaine:  Relatively  resistant  to  metabolism  

Unwanted  Effects:  • Lidocaine:  A  classic  local  anaesthetic;  therefore  most  of  its  side  effects  apply  to  other  local  anaesthetics  • Cocaine:  exception  to  the  rule  (unwanted  effects  affect  the  CNS  and  CVS)  

Lidocaine  Unwanted  Effects:  • CNS  –  Paradoxical  Effect  (you  would  expect  it  to  damp  down  CNS  activity,  but  it  stimulates  CNS  activity)  • CVS  –  Predictable  Effects  (due  to  Na+  Channel  Blockade)  

Cocaine  Unwanted  Effects:  • CNS  &  CVS  –  Unwanted  effects  occur  due  to  the  sympathetic  actions  of  cocaine  (it  blocks  NA  reuptake)  

 

Lidocaine  and  cocaine:  unwanted  effects  

  Lidocaine   Cocaine  

CNS  

CNS  stimulation  

Restlessness  &  confusion  

Tremor  

Euphoria  and  excitation  

CVS  

Myocardial  depression  

Vasodilatation  

Reduced  BP  

Increased  CO  

Vasoconstriction  

Increased  BP  

     

     

Page 48: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Methotrexate    Cytotoxic  Drugs  –  ALKYLATING  AGENTS    

Alkylating  Agent  (Cytotoxic  Drugs)    Interfere  with  thymidylate  synthesis  (generation  of  pyrimidines)  

Folic  Acid:    • An  essential  nutrient  • Important  for  nucleotide  synthesis  

 Methotrexate:  

• Structurally  similar  to  folic  acid  • Can  substitute  for  folate  

 Fluorouracil:  

• Characteristic  of  pyrimidines:  structurally  similar  to  both  uracil  and  thymidine  except  for  the  fluorine  group  

• Fluorine  makes  the  molecule  unreactive  at  that  point  –  therefore  it  can  interfere  with  nucleic  acid  synthesis    

Methotrexate  and  Fluorouracil:  • DHFR  (Dihydrofolate  Reductase)  generates  

tetrahydrofolate  derivatives  • Folate  metabolites  donate  and  accept  electrons  

and  protons  as  part  of  the  synthetic  pathway  • Uridine  derivatives  à  Thymidine  derivatives  (by  

the  passage  of  electrons)  • Thymidylate  synthetase  is  a  key  target  for  

chemotherapy  Methotrexate:  Blocks  DHFR  Activity  

• It  is  a  folate  mimic  –  DHFR  binds  to  methotrexate  as  if  it  were  folate,  but  as  methotrexate  cannot  participate  in  the  reaction,  it  essentially  BLOCKS  DHFR  

Fluorouracil:  Uridine  and  Thymidine  Analogue  • Thymidylate  synthetase  binds  to  fluorouracil  

(thinking  it  is  a  uridine)      

Cytotoxic  Drugs  

Fluorouracil    Cytotoxic  Drugs  –  ALKYLATING  AGENTS    

Alkylating  Agent  (Cytotoxic  Drugs)    Inhibit  enzymes  in  DNA  synthesis    (e.g.  thymidylate  synthetase)  

Cytotoxic  Drugs  

Azothioprine    Cytotoxic  Drugs  –  ALKYLATING  AGENTS    

Alkylating  Agent  (Cytotoxic  Drugs)    Inhibit  purine  synthesis  

 Cytotoxic  Drugs  

Page 49: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Actinomycin  D    Cytotoxic  Drugs  –CYTOTOXIC  ANTIBODIES    

Intercalates  with  DNA  and  interferes  with  topoisomerase  II   • Topoisomerase  II  cuts  the  DNA,  allows  it  to  unwind,  and  re-­‐joins  it  –  this  allows  proliferation  to  occur.  

• Actinomycin  D  inhibits  topoisomerase  II  by  binding  DNA  in  this  way  

Cytotoxic  Drugs  

DOXORUBICIN    Cytotoxic  Drugs  –CYTOTOXIC  ANTIBODIES    

Inhibits  DNA  and  RNA  synthesis      

• It  has  the  ability  to  intercalate  DNA  and  inhibit  topoisomerase  II    

Cytotoxic  Drugs  

BLEOMYCINS    Cytotoxic  Drugs  –CYTOTOXIC  ANTIBODIES    

Metal-­‐Chelating-­‐Glycopeptide  antibiotics  that  degrade  DNA      

• Chelate  metals  and  generate  free  radicals  (oxygen  derived)  

• Free  radicals  cause  DNA  strand  breaks  • Bleomycins  are  active  against  non-­‐dividing  cells,  

since  they  do  not  rely  on  cell  proliferation  • Problems  associated  with  high  damage  to  LUNG  

TISSUE  • Intravenous  administration  

 

Cytotoxic  Drugs  

PODOPHYLLOTOXINS  e.g.  etoposide    Cytotoxic  Drugs  –  PLANT  ALKALOIDS    

Podophyllotoxins:  e.g.  etoposide    

• Inhibit  DNA  synthesis  and  cause  a  cell  cycle  block  at  G2    

Cytotoxic  Drugs  

VINCA  ALKALOIDS  e.g.  Vincristine      Cytotoxic  Drugs  –  PLANT  ALKALOIDS    

Vinca  Alkaloids:  e.g.  vincristine    

• Bind  to  tubulin  and  inhibit  its  polymerisation  into  microtubules  –  this  prevents  spindle  fibre  formation  

 

Cytotoxic  Drugs  

HYDROXYUREA    Cytotoxic  Drugs  –  MISC.    

  • Inhibits  ribonucleotide  reductase  (involved  in  nucleic  acid  synthesis)    

Cytotoxic  Drugs  

Page 50: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

CISPLATIN    Cytotoxic  Drugs  –  MISC.    

  • Interacts  with  DNA  and  causes  guanine  intra-­‐strand  cross-­‐links    

Cytotoxic  Drugs  

PROCARBAZINE    Cytotoxic  Drugs  –  MISC.    

  • Inhibits  DNA  and  RNA  Synthesis  and  interferes  with  mitosis  at  interphase  

• Metabolically  activated  by  cytochrome  P450  and  MAO  à  alkylate  DNA  (at  N7  and  O6  of  guanine)    

• Prodrug  –  a  substrate  for  Cytochrome  P450  and  MAO  

• N-­‐N  à  N=N  (this  activates  it  and  produces  multiple  metabolites,  including  alkylating  agents)  

• Alkylating  agents  covalently  bind  to  DNA  to  produce  bulky  DNA  adducts    

Cytotoxic  Drugs  

Hormones    As  Cytotoxic  Drugs  

• Used  for  chemotherapy  but  are  not  technically  cytotoxic  

• Can  inhibit  tumours  in  hormone-­‐sensitive  tissues  (e.g.  prostate,  breast)  

• Gonadotrophin-­‐releasing  hormone  analogues  e.g.  Goserelin  

 

 

Hormones:   Prednisolone   Fosfestrol   Tamoxifen  

Mechanism   Glucocorticoid   Androgen   SERM  

Use   Leukaemias  &  lymphomas  

Prostate  cancer  

Breast  cancer  

 General  Toxic  Effects  

• Myelotoxicity  • Impaired  wound  healing  • Depression  of  growth  (children)  • Sterility  • Teratogenicity  • Loss  of  hair  • Nausea  and  Vomiting  

         

Cytotoxic  Drugs  

Page 51: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Side  Effects:  On  fast  growing  cells:  

• Inhibit  cell  division  • Cell-­‐cycle  specific  drugs  affect:  bone  marrow,  GI  

Tract,  Epithelium,  hair  &  nails,  spermatogonia    On  slow  growing  cells:  

• Introduce  DNA  mutations  • Cell-­‐cycle  independent  drugs  (alkylating  agents)  

cause  secondary  tumours      

 Phenytoin  (PHT)    Anticonvulsant    (Anti-­‐Epileptic)  

• Blocks  voltage-­‐gated  Na+  channels   Indications:  • Partial  Epilepsy  • Status  Epilepticus  

 Mechanism  of  Action:  

• Blocks  voltage-­‐gated  Na+  Channels    Drug  Level  Monitoring  

• Useful    Elimination  Half-­‐Life  

• 20  Hours    Metabolism  

• Hepatic  metabolism  • Oxidation  &  hydroxylation,  then  conjugation  • Potent  hepatic  enzyme  inducer  

 Active  Metabolites  

• None    Drug  Interactions  

• Complex    Adverse  Drug  Reactions  

• Ataxia  • Sedation  

 

Page 52: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

• Hypersensitivity  • Rash  • Fever  • Gingival  hypertrophy  • Folate  deficiency  • Megaloblastic  anaemia  • Vitamin  K  deficiency  • Depression  • Hirsutism  • Peripheral  neuropathy  • Osteomalacia  • Reduced  bone  density  • Hypocalcaemia  • Hepatitis  • Vasculitis  • Myopathy  • Coagulation  defects  • Bone  marrow  hypoplasia  

 Carbamazepine    Anticonvulsant    (Anti-­‐Epileptic)  

• Blockade  of  voltage-­‐gated  Na+  Channels   Indications:  • Partial  and  Secondary  Generalised  Seizures    

 Mechanism  of  Action:  

• Blocks  voltage-­‐gated  Na+  Channels    Drug  Level  Monitoring  

• Useful    Elimination  Half-­‐Life  

• 5-­‐26  hours  (x3  daily  dosing,  unless  SR  preparations)    

Metabolism  • Hepatic  oxidation  then  conjugation  • CBZ  is  a  potent  hepatic  enzyme  inducer    

 Active  Metabolites  

• Carbamezepine  epoxide      

 

Page 53: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Drug  Interactions  • Complex  drug  interaction  profile    

 Adverse  Drug  Reactions  

• Hypersensitivity  (rash,  hepatitis,  nephritis)  • Dose-­‐Related  (Ataxia,  dizziness,  sedation,  

diplopia)  • Chronic  (Vitamin  K  Deficiency,  depression,  

impotence,  osteomalacia,  hyponatraemia)    

Lamotrigine    Anticonvulsant    (Anti-­‐Epileptic)  

• Blocks  voltage-­‐gated  Na+  channels   Indications:  • Partial  and  generalised  epilepsy  (wide  

spectrum)    

Mechanism  of  Action:  • Blocks  voltage-­‐gated  Na+  Channels  

 Drug  Level  Monitoring  

• N/A    Elimination  Half-­‐Life  

• 29  hours  (monotherapy)  • 15  hours  (enzyme  inducing  co-­‐medication)  • 60  hours  (valproate  co-­‐medication)  

 Metabolism  

• Hepatic  metabolism  • Glucuronidation  (no  phase  I  metabolism)  • Does  not  induce  hepatic  enzymes  

 Active  Metabolites  

• None      

Drug  Interactions  • Valproate  • Enzyme  inducing  AEDs  

       

 

Page 54: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Adverse  Drug  Reactions  • Usually  well  tolerated  • Rash  (high  incidence;  may  be  severe)  • Headache  • Blood  dyscrasias  • Ataxia  • Diplopia  • Dizziness  • Sedation  • Insomnia  • Mood  disturbance  

 (Sodium)  Valproate    Anticonvulsant    (Anti-­‐Epileptic)  

• Enhances  GABA  transmission  by  several  mechanisms  

Indications:  • Partial  or  generalised  epilepsy  (wide  spectrum)  

 Mechanism  of  Action:  

• Enhances  GABA  transmission  by  several  mechanisms      

Drug  Level  Monitoring  • N/A  

 Elimination  Half-­‐Life  

• 4-­‐12  hours    

Metabolism  • Hepatic  metabolism  • Oxidation,  then  conjugation  • Potent  hepatic  enzyme  inhibitor  

 Active  Metabolites  

• None      

Drug  Interactions  • Many  

         

 

Page 55: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Adverse  Drug  Reactions  • Severe  hepatic  toxicity  (especially  in  young  

patients)  • Pancreatitis  • Encephalopathy  (ammonia  driven)  • Drowsiness  • Tremor  • Blood  dyscrasias  • Hair  thinning  and  hair  loss  • Weight  gain  • Endocrine  (PCO)  

   Sulphanilamide  (P-­‐Aminobenzoic  Acid  Analogue)    (ANTI-­‐MICROBIAL  DRUG)  

 

Folate  is  required  for  DNA/RNA  Synthesis  in  both  man  and  bacteria  Man  has  evolved  specific  uptake  processes  for  transporting  folate  into  the  cells.    Bacteria  have  to  synthesise  folate.  P-­‐aminobenzoic  acid  is  essential  for  the  synthesis  of  folic  acid  in  bacteria.    Sulphanilamide  is  a  structural  analogue  of  P-­‐aminobenzoic  acid  that  COMPETES  for  the  enzyme  dihydropteroate  which  is  involved  in  the  synthesis  of  folate.    They  interfere  with  bacterial  DNA/RNA  synthesis  and  are  bacteriostatic  i.e.  they  arrest  the  growth  of  the  bacteria,  but  do  not  kill  them  –  it  is  then  up  to  the  host  defence  system.    

Pharmacokinetics:  • Readily  absorbed  in  the  GI  tract.  • Maximum  plasma  concentration  is  reached  

within  4-­‐6  hours    

Side  Effects:  Mild/moderate  (do  not  warrant  withdrawal)    

• Nausea  and  vomiting  • Headache  • Mental  depression  

 Severe  (warrants  withdrawal)  

• Hepatitis-­‐type  reaction  • Hypersensitivity  reactions  • Bone  marrow  suppression  

 Note  –  WIDESPREAD  RESISTANCE    

Anti-­‐Microbial  Drugs  

Trimethoprim  (Folate  Antagonists)    (ANTI-­‐MICROBIAL  DRUG)  

The  utilisation  of  folate,  in  the  form  of  tetrahydrofolate  as  a  co-­‐factor  in  thymidylate  synthesis  is  an  example  of  a  pathway  in  which  there  is  a  differential  sensitivity  of  human  and  bacterial  enzymes  to  drugs.    This  pathway  is  virtually  identical  in  micro-­‐organisms  and  man,  but  one  of  the  key  enzymes  dihydrofolate  reductase  is  many  times  more  sensitive  to  particular  analogues  in  either  man  or  bacteria.    

Pharmacokinetics  • Oral  administration  • Trimethoprim  is  fully  absorbed  from  the  GI  tract  • Widely  distributed  throughout  the  tissues  and  

body  fluids  • Reaches  high  concentrations  in  the  lungs  and  

kidneys.    

Anti-­‐Microbial  Drugs  

Page 56: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

 Trimethoprim  is  a  folate  antagonist  that  is  more  sensitive  to  the  dihydrofolate  reductase  enzyme  in  BACTERIA  than  in  man  (IC50  [mmol/l]  0.005  bacteria,  260  man)    

 Unwanted  Effects  

• Nausea/vomiting  • Skin  rashes  • Hypersensitivity  –  even  the  small  dose  of  

sulphonamide  which  is  used  in  co-­‐trimoxazole  can  still  cause  serious  hypersensitivity  reactions,  which  are  not  dose  related.    

Clinical  uses  • Urinary  tract  and  Respiratory  tract  infections  

 Co-­‐Trimoxazole  (Sequential  Blockade)    (ANTI-­‐MICROBIAL  DRUG)  

Sulphamethazole  and  trimethoprim.    

• Since  sulphonamides  affect  the  earlier  stage  in  the  same  metabolic  pathway  i.e.  folate  synthesis,  they  potentiate  the  actions  of  trimethoprim.    

• When  given  in  combination,  the  drugs  are  effective  at  one  tenth  or  less  of  what  would  be  needed  if  each  drug  was  given  on  its  own.  

 

Pharmacokinetics  • When  given  as  co-­‐trimoxazole,  about  two-­‐thirds  

of  each  drug  is  protein  bound  and  about  half  of  each  is  excreted  within  24  hours.    

Clinical  Uses  • For  infections  with  pneumocystis  carinii  which  

causes  pneumonia  in  patients  with  AIDS,  co-­‐trimoxazole  is  used  in  high  doses.  

 

Anti-­‐Microbial  Drugs  

Penicillin  (β-­‐Lactam  Antibiotics)    (ANTI-­‐MICROBIAL  DRUG)  

β-­‐Lactam  antibiotics  e.g.  penicillin  inhibit  the  formation  of  peptidoglycan  and  are  subsequently  bacteriocidal    Method  of  Action:  

• Interfere  with  the  synthesis  of  the  bacterial  wall  peptidoglycan  

• Inhibit  the  transpeptidation  enzyme  that  cross  links  the  peptide  chains  attached  to  the  backbone  of  the  peptidoglycan.  

 

Pharmacokinetics  When  administered  orally  -­‐  Different  penicillins  are  absorbed  to  differing  degrees  depending  on  their  stability  in  acid  and  their  adsorption  on  to  food.    The  drugs  are  widely  distributed  by  the  bodily  fluids,  passing  into  joints,  pleural  and  pericardial  cavities,  into  the  bile,  the  saliva  and  the  milk,  and  across  the  placenta.    Being  lipid  insoluble  they  do  not  enter  mammalian  cells.    They  therefore  do  not  readily  cross  the  blood  brain  barrier,  UNLESS  the  meninges  are  inflamed,  in  which  case  they  may  reach  effective  therapeutic  concentrations.        

Anti-­‐Microbial  Drugs  

Page 57: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Elimination  Elimination  of  most  penicllins  is  mainly  renal  and  occurs  rapidly  -­‐  90%  tubular  secretion  

 Unwanted  Effects  Relatively  free  from  direct  toxic  effects  Hypersensitivity  reactions  –  breakdown  products  of  penicillins  combine  with  host  protein  and  become  antigenic.    Most  common  reactions  are  skin  rashes  and  fever,  acute  anaphylactic  shock.    A  side  effect  of  broad  spectrum  penicillins  is  effect  on  the  gut  bacterial  flora  -­‐  in  GI  tract  disturbances.    Resistance  to  β-­‐Lactam  Antibiotics  

1. Production  of  β-­‐Lactamases  by  bacteria  Genetically  controlled  and  can  be  transferred  from  one  bacterium  to  another.    Staphylococcal  resistance  via  β-­‐lactamase  production  has  spread  progressively.    In  developed  countries,  at  least  80%  of  staphylococci  now  produce  β-­‐Lactamase.    Solution:  Use  β-­‐lactamase  inhibitors  e.g.  CLAVULANIC  ACID  which  functions  by  covalently  binding  to  the  enzyme  at,  or  close  to,  its  active  site.    

2. Reduction  in  the  Permeability  of  the  outer  membrane  Therefore,  there  is  a  decreased  ability  of  the  drug  to  penetrate  to  the  target  site.    

3. The  occurrence  of  modified  penicillin-­‐binding  sites  

 

Page 58: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

CLAVULANIC  ACID    (β-­‐lactamase  inhibitors)    

Functions  by  covalently  binding  to  the  β-­‐Lactamase  enzyme  at,  or  close  to,  its  active  site.  

Reduces  resistance  to  penicillin  Anti-­‐Microbial  Drugs  

CEPHALOSPORINS  (β-­‐Lactam  Antibiotics)      (ANTI-­‐MICROBIAL  DRUG)    

e.g.  Cephalexin  (oral),  Cefuroxime  and  Cefotaxime  (parenteral)    e.g.  cefoperazone,  cefotaxime  (can  cross  BBB)      Mechanism  of  Action  

• Same  as  penicillins,  interfere  with  peptidoglycan  synthesis  

• Resistance  to  this  group  of  drugs  has  increased.  • Nearly  all  Gram  –ve  bacteria  have  the  gene  

encoding  for  β-­‐lactamase,  which  is  more  active  in  hydrolysing  cephalosporins  than  penicillin.    

• Resistance  also  occurs  if  there  is  decreased  penetration  of  the  drug  –  due  to  alterations  of  the  membrane  proteins  or  mutations  of  the  binding  site  proteins.    

• They  are  bactericidal.    

 Pharmacokinetics  Some  cephalosporins  may  be  given  orally,  but  most  are  given  parenterally  –  intramuscular  (i.m.)  or  intravenous  (i.v.)    Widely  distributed  in  the  body,  passing  into  the  pleural,  pericardial  and  joint  fluids,  and  across  the  placenta.    Some  cephalosporins  cross  the  blood  brain  barrier  e.g.  cefoperazone,  cefotaxime  (Drug  of  choice  for  bacterial  meningitis)    Excretion  (Most  Cephalosporins)  

• Excretion  is  mostly  via  the  kidney  –  largely  by  tubular  secretion  

• But  40%  of  ceftriaxone  and  75%  of  cefoperazone  is  eliminated  in  the  bile.  

• Since  different  β-­‐Lactam  antibiotics  may  bind  to  different  binding  proteins,  it  may  be  feasible  to  combine  two  or  more  of  these  agents  and  achieve  a  synergistic  action  between  them.  

 Unwanted  Effects:  

• Hypersensitivity  reactions  (similar  to  those  with  penicillin)  may  be  seen.  

• Some  cross-­‐reaction  occur  (about  10%  of  penicillin  sensitive  individuals  will  be  allergic  to  cephalosporins)  

• Nephrotoxicity  has  been  reported  (especially  with  cephradine)  

• Diarrhoea  can  occur  with  oral  cephalosporins.    

Anti-­‐Microbial  Drugs  

Page 59: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

TETRACYCLINES  (Drugs  that  inhibit  bacterial  protein  synthesis)    (ANTI-­‐MICROBIAL  DRUG)    

Tetracyclines  are  broad-­‐spectrum  antibiotics  that  have  a  polycyclic  structure.      Method  of  Action  

• Actively  transported  into  bacteria  and  interrupt  protein  synthesis.  

• Competition  with  tRNA  for  the  A-­‐binding  site.  • Bacteriostatic,  not  bactericidal.  

 Spectrum  

• Very  wide  and  include  Gram  +ve  and  Gram  –ve  bacteria,  mycoplasma,  Rickettsia,  Chlamydia,  some  spirochaetes  and  some  protozoa  (e.g.  amoebae)    

• However,  many  strains  have  become  resistant  to  these  agents.  

• The  basis  of  resistance  is  the  development  of  energy-­‐dependent  efflux-­‐mechanisms  which  transport  the  tetracyclines  OUT  OF  THE  BACTERIUM,  but  alterations  of  the  target  (the  bacterial  ribosome)  also  occur.  

   

Pharmacokinetics  • Usually  given  orally  • Can  also  be  given  parenterally  • The  absorption  of  most  preparations  from  the  

gut  is  irregular  and  incomplete,  and  is  improved  by  the  absence  of  food  

• Since  tetracycline’s  chelate  metal  ions  (e.g.  iron),  forming  a  non-­‐absorbable  complex,  absorption  is  decreased  by  the  presence  of  MILK,  certain  antacids  and  iron  preparations  

• The  drugs  have  wide  distribution  • The  enter  most  fluid  compartments  

 Excretion  

• Excretion  is  both  via  the  bile  and  by  glomerular  filtration  in  the  kidney  

• Most  tetracyclines  will  accumulate  if  renal  function  is  impaired.  

Exception  –  DOXYCYCLINE  (largely  excreted  into  the  gastrointestinal  tract  via  the  bile).    Unwanted  Effects  

• Most  common  is  gastrointestinal  disturbances,  due  initially  to  direct  irritation  and  later  by  the  modification  of  gut  flora  

• Because  they  chelate  calcium,  tetracyclines  are  deposited  in  GROWING  BONES  and  TEETH,  causing  staining  and  sometimes  bone  deformities.  They  should  therefore  not  be  given  to  children,  pregnant  women  or  nursing  mothers.    

• Phototoxicity  (sensitisation  to  sunlight)  has  been  seen  –  more  particularly  with  demeclocycline.  

• Minocycline  can  produce  vestibular  disturbances  (dizziness  and  nausea)  –  the  frequency  of  which  is  dose  related.  

• High  doses  of  tetracyclines  can  decrease  protein  synthesis  in  host  cells  –  an  anti-­‐anabolic  effect.  

 

Anti-­‐Microbial  Drugs  

Page 60: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Chloramphenicol  (Drugs  that  inhibit  bacterial  protein  synthesis)    (ANTI-­‐MICROBIAL  DRUG)      

Mechanism  of  Action  • Inhibition  of  protein  synthesis.  • Chloramphenicol  binds  to  the  50s  Subunit  of  the  

ribosome  and  inhibits  transpeptidation.    

Spectrum  • Wide  spectrum  of  activity,  including  Gram  –ve  and  

Gram  +ve  bacteria.  • They  are  bacteriostatic  for  most  organisms.  

 Resistance  

• Resistance  is  due  to  the  production  of  chloramphenicol  acetyl-­‐transferase  and  is  plasmid-­‐mediated.    

• R-­‐plasmids  containing  determinants  for  multiple  drug  resistance  for  chloramphenicol,  streptomycin  and  tetracyclines  etc.  may  be  transferred  from  one  bacterial  specie  to  another  by  promiscuous  plasmids.    

• Derivatives  of  chloramphenicol  with  the  terminal  –OH  on  the  side-­‐chain  replaced  by  fluorine  are  not  as  susceptible  to  acetylation,  and  thus  retain  antibacterial  activity.  

 

Pharmacokinetics  • Oral  chloramphenicol  is  rapidly  and  completely  

absorbed  • Reaches  maximum  concentration  in  the  plasma  

within  2  hours.  • Can  be  given  parenterally  

 • Widely  distributed  throughout  the  tissues  and  

body  fluids  (including  CSF)  • In  the  plasma,  30-­‐50%  plasma  protein  bound  • Half-­‐life  is  approximately  2  hours  

 • About  10%  is  excreted  unchanged  in  the  urine  • The  remainder  is  inactivated  in  the  liver.  • Metabolites  are  excreted  via  the  kidney  and  the  

bile.    

Unwanted  Effects  • The  most  important  unwanted  effect  is  

depression  of  the  bone  marrow  resulting  in  pancytopenia    

• Decrease  in  all  blood  cell  elements  –  an  effect  which  (although  rare)  can  occur  even  with  very  low  doses  in  some  individuals.    

• Chloramphenicol  should  be  used  with  great  care  in  new-­‐borns  because  inadequate  inactivation  and  excretion  of  the  drug  can  result  in  ‘grey  baby  syndrome’  –  vomiting,  diarrhoea,  flaccidity,  low  temperature  and  an  ash  grey  colour.    

• This  carries  a  40%  mortality  rate    

• Hypersensitivity  reactions  can  occur  • GI  disturbances  • Other  alteration  of  the  intestinal  microbial  flora.  

 

Anti-­‐Microbial  Drugs  

Page 61: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

AMINOGLYCOSIDES  e.g.  GENTAMICIN    (Drugs  that  inhibit  bacterial  protein  synthesis)    (ANTI-­‐MICROBIAL  DRUG)    

Method  of  action  • The  aminoglycosides  inhibit  bacterial  protein  

synthesis  by  binding  to  the  30s  Subunit  of  the  ribosome  

• This  causes  an  alteration  in  the  codon:anticodon  recognition  and  results  in  a  misreading  of  mRNA,  and  the  production  of  defective  bacterial  proteins    

• However,  this  action  does  not  entirely  explain  their  rapid  lethality  –  so  it  is  possible  there  may  be  a  second  target.    

• Their  penetration  through  the  cell  membrane  of  the  bacterium  depends  on  an  oxygen-­‐dependent  active  transport  system,  which  chloramphenicol  can  block.  

• Their  effect  is  bactericidal  and  is  enhanced  by  agents  that  interfere  with  cell  wall  synthesis.    

Resistance  • Resistance  to  aminoglycosides  is  becoming  a  

problem,  and  may  be  due  to  a  number  of  factors  –  the  most  important  is  inactivation  by  microbial  enzymes.  

• Other  mechanisms  of  resistance  include:  o Failure  of  penetration  (overcome  

concomitant  use  of  penicillin  and/or  vanocomycin  which  synergies  with  aminoglycosides)    

o Lack  of  binding  of  the  drug  due  to  mutations  that  alter  the  binding-­‐site  on  the  30S  subunit.    

Spectrum  • The  aminoglycosides  are  effective  against  many  

aerobic  Gram  –ve  and  some  Gram  +ve  bacteria  • They  may  be  given  together  with  penicillin  in  

infections  caused  by  Streptococcus,  Listeria  or  Pseudomonas  aeruginosa  

 

Pharmacokinetics  • The  aminoglycosides  are  polycations  and  highly  

polar  –  hence  are  not  absorbed  in  the  GI  tract  • Given  intramuscularly  (i.m.)  or  intravenously  

(i.v.).  • Binding  to  plasma  proteins  is  minimal.  

 • They  do  not  enter  cells  and  do  not  cross  the  

blood  brain  barrier  into  the  CNS.  • Plasma  half-­‐life  is  2-­‐3  hours.  • Elimination  is  virtually  entirely  by  glomerular  

filtration  in  the  kidney.  • Tissue  concentrations  increase  during  

treatment,  and  can  reach  toxic  levels  after  about  a  week  of  unmodified  dosage.    

Unwanted  Effects:  • Ototoxicity  –  progressive  damage  to  and  

destruction  of  the  sensory  cells  in  the  cochlea  and  vestibular  organs  of  the  ear.    

• Nephrotoxicity  –  damage  to  the  kidney  tubules.  o Can  be  reversed  if  the  use  of  the  drug  is  

stopped.  o Since  elimination  of  these  drugs  is  

almost  entirely  renal,  their  nephrotoxic  action  can  impair  their  own  excretion  and  a  vicious  cycle  can  be  set  up.  

o Plasma  concentrations  must  be  monitored  regularly.  

 

Anti-­‐Microbial  Drugs  

Page 62: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

ISONIAZID    (Antimycobacterial  agent)    (ANTI-­‐MICROBIAL  DRUG)    

Mechanism  of  Action:  • The  antibacterial  activity  of  isoniazid  is  limited  to  

mycobacteria.  • It  is  bacteriostatic  on  resting  organisms,  and  can  kill  

dividing  bacteria  (bactericidal  effect).    

• It  passes    freely  into  mammalian  cells  and  therefore  effective  against  intracellular  organisms  

• The  mechanism  of  action  is  not  fully  understood  –  some  evidence  suggests  inhibition  of  the  synthesis  of  mycolicacids  (important  constituents  of  the  cell  wall  and  peculiar  to  mycobacterium)  

 

Pharmacokinetics  • Readily  absorbed  from  the  GI  tract,  or  after  

parenteral  injection  • Widely  distributed  throughout  the  tissues  and  

body  fluids,  and  CSF.    

• Importantly  –  penetrates  well  into  NECROTIC  TUBERCULOUS  LESION  

• Metabolism,  involves  largely  acetylation,  depends  on  genetic  factors  that  determine  whether  a  person  is  a  slow  (t½=3hours)  or  rapid  (t½=1.5hours)  acetylator  of  the  drug.  

• Slow  acetylators  have  a  better  therapeutic  response.  

 

Anti-­‐Microbial  Drugs  

RIFAMPICIN    (Antimycobacterial  agent)    (ANTI-­‐MICROBIAL  DRUG)    

Mechanism  of  Action:  • Binds  to  and  inhibits  DNA-­‐dependent  RNA  

polymerase  in  prokaryotic,  but  not  eukaryotic  cells.  • It  is  one  of  the  most  active  anti-­‐tuberculosis  agents  

known.  • It  is  also  active  against  most  other  Gram  +ve  

bacteria  as  well  as  many  Gram  -­‐ve  species.  • It  enters  phagocytic  cells  and  can  kill  intracellular  

micro-­‐organisms.    

Pharmacokinetics  • Rifampicin  is  given  orally.  • Widely  distributed  in  the  tissues  and  body  

fluids    

• Excreted  partly  in  the  urine  and  partly  in  the  bile-­‐  some  of  it  undergoing  enterohepatic  cycling.  

 • There  is  progressive  metabolism  of  the  drug  by  

deacetylation  during  its  repeated  passage  through  the  liver.    

 • The  metabolite  retains  antibacterial  activity  but  

is  less  well  absorbed  from  the  GI  tract.    Unwanted  effects  

• Infrequent,  occurring  in  fewer  than  4%  of  individuals  

• E.g.  skin  eruptions,  fever,  GI  tract  disturbances      

Anti-­‐Microbial  Drugs  

Page 63: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

PYRAZINAMIDE    (Antimycobacterial  agent)    (ANTI-­‐MICROBIAL  DRUG)    

Mechanism  of  Action  • Pyrazinamide  is  inactive  at  neutral  pH,  but  

tuberculostatic  at  acidic  pH.  • It  is  effective  against  the  intracellular  organism  in  

macrophages,  since  after  phagocytosis  the  organism  with  be  contained  in  phagolysosomes,  in  which  the  pH  is  low.  

 

Pharmacokinetics  • Oral  administration  -­‐  the  drug  is  well  absorbed  

after  oral  administration    • Widely  distributed,  penetrating  well  into  the  

meninges  • Excreted  through  the  kidneys  (mainly  

glomerular  filtration)    

Unwanted  Effects  • Arthralgia  (associated  with  high  concentrations  

of  plasma  urates)  • GI  tract  upsets  • Malaise  • Fever  

 

Anti-­‐Microbial  Drugs  

NYSTATIN    (Anti-­‐Fungal  Agent)    (ANTI-­‐MICROBIAL  DRUG)    

Nystatin  is  a  polyene  macrolide.    Mechanism  of  Action  

• Binds  to  cell  membrane  and  interferes  with  permeability  and  transport  functions.    

• It  forms  a  pore  in  the  membrane  –  the  hydrophilic  core  of  the  molecule  creating  a  transmembrane  ion  channel  

 • Nystatin  has  a  selective  action,  binding  avidly  to  the  

membranes  of  fungi  and  some  protozoa,  and  less  avidly  to  mammalian  cells,  and  not  at  all  to  bacteria.    

• The  relative  specificity  for  fungi  may  be  due  to  the  drug’s  greater  avidity  for  ergosterol  (fungal  membrane  sterol)  than  for  cholesterol  (the  main  sterol  in  the  plasma  membrane  in  animal  cells).    

• It  is  effective  against  most  fungi  and  yeast        

 There  is  virtually  no  absorption  from  the  mucous  membranes  of  the  body,  or  from  the  skin,  and  its  use  is  limited  to  fungal  infections  of  the  SKIN  and  GI  TRACT.    Unwanted  Effects  

• Rare  -­‐  Limited  to  nausea  and  vomiting  when  high  doses  are  taken  by  mouth  

• Very  rare  -­‐  Rash    

Anti-­‐Microbial  Drugs  

Page 64: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

MICONAZOLE    (Anti-­‐Fungal  Agent)    (ANTI-­‐MICROBIAL  DRUG)    

Miconazole  belongs  to  the  azole  group  of  synthetic  antimycotic  agents,  with  a  broad  spectrum  of  activity.    Mechanism  of  Action  

• Azoles  block  the  synthesis  of  ergosterol  (the  main  sterol  in  the  fungal  cell  membrane)  by:  

o Interacting  with  the  enxyme  necessary  for  conversion  of  lanosterol  to  ergosterol.    

• The  resulting  depletion  of  ergosterol  alters  the  fluidity  of  the  membrane  and  this  interferes  with  the  action  of  the  membrane  associated  enzymes.    

• The  overall  effect  is  an  inhibition  of  replication.  • A  further  repercussion  is  the  inhibition  of  the  

transformation  of  candida  yeast  cells  into  hyphae  (the  invasive  and  pathogenic  form  of  the  parasite)  

 

Pharmacokinetics  • Miconazole  is  given  by  intravenous  infusion  for  

systemic  infections  • Given  orally  for  infections  of  the  GI  tract.  • Short  plasma  half-­‐life.  

 Unwanted  Effects  

• Relatively  infrequent  (most  commonly  being  GI  Tract  disturbances,  blood  dyscrasias)  

   

Anti-­‐Microbial  Drugs  

ACYCLOVIR    (Anti-­‐Viral  Agent)    (ANTI-­‐MICROBIAL  DRUG)    

• Acyclovir  is  a  guanosine  derivative  with  a  high  specificity  for  herpes  simplex.  

•  Mechanism  of  Action  

• Acyclovir  is  converted  to  the  monophosphate  by  thymidine  kinase  –  the  virus  specific  form  of  this  enzyme  is  much  more  effective  at  carrying  out  the  phosphorylation  than  the  host  cell’s  thymidine  kinase.  

• The  monophosphate-­‐form  is  subsequently  converted  to  triphosphate  by  the  host  cell  kinases.    

It  is  therefore  only  adequately  activated  in  infected  cells.    

• Acyclovir  triphosphate  inhibits  viral  DNA-­‐polymerase,  terminating  the  chain  reaction.  

• It  is  30  times  more  potent  against  the  herpes  virus  enzyme  than  the  host  enzyme.  

 • Acyclovir  triphosphate  is  fairly  rapidly  broken  down  

within  the  host  cells  by  cellular  phosphatases.    

Herpes  simplex  is  more  sensitive  to  acyclovir  than  other  herpes  viruses  which  cause  glandular  fever  or  shingles.    Acyclovir  has  a  small,  but  reproducible  effect  against  cytomegalovirus  (CMV)  which  can  cause  glandular  fever  in  adults,  or  severe  disease  e.g.  retinis,  resulting  in  blindness  in  individuals  with  AIDS.    Resistance  

• Resistance  due  to  changes  in  the  viral  genes  coding  for  thymidine  kinase  or  DNA  polymerase  has  been  reported  

• Acyclovir-­‐resistant  herpes  simplex  virus  has  been  the  cause  of  pneumonia  and  encephalitis  in  immunocompromised  patients.  

 Pharmacokinetics  

• Acyclovir  can  be  given  orally,  i.v.  or  topically  • When  given  orally,  only  about  20%  of  the  dose  is  

absorbed  • Peak  plasma  concentrations  reached  in  1-­‐2  

hours  

Anti-­‐Microbial  Drugs  

Page 65: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

• i.v.  infusion  results  in  plasma  concentration  10-­‐  to  20-­‐  fold  higher  

• The  drug  is  widely  distributed,  reaching  concentrations  in  the  CSF  which  are  50%  of  those  in  the  plasma  

 Excretion  

• Excretion  is  in  the  kidneys,  partly  by  glomerular  filtration  and  partly  by  tubular  secretion  

 Side  Effects  

• Local  inflammation  can  occur  during  intravenous  injection  if  there  is  extravasation  of  the  solution  (as  it  is  very  alkaline)  

• Renal  dysfunction  has  been  reported  when  acyclovir  is  given  intravenously  –  slow  infusion  reduces  the  risk.  

• Nausea  • Headache  

 ZIDOVUDINE  (AZIDOTHYMIDINE,  AZT)    (Anti-­‐Viral  Agent)    (ANTI-­‐MICROBIAL  DRUG)    

Mechanism  of  Action  • Zidovudine  is  an  analogue  of  thymidine  • In  retroviruses,  such  as  the  HIV  Virus,  it  is  an  active  

inhibitor  of  reverse  transcriptase  enzyme.    

• It  is  phosphorylated  by  cellular  enzymes  to  the  triphosphate  form,  which  competes  with  the  equivalent  cellular  triphosphates  which  are  essential  substrates  for  the  formation  of  proviral  DNA  by  viral  reverse  transcriptase  (viral  RNA-­‐dependant  DNA  polymerase)    

• Its  incorporation  into  the  growing  viral  DNA  strand  results  in  chain  termination    

• Mammalian  alpha  DNA  polymerase  is  relatively  resistant  to  the  effect.  However,  gamma  DNA  polymerase  in  the  host  cell  mitochondrion  is  fairly  sensitive  to  the  compound,  and  this  may  be  the  basis  of  unwanted  effects.    

Pharmacokinetics  • Given  Orally  • Bioavailability  of  zidovudine  is  60-­‐80%  due  to  

first  pass  metabolism  • Peak  plasma  concentration  occurs  at  30  minutes  • It  can  also  be  given  intravenously  

 • There  is  little  plasma  protein  binding  so  there  

are  no  drug  interactions  due  to  the  displacement  by  other  drugs.  

• Zidovudine  enters  mammalian  cells  by  passive  diffusion  –  unlike  most  other  nucleotides  which  require  active  uptake.    

• The  drug  passes  into  the  CSF  and  the  brain  • Most  of  the  drug  is  metabolised  to  inactive  

glucoronide  in  the  liver  –  only  20%  of  the  active  form  being  excreted  in  the  urine.    

   

Anti-­‐Microbial  Drugs  

Page 66: Pharmacology+And+Therapeutics+(Spring+Term)+ … · TROPICAMIDE& Peripherally+Acting+Muscarinic+Antagonist+–+EYE+ (Antimuscarinic&Drug)& + GLAUCOMA+ DILATIONOF+THE+PUPILS+ Tropicamide

Resistance  • In  most  patients  the  therapeutic  response  to  

zidovudine  wanes  with  long-­‐term  use,  particularly  in  late-­‐stage  disease.    

• It  is  known  that  the  virus  develops  resistance  to  the  drug  due  to  mutations  resulting  in  amino  acid  substitutions  in  the  viral  reverse  transcriptase  and  that  these  genetic  changes  accumulate  progressively.      

• Thus,  the  virus  is  a  constantly  moving  target.    • Resistant  strains  can  be  transferred  between  

individuals.    • Other  factors  which  could  underlie  the  loss  of  

efficacy  of  the  drug  are:  o Decreased  activation  of  zidovudine  to  the  

triphosphate  o Increased  virus  load  due  to  reduction  in  

immune  mechanisms    Increased  virulence  of  the  pathogen  

Uses:  In  patients  with  AIDS  

• It  reduces  the  incidence  of  opportunistic  infection  (such  as  Pneumocystis  Carnii  Pneumonia)  

• Stabilises  weight  • Reverses  HIV-­‐Associated  thrombocytopenia  • Stabilises  HIV-­‐associated  dementia  • Reduces  viral  load  

 If  given  to  HIV  +ve  individuals  before  the  onset  of  AIDS  

• In  combination  with  other  drugs,  can  dramatically  prolong  the  life  expectancy    

In  HIV  +ve  mothers  • Reduces  the  risk  of  transmission  of  the  virus  to  

the  foetus  by  66%    

In  subjects  who  have  been  accidentally  exposed  to  HIV  • E.g.  hospital  worker,  rape  victim,  condom  

problems  etc.    Unwanted  Effects  

• Common  unwanted  effects:  o Anaemia  o Neutropenia  

• Uncommon  Effects:  o GI  tract  disturbances  o Skin  rash  o Insomnia  o Fever  o Headache  o Abnormalities  of  liver  function  o Myopathy  (particularly)  

 • Confusion,  anxiety,  depression,  and  a  flu-­‐like  

syndrome  also  reported.