9

Click here to load reader

PH8 (Intéractions onde- matière)

Embed Size (px)

Citation preview

Page 1: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

I / La diffraction :

� La diffraction d’une onde est la modification de sa forme à son passage à travers une fente ou un obstacle . � La diffraction d’une onde se fait sans changement de sa longueur d’onde λλλλ . � La diffraction d’une onde , de longueur d’onde λλλλ à travers une fente de largeur a dépend du

quotient aλ .

1°) Diffraction d’une onde mécanique : 2°) Diffraction d’une onde lumineuse : La largeur de la tache centrale est donnée par : Remarque :

RAPPEL DU COURS

λλλλ

a

λλλλ

Onde incidente ( rectiligne ) Onde diffractée ( circulaire )

Lame vibrante

Cuve à ondes

L θθθθ

D

θθθθ : écart du faisceau angulaire ou demi-diamètre angulaire .

tgθθθθ =D2L

=D2L ≈≈≈≈ θθθθ ⇒ L = 2D.θθθθ

D’autre part , L=aD.2λ

D’où , θθθθ =aλ

L=aD.2λ

1

SERIE DE PHYSIQUE N° 8

Page 2: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

II / La réflexion :

� A la rencontre d’un obstacle plan , une onde mécanique ou lumineuse subit une réflexion . � La réflexion de l’onde se fait sans changement de sa longueur d’onde λλλλ . � La réflexion d’une onde modifie uniquement sa direction de propagation . � L’angle d’incidence i de l’onde incidente est égale à l’angle de réflexion i’ de l’onde réfléchie . III / La réfraction :

� La réfraction d’une onde mécanique est le changement de la direction de sa propagation et de sa longueur d’onde λλλλ , au niveau de la surface de séparation de deux milieux de propagation . � La réfraction d’une onde mécanique est régie par la relation : appelée Loi de Descartes . IV / La dispersion :

� La dispersion d’une onde lumineuse ou mécanique est la variation de sa célérité v dans un milieu transparent d’indice n , en fonction de sa fréquence ν .

� On appelle milieu dispersif , tout milieu dans lequel la célérité v , d’un onde mécanique ou lumineuse , dépend de sa fréquence ν .

I i1

i2

λλλλ1

λλλλ2

Obstacle

N

S

R

Onde incidente Onde réfléchie

Lame vibrante

λλλλ1 = λλλλ2 et i1 = i2

λλλλ1

λλλλ2

N

N’

i1

i2

I

A

B

C

2 Milieu

1 Milieu

i1

i2

Surface de séparation

Onde incidente

Onde réfractée

2

SERIE DE PHYSIQUE N° 8

2

2isin

λ

=1

1isin

λ

Page 3: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

EXERCICE 1

On dispose d’une cuve à ondes remplie d’eau , d’une lame vibrante L produisant une onde progressive plane à la surface de la nappe d’eau et d’une fente F de largeur a convenablement choisie . En mettant le vibreur en marche , on obtient la figure ci-dessous . 1°) Choisir parmi les possibilités suivantes le nom du phénomène : réfraction , diffraction ou réflexion . 2°) Quelle est la nature de l’onde incidente et celle de l’onde qui émerge de la fente F ? 3°) a) Mesurer les longueurs d’onde de part et d’autre de la fente F . Conclure . b) En déduire la célérité des ondes sachant que leur fréquence est N = 10 Hz . 4°) Que se passe-t-il si on augmente la largeur de la fente F ? Faire un schéma .

Rép. Num.: 1°) Diffraction ; 2°) Plane rectiligne→plane circulaire ; 3°) a) λ=λ’=5.10-3m ; b) v=λ.N=5.10-2m.s-1 ; 4°) Si a�, l’onde diffractée n’est plus circulaire . EXERCICE 2

A la surface de l’eau d’une cuve à ondes , on produit une onde rectiligne progressive . Un obstacle est placé sur le trajet des ondes . Il empêche toute propagation au-delà de lui-même . L’obstacle fait un angle α = 30° avec la direction de propagation de l’onde . La distance entre deux crêtes est d = 4 cm et la fréquence de la source est N = 12,5 Hz . 1°) Quel est l’angle d’incidence i ? 2°) Calculer la célérité de l’onde incidente . 3°) Schématiser l’aspect de la surface de l’eau en précisant la direction de propagation de l’onde réfléchie , l’angle d’incidence i et l’angle de réflexion r .

Rép. Num.: 1°) i=60° ; 2°) v=λ.N=0,5m.s-1 ; 3°) i=r=60° EXERCICE 3

Le schéma de la figure ci-dessous est une reproduction à l’échelle réelle de la figure de diffraction obtenue sur un écran situé à une distance D = 2 m d’une fente de largeur a = 100 µm , éclairée par une lumière monochromatique de longueur d’onde λ , émise par une source laser . 1°) Schématiser le dispositif expérimental permettant d’obtenir cette figure de diffraction . 2°) Etablir , pour la tache centrale de diffraction , la relation entre sa largeur x1 et son demi-diamètre angulaire θ .

0,5 cm

a

0,5 cm

L

i=60°

r=60°

x1

x2

x3

3

SERIE DE PHYSIQUE N° 8

Page 4: PH8 (Intéractions onde- matière)

figure-3-

Figure A

Figure B-

[email protected] Proposée par Benaich Hichem

3°) Donner la relation entre le demi-diamètre angulaire θ , la longueur d’onde λ et la largeur a de la fente . 4°) Déterminer la longueur d’onde λ de la lumière émise parla source laser . 5°) Comparer la largeur de la tache centrale de diffraction avec celle d’une tache latérale . 6°) En utilisant le même dispositif , quelle serait la largeur de la tache centrale de diffraction obtenue avec une lumière monochromatique bleue de longueur d’onde λ’ = 450 nm ?

Rép. Num.: 1°) ; 2°) θ=D2

x1 ; 3°) θ=aλ ; 4°) λ=

D.2

x.a 1 =0,675.10-6m ;

5°) L1=2,7cm ; L2= 2

xx 12 =1,4cm ; L1 ≈2 L2 ; 6°) L’=2aD'.λ =1,8cm .

EXERCICE 4

Un faisceau de lumière, parallèle monochromatique. de longueur d'onde λ , produit par une source laser arrive sur un fil vertical, de diamètre a (a est de l'ordre du dixième de millimètre) . On place un écran à une distance D de ce fil; la distance D est grande devant a ( figure 1 ) . 1°) La figure 2 « à compléter et à rendre avec la copie » représente l'expérience vue de dessus et la figure observée sur l'écran .

Nommer ce phénomène . Quel renseignement sur la nature de la lumière ce phénomène apporte-t-il ?

2°) Faire apparaître sur la figure 2 l'écart angulaire ou demi-angle de diffraction θ et la distance D entre l'objet diffractant ( en l'occurrence le fil ) et l'écran . 3°) En utilisant la figure 2 , exprimer l'écart angulaire θ en fonction des grandeurs L et D .

4°) Sachant que θ = aλ , montrer que la largeur L de la tâche centrale de diffraction est donnée par la

relation : L = 2aD.λ .

5°) On dispose de deux fils calibrés de diamètres respectifs a1 = 60 µm et a2 = 80 µm . On place successivement ces deux fils verticaux dans le dispositif présenté par la figure 1 . On obtient Sur l'écran deux figures de diffraction distinctes notées A et B ( figure 3 ) . Associer, en le justifiant , à chacun des deux fils la figure de diffraction qui lui correspond .

6°) On cherche maintenant à déterminer expérimentalement la longueur d'onde dans le vide λ de la lumière monochromatique émise par la source laser utilisée . Pour cela , on place devant le faisceau laser des fils calibrés verticaux .

Laser

Fil

= quelques cm

Ecran

D (m)

llll

figure-1-

L

Tache centrale

Faisceau Laser

Fil figure-2-

4

SERIE DE PHYSIQUE N° 8

Page 5: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

On désigne par « a » le diamètre d'un fil . La figure de diffraction obtenue est observée sur un écran blanc situé à une distance D = 2,50 m des fils . Pour chacun des fils, on mesure la largeur L de la tâche centrale de diffraction .

On trace la courbe L = f(a1 ) ( figure 4 ) .

a) La lumière émise par la source laser est dite monochromatique. Donner la signification de ce terme .

b) Donner l'équation de la courbe L = f(a1 ) et en déduire la longueur d'onde λ dans le vide de la lumière

monochromatique constitutive du faisceau laser utilisé . c) Calculer la fréquence de la lumière monochromatique émise par la source laser . Donnée : célérité de la lumière dans le vide ou dans l'air c = 3,00 × 108 m.s-1. 7°) On éclaire avec cette source laser un verre flint d'indice n(λ) = 1,64 . À la traversée de ce milieu transparent dispersif , les valeurs de la fréquence , de la longueur d'onde et la couleur associées à cette radiation varient-elles ?

Rép. Num.: 1°) Diffraction : nature ondulatoire ; 3°) θ=D2L ; 5°) a1<a2 ⇒ L1>L2 ⇒ a1 : Figure A et a2 : Figure B ;

6°) a) L=2,7.10-6a1 ; λ=5,4.10-7m ; c) ν=

λ

c =5,5.1014Hz ;

7°) Même fréquence ν ( indépendante du milieu ) ⇒ même couleur ; λ’=ν

v =νnc =

n

)vide(λ.

EXERCICE 5

I/-Etude sur une cuve à ondes : On laisse tomber une goutte d'eau sur une cuve à ondes . Le fond de la cuve à ondes présente un décrochement de telle sorte que l'onde créée par la chute de la goutte d'eau se propage d'abord à la surface de l'eau dont l'épaisseur au repos est e1 = 3 mm puis ensuite à la surface de l'eau dont l'épaisseur au repos est e2 = 1 mm . On filme la surface de l'eau à l'aide d'une webcam . Le clip vidéo est effectué avec une fréquence de 24 images par seconde. Le document de la figure 1 représente les positions du front de l'onde créée par la chute de la goutte d'eau, repérées sur les images n° 1 , n° 7 , n° 8 et n° 14 du clip . 1°) Donner les définitions d'une onde transversale et d'une onde longitudinale. À quelle catégorie appartient l'onde créée par la goutte d'eau sur la cuve à ondes ?

5

0 1000 2000 3000 a

1 ( m-1 )

L ( 10-2 m )

figure-4-

5

SERIE DE PHYSIQUE N° 8

Page 6: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

2°) Calculer la célérité v de cette onde pour les deux épaisseurs d'eau mentionnées dans le document de la figure 1 . L'échelle de ce document est 1 ( 1 cm représente 1 cm ) . 3°) Comment varie , dans cet exemple , la célérité v de l'onde en fonction de l'épaisseur de l'eau ? II/-Ondes périodiques : On installe sur la cuve à ondes un vibreur qui permet d'obtenir des ondes planes . La fréquence du vibreur a été fixée à 24 H z. Une source lumineuse éclaire la surface de l'eau . Cette lumière traverse l'eau et est captée ensuite par la webcam . Le document de la figure 2 représente l'onde périodique obtenue à partir d'une image du clip vidéo .

1°) Comment appelle-t-on la distance séparant deux franges brillantes ( ou sombres ) successives ? Quelle relation lie cette grandeur à la célérité v de l'onde et sa période temporelle T ? 2°) À l'aide du document de la figure 2 , calculer la célérité v de l'onde périodique pour les deux épaisseurs d'eau de 3 et 1 mm . Quelle est l'influence de l'épaisseur de l'eau sur la célérité de l'onde périodique ? 3°) On utilise maintenant une cuve à ondes sans décrochement . L'épaisseur de l'eau au repos est constante . Après avoir fait varier la fréquence du vibreur , on a réalisé des photographies et on a mesuré la longueur d'onde λ pour chacun des enregistrements . Les résultats ont été consignés dans le tableau ci-dessous .

Calculer la célérité v de l'onde périodique pour chaque enregistrement . Comment évolue cette célérité en fonction de la fréquence de l'onde ?

e2 e1

d1

d2

Limite entre les 2 zones

de profondeur e1 et e2

1 cm

Image n°1 Image n°7

Image n°8

Image n°14

figure-1-

e2 e1

Limite entre les 2 zones

de profondeur e1 et e2

1 cm figure-2-

N (Hz) 12 24 48 96 λ (m) 0,018 0,0097 0,0059 0,0036

6

SERIE DE PHYSIQUE N° 8

Page 7: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

III/-Un phénomène caractéristique des ondes : 1°) Expérience sur les ondes lumineuses : On place sur un faisceau laser une fente de dimension a = 0,08 mm . On place après la fente un écran . La distance entre la fente et l'écran est D = 3,00 m comme l’indique la figure 3 . La figure obtenue sur l'écran est représentée sur la figure 4 . a) Comment se nomme le phénomène observé ? b) L'écart angulaire θ entre le milieu de la

tache centrale et la première extinction vérifie la relation : θ =aλ .

Calculer la longueur d'onde de ce faisceau laser ( on considérera que cet écart angulaire θ est faible et que donc θ ≈ tanθ si θ est exprimé en radians ) . 2°) Étude sommaire de la houle : La houle prend naissance sous l'effet du vent loin des côtes . Un vent de 65 km.h-1 engendre une houle dont les vagues font 1 mètre de hauteur . Ces vagues sont espacées de 230 mètres . Une vague remplace la précédente après une durée de 12 secondes . a) Calculer la vitesse de déplacement des vagues à la surface de l'océan . b) Cette houle arrive sur un port dont l'ouverture entre deux jetées a une largeur a = 200 m . Un bateau est stationné au fond du port comme indiqué sur le schéma de la figure 5 . Ce bateau risque-t-il de ressentir les effets de la houle ? Justifier la réponse à l'aide d'un schéma reproduit sur la copie .

Rép. Num.: I/-1°) Ondes transversales ; 2°) v1 =

24

1x6

8,4 = 0,19 m.s–1 ; v1 =

24

1x6

4 = 0,16 m.s–1 3°) Si e� , v � ;

II/-1°) Longueur d’onde λ=v.T ; 2°) a) λ1= 4

10.2,4 -2

=1,05.10-2m , v1=λ1.N=0,252m.s-1 ;

λ2= 5

10.2,4 -2

=0,84.10-2m , v2=λ2.N=0,20m.s-1 ; Si e� ,v � ; 3°) v=λ.N ; Si N�, v � ;

III/-1°) a) Phénomène de diffraction ; b) λ=D2

a.L=6,27.10-7m ; 2°) a) λ=230m et T=12s ; v=

T

λ=19,17m.s-1 ;

b) a<λ ⇒ la diffraction est marquée : le bateau va ressentir les effets de la houle .

Faisceau laser a

fente

écran

D

figure-3-

L = 4,7 cm

figure-4-

λλλλ

a

λλλλ

bateau

jetée

7

SERIE DE PHYSIQUE N° 8

Page 8: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

EXERCICE 6 ( Bac 2010 nouveau régime )

On dispose d’une cuve à ondes remplie d’eau et d’une lame vibrante (L) qui produit , à la surface de la nappe d’eau des ondes progressives , rectilignes , sinusoïdales et de fréquence N réglable . On suppose qu’il n’y a , ni amortissement , ni réflexion des ondes aux bords de la cuve . I- La fréquence de la lame vibrante est réglée à la valeur N1 = 11 Hz . En éclairage stroboscopique et pour une fréquence Ne des éclairs , égale à 11 Hz , la surface de la nappe d’eau présente une série de rides équidistantes , rectilignes et immobiles comme le montre la figure 1 . 1°) a) Définir la longueur d’onde λ . b) Sachant que le schéma de la figure 1 est réalisée à l’échelle , déterminer la valeur de la longueur d’onde λ1 de l’onde créée à la surface de la nappe d’eau . En déduire la valeur de la célérité v1 de l’onde . 2°) On règle la fréquence N de la lame à la valeur N2 = 20 Hz et on mesure la distance d2 séparant 5 rides successives . On obtient une valeur de 3 cm . a) Calculer , dans ce cas , la valeur de la longueur d’onde λ2 et la célérité v2 de l’onde . b) Justifier que l’eau est un exemple de milieu dispersif . 3°) Sachant que l’élongation d’un point A , appartenant au sommet de la première ride , comptée à partir de la lame (L) s’écrit : yA(t) =10-3.sin(40πt) (m) , déterminer , en le justifiant , l’élongation yB(t) d’un point B appartenant au sommet de la troisième ride . II- Un obstacle muni d’une fente (F) de largeur a = 8 mm est placée parallèle à la lame et à une distance d de celle-ci . Pour une fréquence N2 = 20 Hz et à un instant donné , la forme des rides de l’onde qui se propage à la surface de la nappe d’eau avant la traversée de la fente (F) est donnée par la figure 2 . 1°) a) Préciser l’ordre de grandeur de λ avec lequel l’onde subit une diffraction au niveau de (F) . b) En déduire , s’il y a diffraction au niveau de (F) à la fréquence N2 de la lame vibrante . c) Dans l’affirmative , représenter sur la figure 3 « à remplir par le candidat et à remettre avec la copie » la forme des rides au-delà de la fente (F) .

SERIE DE PHYSIQUE N° 8

(L)

Fig. 1

Fig. 2

(F)

Fig. 3

(F)

8

Page 9: PH8 (Intéractions onde- matière)

[email protected] Proposée par Benaich Hichem

2°) a) On fixe de nouveau , la fréquence N de la lame vibrante à la valeur N1 = 11 Hz . Représenter , à l’échelle , sur la figure 4 « à compléter et à remettre avec la copie » , la forme des rides avant et après la traversée de la fente (F) .

b) Pour une valeur donnée de a , dire s’il faut diminuer ou bien augmenter la valeur de la longueur d’onde λ pour rendre le phénomène observé plus net .

Rép. Num.: I/-1°) b) λ1=1,3cm ; v1=0,143m.s-1 ; 2°) a) λ2=1,3cm ; v2=0,15m.s-1; b) v dépend de N ⇒ milieu dispersif ; 3°) B vibre e phase avec A ⇒yB(t)=yA(t)=10-3.sin(40πt) (m); t≥θ=2T ; II/-1°) a) λ doit être comparable à a ; b) λ2=0,75cm comparable à a ⇒ possibilité de diffraction ; b) Il faut que λ>a ⇒ il faut augmenter λ .

Fig. 4

(F)

SERIE DE PHYSIQUE N° 8

9