13
ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report. Copyright © 2014 Page 1 of 13 1000 ICC-ES Legacy Report PFC-2869* Reissued May 2000 www.icc-es.org | (800) 423-6587 | (562) 699-0543 A Subsidiary of the International Code Council ® DIVISION: 05—METALS Section: 05260—Composite Joint System HAMBRO ® D 500 COMPOSITE FLOOR AND FORMING SYSTEM CANAM STEEL CORPORATION 450 E. HILLSBORO DEERFIELD BEACH, FLORIDA 33441 1.0 SUBJECT Hambro ® D 500 Composite Floor and Forming System. 2.0 DESCRIPTION 2.1 General: The Hambro D 500 Composite Floor and Forming System is a composite concrete/steel hybrid tee beam consisting of steel joists with a specifically formed top chord which, when embedded in a minimum 2 1 / 2 -inch (63.5 mm), 3,000- pounds-per-square-inch (20.7 MPa) concrete slab, develops composite action. See Figure 1 for additional details. Top-chord design considerations require that panel points not exceed a 24-inch (610 mm) spacing. The top- chord member is slotted to receive steel roll bars, which are rotated into place to support reusable plywood forms which then serve as a construction platform and provide lateral and torsional stability for the Hambro composite joist during the construction stage. The concrete slab of 3,000 pounds per square inch (20.7 MPa) minimum compressive strength consists of a pea gravel or maximum 3 / 4 -inch (19 mm) aggregate mix of concrete which is poured and gently pencil-vibrated. The slab has a minimum 2 1 / 2 -inch (63.5 mm) thickness and is reinforced with welded wire fabric as specified in Section 1907.12 of the code. Dowels or welded studs embedded in concrete are provided as necessary at walls or beams to transfer horizontal diaphragm shears and provide wall anchorage. Special attention is given to provide a full contact area to all surfaces of the top-chord member, and to embed the wire mesh which is draped in a natural catenary over the Hambro D 500 top chord. With the application of Fire Code C gypsum wallboard as set forth in this report, the floor- ceiling system may have a fire-resistive rating. Sound transmission classification (STC) and impact insulation class (IIC) are as described under “sound rating.” 2.2 Fabrication: Hambro D 500 composite joists (Figure 2) are fabricated in a plant that is under an approved quality control program with inspections by Underwriters Laboratories Inc. (AA-668). The top-chord member is cold-rolled from material conforming to Canadian standards similar to ASTM A607, Grade 50, of either No. 11 gage, No. 13 gage or their engineering equivalent capacities. The web members consist of minimum 7 / 16 -inch-diameter (11.1 mm) hot-rolled bars, some of which are continuous, bent at joint location, conforming to CSA Standards G40.21 graded steel with a minimum F y = 44 kips per square inch (303 MPa). This Canadian standard is similar to ASTM A572. Bottom chords consist of either hot-rolled angles (see Table 2) of CSA Standard G40.21 grade steel modified to minimum F y = 50 kips per square inch (345 MPa), or cold-rolled angles of equal capacities of steel, conforming to equivalent ASTM standards. Web and bottom-chord members are shop-painted with a rust- inhibitive primer. 2.3 Design: Service Stage (Composite Action): The Hambro D 500 System is designed as a composite steel and concrete section under the following design methods: 1. The design methods are shown as Figure 3. 2. The horizontal shear transfer between the top chord and the concrete shall be reviewed under elastic design (working stress method) based on an allowable value of 100 psi (689 kPa), maximum, for the fully embedded top chord, when the embedded portion of the top chord is left unpainted, with a 1 1 / 2 -by- 1 / 4 -by- 5-inch (38 by 6.4 by 127 mm) vertical end plate and a 4-by- 1 / 4 -by-5-inch (102 by 6.4 by 127 mm) bearing plate, both welded to the end of the joist. When the top chord is fully painted, the allowable value shall be 90 psi (620 kPa), maximum. 3. Deflection of Hambro D 500 Composite Floor shall be based on the following formula: where: w = Uniform load to the system, lbf/inch (N/mm). l = Span length, inches (mm). E = Steel modulus of elasticity, psi (N/mm 2 ). l c = Moment of inertia of the composite section (transformed), inches 4 (mm 4 ). D = Deflection, inches (mm). Legacy report on the 1997 Uniform Building Code*Corrected March 2014 LEGACY REPORT

PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

  • Upload
    lytuyen

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Page 1: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright © 2014 Page 1 of 13 1000

ICC-ES Legacy Report PFC-2869* Reissued May 2000

www.icc-es.org | (800) 423-6587 | (562) 699-0543 A Subsidiary of the International Code Council ®

DIVISION: 05—METALS Section: 05260—Composite Joint System HAMBRO® D 500 COMPOSITE FLOOR AND FORMING SYSTEM CANAM STEEL CORPORATION 450 E. HILLSBORO DEERFIELD BEACH, FLORIDA 33441 1.0 SUBJECT

Hambro® D 500 Composite Floor and Forming System.

2.0 DESCRIPTION

2.1 General: The Hambro D 500 Composite Floor and Forming System is a composite concrete/steel hybrid tee beam consisting of steel joists with a specifically formed top chord which, when embedded in a minimum 21/2-inch (63.5 mm), 3,000-pounds-per-square-inch (20.7 MPa) concrete slab, develops composite action. See Figure 1 for additional details. Top-chord design considerations require that panel points not exceed a 24-inch (610 mm) spacing. The top-chord member is slotted to receive steel roll bars, which are rotated into place to support reusable plywood forms which then serve as a construction platform and provide lateral and torsional stability for the Hambro composite joist during the construction stage. The concrete slab of 3,000 pounds per square inch (20.7 MPa) minimum compressive strength consists of a pea gravel or maximum 3/4-inch (19 mm) aggregate mix of concrete which is poured and gently pencil-vibrated. The slab has a minimum 21/2-inch (63.5 mm) thickness and is reinforced with welded wire fabric as specified in Section 1907.12 of the code.

Dowels or welded studs embedded in concrete are provided as necessary at walls or beams to transfer horizontal diaphragm shears and provide wall anchorage. Special attention is given to provide a full contact area to all surfaces of the top-chord member, and to embed the wire mesh which is draped in a natural catenary over the Hambro D 500 top chord. With the application of Fire Code C gypsum wallboard as set forth in this report, the floor-ceiling system may have a fire-resistive rating. Sound transmission classification (STC) and impact insulation class (IIC) are as described under “sound rating.”

2.2 Fabrication: Hambro D 500 composite joists (Figure 2) are fabricated in a plant that is under an approved quality control program

with inspections by Underwriters Laboratories Inc. (AA-668). The top-chord member is cold-rolled from material conforming to Canadian standards similar to ASTM A607, Grade 50, of either No. 11 gage, No. 13 gage or their engineering equivalent capacities. The web members consist of minimum 7/16-inch-diameter (11.1 mm) hot-rolled bars, some of which are continuous, bent at joint location, conforming to CSA Standards G40.21 graded steel with a minimum Fy = 44 kips per square inch (303 MPa). This Canadian standard is similar to ASTM A572. Bottom chords consist of either hot-rolled angles (see Table 2) of CSA Standard G40.21 grade steel modified to minimum Fy = 50 kips per square inch (345 MPa), or cold-rolled angles of equal capacities of steel, conforming to equivalent ASTM standards. Web and bottom-chord members are shop-painted with a rust-inhibitive primer.

2.3 Design: Service Stage (Composite Action): The Hambro D 500 System is designed as a composite steel and concrete section under the following design methods:

1. The design methods are shown as Figure 3.

2. The horizontal shear transfer between the top chord and the concrete shall be reviewed under elastic design (working stress method) based on an allowable value of 100 psi (689 kPa), maximum, for the fully embedded top chord, when the embedded portion of the top chord is left unpainted, with a 11/2-by-1/4-by- 5-inch (38 by 6.4 by 127 mm) vertical end plate and a 4-by-1/4-by-5-inch (102 by 6.4 by 127 mm) bearing plate, both welded to the end of the joist. When the top chord is fully painted, the allowable value shall be 90 psi (620 kPa), maximum.

3. Deflection of Hambro D 500 Composite Floor shall be based on the following formula:

where:

w = Uniform load to the system, lbf/inch (N/mm).

l = Span length, inches (mm).

E = Steel modulus of elasticity, psi (N/mm2).

lc = Moment of inertia of the composite section (transformed), inches4 (mm4).

D = Deflection, inches (mm).

Legacy report on the 1997 Uniform Building Code™

*Corrected March 2014

LEGACY

REPO

RT

Page 2: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

PFC-2869 | Most Widely Accepted and Trusted Page 2 of 13

4. Load spans in Table 1 are based on the previously discussed design criteria and the bottom chords described in Table 2. The concrete slab must be justified to span between joists.

5. The composite joist end reaction does not exceed 12.5 kips (55.6 kN).

2.4 Diaphragm Shear: The allowable diaphragm shear of the system shall be based on the shear friction capacity of the reinforced concrete slab as specified in Section 1911.7 of the code, using the net continuous portion of the slab above the top-chord embedment.

2.5 Fire Rating: A two-hour noncombustible fire-resistive rating involves a 21/2-inch (63.5 mm) hard rock concrete slab on minimum 91/2-inch-deep (241 mm) joists [8-inch (203 mm), nominal], spaced typically 4 feet 11/4 inches (1251 mm) on center. One-half-inch (13 mm) Fire Code C gypsum wallboard or equivalent gypsum board ceiling material is applied perpendicular to furring channels with 1-inch (25 mm), case-hardened, self-drilling, self-tapping, buglehead screws having a shank diameter of 0.158 inch (4 mm), and a Phillips head having a diameter of 0.335 inch (8.5 mm). Two furring channels straddle each transverse joint. Each furring channel has two screws on each side of longitudinal gypsum board joints and two additional screws uniformly spaced between joints. Three-inch-wide (76 mm) backing strips of the same gypsum board are securely attached over transverse joints between the two channels. The support system involves No. 24 gage [0.0239-inch (0.61 mm) base metal thickness] furring channels, 3 inches wide (76 mm) by 7/8 inch deep (22 mm), at a maximum 24-inch (610 mm) spacing, attached to the truss bottom chord with 0.047-inch (1.2 mm) tie wire. More specific installation details are set forth in Figures 4 and 5, including a method where trusses are spaced up to 6 feet (1829 mm) on center.

A three-hour noncombustible fire-resistive rating involves a 31/4-inch (82 mm) hard rock concrete slab reinforced with minimum 6-by-6, 8/8 welded wire mesh and supported by minimum 10-inch (254 mm) nominal steel joists spaced from 24 to 491/4 inches (610 to 1251 mm) on center. No. 25 gage [0.0209-inch (0.53 mm) base metal thickness] galvanized steel furring channels, 7/8 inch high (22 mm), 23/4 inches wide (70 mm) at the base and 13/8 inches wide (35 mm) at the face, are installed perpendicular to the joists at 24 inches (610 mm) on center. At wallboard end joists, furring channels approximately 60 inches long (1524 mm) are located 3 inches (76 mm) on each side of the end joint. All channels are tied to lower chords of all joists with double strand, No. 18 gage, galvanized steel tie wire looped around the chord. Channel splices must be lapped 6 inches (152 mm) and tied together with the double strand of tie wire at each end of the overlap. Five-eighths-inch (16 mm) United States Gypsum Fire Code C gypsum board, 4 feet wide (1219 mm), is installed with the long dimension perpendicular to furring channels with staggered or continuous end joints. Side joints must be located between steel joists. Gypsum wallboard joints perpendicular to joists are protected continuously with a 3-inch-wide (76 mm) strip of wallboard laid in place with an

adhesive spotted along the joint to prevent accidental displacement. The wallboard is attached to the furring channels with No. 6 Phillips-type, self-drilling, self-tapping, 1-inch-long (25 mm) screws with bugleheads spaced 12 inches (305 mm) on center along each furring channel. Along end joints, screws are located a minimum of 3 inches (76 mm) from the joint and one additional screw, approximately 11/2 inches (38 mm) from the side joint, is installed at each end of the short channels. Along the side joints, screws are located 3/4 inch (19 mm) from the joint. All joints are covered with paper tape embedded in joint compound and then covered with a layer of the compound. Wallboard screw heads are also covered with the compound.

2.6 Sound Rating: A sound transmission class (STC) of 50 minimum is assigned to the basic Hambro Composite Floor System with 131/2-inch-deep (343 mm) [12-inch nominal (305 mm)] joists, a 21/2-inch (63.5 mm) concrete slab and 5/8-inch-thick (16 mm) gypsum board ceiling on 23/4-inch-wide-by-3/4-inch-deep (70 mm by 19.1 mm) furring channels wired to steel joists. Impact insulation class (IIC) is a minimum 50 with a finished floor covering such as 1/16-inch (1.6 mm) soft vinyl and deep pile carpeting. The vinyl material consists of 0.030-inch (0.76 mm) soft vinyl with an optional embossed pattern, adhered to a 0.036-inch-thick (0.91 mm) kraft paper backing. Total weight is 0.22 pound per square foot (1.07 kg/m2). The carpeting consists of a 1/4-inch-deep (6.4 mm) loop pile on 1/16-inch-thick (1.6 mm) woven fabric backing. Total weight is 0.49 pound per square foot (2.4 kg/m2).

2.7 Identification: Each bundle of joists delivered to the field bears a metal tag noting the evaluation report number.

3.0 EVIDENCE SUBMITTED

Product brochures and a booklet containing fire, bracing and load test reports and calculations.

4.0 FINDINGS That the Hambro® D 500 Composite Floor and Forming System complies with the 1997 Uniform Building Code™, subject to the following conditions: 4.1 Design and construction of the system complies

with this report. 4.2 The joists are manufactured at the Saint Gédéon,

Quebec, Canada, facility with quality control follow-up inspections by ICC-ES.

4.3 Placing of concrete is done under special inspection as specified in Section 1701 of the code, with special attention directed to consolidation around steel truss members.

4.4 Fire-resistive and acoustical assemblies comply with descriptions in Sections 2.5 and 2.6, respectively, of this report.

4.5 Design and details for each project are approved by the building official.

This report is subject to re-examination in two years.

LEGACY

REPO

RT

Page 3: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

(Continued)

PFC-2869 | Most Widely Accepted and Trusted Page 3 of 13

TABLE 1—HAMBRO D-500 COMPOSITE FLOOR ALLOWABLE SERVICE LOADS (TOTAL DEAD PLUS LIVE)

IN POUNDS PER LINEAL FOOT1,2

LEGACY

REPO

RT

Page 4: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

(Continued)

PFC-2869 | Most Widely Accepted and Trusted Page 4 of 13

TABLE 1—HAMBRO D-500 COMPOSITE FLOOR ALLOWABLE SERVICE LOADS (TOTAL DEAD PLUS LIVE)

IN POUNDS PER LINEAL FOOT1,2—(Continued)

LEGACY

REPO

RT

Page 5: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

(Continued)

PFC-2869 | Most Widely Accepted and Trusted Page 5 of 13

TABLE 1—HAMBRO D-500 COMPOSITE FLOOR ALLOWABLE SERVICE LOADS (TOTAL DEAD PLUS LIVE)

IN POUNDS PER LINEAL FOOT1,2—(Continued)

LEGACY

REPO

RT

Page 6: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

(Continued)

PFC-2869 | Most Widely Accepted and Trusted Page 6 of 13

TABLE 1—HAMBRO D-500 COMPOSITE FLOOR ALLOWABLE SERVICE LOADS (TOTAL DEAD PLUS LIVE)

IN POUNDS PER LINEAL FOOT1,2—(Continued)

LEGACY

REPO

RT

Page 7: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

For SI: 1 ft. = 304.8 mm, 1 ft.�kip = 1.356 kN�m, 1 in.4 = 4 162 314 mm4, 1 lb./ft. = 14.6 N/m.1Allowable loads are based on a 21/2-inch-thick concrete slab having a 28-day compressive strength, f� c, of 3,000 psi. The spans noted in the table are the joists’ clear

spans. Length of joist with a single span is equal to the clear span plus 7 inches for a 3.5-inch bearing length each end. Bottom chord loads are limited to panel pointlocations only. The concrete slab must be justified to span between joists in conformance with Chapter 19.

2Joists selected from shaded area may require a larger capacity top chord or propping to support construction loads.

PFC-2869 | Most Widely Accepted and Trusted Page 7 of 13

TABLE 1—HAMBRO D-500 COMPOSITE FLOOR ALLOWABLE SERVICE LOADS (TOTAL DEAD PLUS LIVE)

IN POUNDS PER LINEAL FOOT1,2—(Continued)

LEGACY

REPO

RT

Page 8: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

Chord Type Member Area (in. 2) Wt./ft .(lb.)

1 3/4 × 3/4 × 1/8 0.34 1.18

2 7/8 × 7/8 × 1/8 0.40 1.38

3 1 × 1 × 1/8 0.46 1.60

4 11/8 × 11/8 × 1/8 0.54 1.82

5 11/4 × 11/4 × 1/8 0.60 2.02

6 11/2 × 11/4 × 1/8 0.67 2.29

7 11/2 × 11/2 × 1/8 0.72 2.46

8 11/8 × 11/8 × 3/16 0.78 2.64

9 11/4 × 11/4 × 3/16 0.86 2.96

10 11/2 × 11/4 × 3/16 0.96 3.28

11 11/2 × 11/2 × 3/16 1.06 3.60

12 2 × 11/4 × 3/16 1.15 3.94

13 2 × 11/2 × 3/16 1.24 4.24

14 2 × 11/4 × 7/32 1.33 4.57

15 2 × 2 × 3/16 1.42 4.88

16 2 × 11/4 × 1/4 1.50 5.14

17 2 × 11/2 × 1/4 1.62 5.54

18 2 × 2 × 1/4 1.88 6.38

19 21/2 × 2 × 1/4 2.12 7.24

20 3 × 2 × 1/4 2.38 8.20

For SI: 1 inch = 25.4 mm, 1 in.2 = 645.16 mm2, 1 psi = 6.8948 kPa, 1 lb./ft. = 1.4882 kg/m.

PFC-2869 | Most Widely Accepted and Trusted Page 8 of 13

TABLE 2—HAMBRO STANDARD BOTTOM CHORDS

LEGACY

REPO

RT

Page 9: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

FIGURE 1

PFC-2869 | Most Widely Accepted and Trusted Page 9 of 13

LEGACY

REPO

RT

Page 10: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

FIGURE 2

PFC-2869 | Most Widely Accepted and Trusted Page 10 of 13

LEGACY

REPO

RT

Page 11: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

For SI: 1 inch = 25.4 mm, 1 ksi = 6.8948 MPa, 1 lbf = 4.448 N.FIGURE 3

PFC-2869 | Most Widely Accepted and Trusted Page 11 of 13

LEGACY

REPO

RT

Page 12: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 psi = 6.8948 kPa.

FIGURE 4

PFC-2869 | Most Widely Accepted and Trusted Page 12 of 13

LEGACY

REPO

RT

Page 13: PFC-2869 - Canam Steel Corporation · PFC-2869 | Most Widely Accepted and Trusted. Page 2 of 13 . 4. Load spans in Table 1 are based on the previously discussed design criteria and

For SI: 1 inch = 25.4 mm.FIGURE 5

PFC-2869 | Most Widely Accepted and Trusted Page 13 of 13

LEGACY

REPO

RT