53
Peter Virnau, Mehran Kardar, Yacov Kantor Capturing knots in (bio-) polymers …

Peter Virnau, Mehran Kardar, Yacov Kantor

  • Upload
    tegan

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

Capturing knots in (bio-) polymers …. Peter Virnau, Mehran Kardar, Yacov Kantor. History of knot science. Lord Kelvin (1867): “Vortex atoms”. P.G. Tait: Knot tables. Classification of knots. J.W. Alexander (1923): First algorithm which can distinguish between knots (… somewhat). - PowerPoint PPT Presentation

Citation preview

Page 1: Peter Virnau, Mehran Kardar, Yacov Kantor

Peter Virnau, Mehran Kardar, Yacov Kantor

Capturing knots in (bio-) polymers …

Page 2: Peter Virnau, Mehran Kardar, Yacov Kantor

History of knot science

Lord Kelvin (1867):

“Vortex atoms”

P.G. Tait: Knot tables

Page 3: Peter Virnau, Mehran Kardar, Yacov Kantor

Classification of knots

J.W. Alexander (1923): First algorithm which can distinguish between knots (… somewhat)2005: still no complete invariant

Page 4: Peter Virnau, Mehran Kardar, Yacov Kantor

Motivation: Polymers

Knots are topological invariants (self-avoiding) ring polymers

A sufficiently long polymer will have knots(Frisch & Wassermann (1961), Delbrück (1962))

Knots are not included in the standard theories

Knots modify dynamics of polymers; e.g. relaxation or electrophoresis

Page 5: Peter Virnau, Mehran Kardar, Yacov Kantor

Motivation: Polymers

Knots are topological invariants (self-avoiding) ring polymers

A sufficiently long polymer will have knots (Frisch & Wassermann (1961), Delbrück (1962))

Knots are not included in the standard theories

Knots modify dynamics of polymers; e.g. relaxation or electrophoresis

Page 6: Peter Virnau, Mehran Kardar, Yacov Kantor

Motivation: Polymers

Knots are topological invariants (self-avoiding) ring polymers

A sufficiently long polymer will have knots: (Frisch & Wassermann (1961), Delbrück (1962))

Knots are not included in the standard theories

Knots modify dynamics of polymers; e.g. relaxation or electrophoresis

Page 7: Peter Virnau, Mehran Kardar, Yacov Kantor

Motivation: Polymers

Knots are topological invariants (self-avoiding) ring polymers

A sufficiently long polymer will have knots(Frisch & Wassermann (1961), Delbrück (1962))

Knots are not included in the standard theories

Knots modify dynamics of polymers; e.g. relaxation or electrophoresis

Page 8: Peter Virnau, Mehran Kardar, Yacov Kantor

Motivation: Biology

Knots: Why?

Structure Function

Role of entanglements?

Page 9: Peter Virnau, Mehran Kardar, Yacov Kantor

Motivation: Biology

Knots: How?

Reference system:

Single homopolymer in stretched and compact state

Page 10: Peter Virnau, Mehran Kardar, Yacov Kantor

Knots: How?

Reference system:

Single homopolymer in stretched and compact state

1. At which chain length do knots occur?

2. Are knots localized or spread?

Motivation: Biology

Page 11: Peter Virnau, Mehran Kardar, Yacov Kantor

Model

Polymer: Coarse-grained model for polyethylene Bead-spring chain (LJ+FENE): 1 bead 3 CH2

Page 12: Peter Virnau, Mehran Kardar, Yacov Kantor

Model

Polymer: Coarse-grained model for polyethylene Bead-spring chain (LJ+FENE): 1 bead 3 CH2

Equilibrium configurations are generated with standard Monte Carlo techniques (pivot, reptation, local moves)

Page 13: Peter Virnau, Mehran Kardar, Yacov Kantor

Simplification

Page 14: Peter Virnau, Mehran Kardar, Yacov Kantor
Page 15: Peter Virnau, Mehran Kardar, Yacov Kantor

Polymer: Coarse-grained model for polyethylene Bead-spring chain (LJ+FENE): 1 bead 3 CH2

Coil / Globule

Page 16: Peter Virnau, Mehran Kardar, Yacov Kantor

Polymer: Coarse-grained model for polyethylene Bead-spring chain (LJ+FENE): 1 bead 3 CH2

Reduce chain, connect ends, calculate Alexander polynomial

Coil / Globule

Page 17: Peter Virnau, Mehran Kardar, Yacov Kantor

At which chain length do knots occur?

unknot

31

41

Page 18: Peter Virnau, Mehran Kardar, Yacov Kantor

At which chain length do knots occur?

unknot

31

41

Page 19: Peter Virnau, Mehran Kardar, Yacov Kantor

At which chain length do knots occur?

Knots are rare in the swollen phase (1% for3000 CH2)

unknot

31

41

Page 20: Peter Virnau, Mehran Kardar, Yacov Kantor

At which chain length do knots occur?

Knots are common in a dense phase (80% for3000 CH2)

unknot

31

41

Page 21: Peter Virnau, Mehran Kardar, Yacov Kantor

Are knots localized or spread?

Page 22: Peter Virnau, Mehran Kardar, Yacov Kantor

Are knots localized or spread?

Knots are localized in the swollen phase

Page 23: Peter Virnau, Mehran Kardar, Yacov Kantor

Are knots localized or spread?

Knots are delocalized in a dense phase

Page 24: Peter Virnau, Mehran Kardar, Yacov Kantor

Summary I

frequency of knots localized ?

dilute rare (1% for 3000 CH2) yes

dense frequent (80%) no

Page 25: Peter Virnau, Mehran Kardar, Yacov Kantor

Summary I

frequency of knots localized ?

dilute rare (1% for 3000 CH2) yes

dense frequent (80%) no

• Probabilities: Open polymers Loops ?

Page 26: Peter Virnau, Mehran Kardar, Yacov Kantor

Summary I

frequency of knots localized ?

dilute rare (1% for 3000 CH2) yes

dense frequent (80%) no

• Probabilities: Open polymers Loops ?

• Excluded volume ?

Page 27: Peter Virnau, Mehran Kardar, Yacov Kantor

Summary I

frequency of knots localized ?

dilute rare (1% for 3000 CH2) yes

dense frequent (80%) no

• Probabilities: Open polymers Loops ?

• Excluded volume ?

• Distribution of sizes and location ?

Page 28: Peter Virnau, Mehran Kardar, Yacov Kantor

Summary I

frequency of knots localized ?

dilute rare (1% for 3000 CH2) yes

dense frequent (80%) no

• Probabilities: Open polymers Loops ?

• Excluded volume ?

• Distribution of sizes and location ?

simpler (faster) model: Random walk

Page 29: Peter Virnau, Mehran Kardar, Yacov Kantor

Polymers vs. Random Walks

Page 30: Peter Virnau, Mehran Kardar, Yacov Kantor

Loops vs. Chains

unknot

31

41

Knots are frequent

Page 31: Peter Virnau, Mehran Kardar, Yacov Kantor

Loops vs. Chains

unknot

31

41

Loops and chains have similar knotting probabilities

Page 32: Peter Virnau, Mehran Kardar, Yacov Kantor

Distribution of knot sizes

Page 33: Peter Virnau, Mehran Kardar, Yacov Kantor

Knots are localized in random walks

Distribution of knot sizes

Page 34: Peter Virnau, Mehran Kardar, Yacov Kantor

Most likely knot size: only 6 segments

Distribution of knot sizes

Page 35: Peter Virnau, Mehran Kardar, Yacov Kantor

Distribution of knot sizes

Page 36: Peter Virnau, Mehran Kardar, Yacov Kantor

Power-law tail in knot size distribution

Distribution of knot sizes

Page 37: Peter Virnau, Mehran Kardar, Yacov Kantor

Where are knots located?

Page 38: Peter Virnau, Mehran Kardar, Yacov Kantor

Knots are equally distributed over the entire polymer, but…

Where are knots located?

Page 39: Peter Virnau, Mehran Kardar, Yacov Kantor

… larger in the middle

Where are knots located?

Page 40: Peter Virnau, Mehran Kardar, Yacov Kantor

Where are knots located?

Page 41: Peter Virnau, Mehran Kardar, Yacov Kantor

Summary II

frequency of knots localized ?

dilute rare (1% for 3000 CH2) yes

dense frequent (80%) no

RW very frequent extremely

DNA ??? ???

Proteins ??? ???

Page 42: Peter Virnau, Mehran Kardar, Yacov Kantor

Human DNA is wrapped around histone proteins

Knots in DNA?

Page 43: Peter Virnau, Mehran Kardar, Yacov Kantor

Human DNA is wrapped around histone proteins

Knots in DNA?

DNA coiled in phage capsid, but some indication of knotting inside

Arsuaga et al., PNAS 99, 5373 (2002)

Page 44: Peter Virnau, Mehran Kardar, Yacov Kantor

Human DNA is wrapped around histone proteins

Knots in DNA?

DNA coiled in phage capsid, but some indication of knotting inside

Arsuaga et al., PNAS 99, 5373 (2002) DNA in good solvent: 0.5%-4% for 10000 base pairs

Rybenkov et al., PNAS 90, 5307 (1991)

Page 45: Peter Virnau, Mehran Kardar, Yacov Kantor

The Protein Data Bank

www.pdb.org 02/2005 (24937)

Page 46: Peter Virnau, Mehran Kardar, Yacov Kantor

The Protein Data Bank

www.pdb.org

Problems: 1. Missing atoms

2. Multiple Chains

3. Microheterogeneity

4. Same Proteins

Page 47: Peter Virnau, Mehran Kardar, Yacov Kantor

Knots are very rare: 230 / 24937 (1%)

Source: mostly bacteria and viruses, but also mouse, cow, human and spinach

Depth >5 >10 >15 >20 >25

# structures 35 33 28 28 25 (0.1%)

# proteins 26 (9) 24 20 20 17

Size: 43% of protein, but variations from 17% to 82%

Complexity: 23 trefoils, 2 figure-eights, 52

Functions: mostly enzymes (13 transferases)

Knots in proteins

Page 48: Peter Virnau, Mehran Kardar, Yacov Kantor
Page 49: Peter Virnau, Mehran Kardar, Yacov Kantor
Page 50: Peter Virnau, Mehran Kardar, Yacov Kantor

frequency of knots localized ?

dilute rare (1% for 3000 CH2) yes

dense frequent (80%) no

RW very frequent extremely

DNA in vivo: probably few in vivo: -

Proteins very few not enough statistics

Final Summary

[email protected]

Page 51: Peter Virnau, Mehran Kardar, Yacov Kantor
Page 52: Peter Virnau, Mehran Kardar, Yacov Kantor

Early knot scientists …

Phrygia, 333 BC

Page 53: Peter Virnau, Mehran Kardar, Yacov Kantor

The Alexander polynomial