70
Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019

Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Perturbation Theory Anomaly

Zhiguang Xiao

June 14, 2019

Page 2: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Contents

1 Two dimensional axial anomaly

2 Four Dimensional Axial Anomaly

3 Gauge anomaly

4 Appendix: An integral

Page 3: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Pertuabation theory of anomaly• Classically, the global symmetry ⇒ conserved currents ∂µJµ = 0 and

conserved charge Q =∫

dx3J0, Q = 0.• Quantum mechanically, the classical current may not be conserved —

Quantum anomaly.We first look at a two dimensional massless QED as an example:

L = ψ(iD/)ψ − 14 (Fµν)

2, Dµ = ∂µ + ieAµ, µ = 0, 1.

[ψ] = 1/2, [A] = 0, [e] = 1.Dirac spinor, two components: ψ =

(ψ+

ψ−

), Dirac matrix: 2× 2 matrices,

γµ, γν = 2gµν .

γ0 =

(0 −ii 0

), γ1 =

(0 ii 0

), γ5 = γ0γ1 =

(1 00 −1

)Global symmetry:

ψ → eiαψ, vector current jµ = ψγµψ.

ψ → eiαγ5ψ, axial vector current jµ5 = ψγµγ5ψ.

Page 4: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED• Fermionic part in another way:

L ∼ψ†(γ0γ0D0 + γ0γ1D1)ψ

∼ψ†+i(D0 + D1)ψ+ + ψ†−i(D0 −D1)ψ−

• Define x± = x0 ± x1, ∂± = ∂∂x± . Free EOM, no Aµ ,

i(∂0 ± ∂1)ψ± = i∂±ψ± = 0, ψ± = ψ(x∓) .

ψ+: right-moving fermion. ψ−: left-moving fermion. ψ− and ψ+ do notmix in the Lagrangian.• The left and right fermion currents seems to conserve separately,

jµ± = ψγµ(1± γ5

2 )ψ, ∂µjµ± = 0

• The vector and axial vector currents are not independent:γµγ5 = −ϵµνγν , ϵ01 = 1, jµ5 = −jνϵµν .

Page 5: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED: Vacuum Polarization Diagram

In the m→ 0 limit

iΠµν2 = −i e2

(4π)d/2 tr[1]∫ 1

0dx(−gµν(1 −

d2)Γ(1 − d

2 )

∆1−d/2

−(−q2gµν + 2qµqν)x(1 − x)Γ(2 − d

2 )

(−x(1 − x)q2)2−d/2

)

= −i(q2gµν − qµqν) 2e2

(4π)d/2 tr[1]∫ 1

0dx x(1 − x)

Γ(2 − d2 )

(−x(1 − x)q2)2−d/2

d→2−−−→ −i(q2gµν − qµqν)2e2

4π· 2 ·

−1q2 , Finite

= i(

gµν −qµqν

q2

) e2

π≡ i(

gµνq2 − qµqν)Π(q2) , Π(q2) =

1q2

e2

π.

Dimension for spinor rep. tr[1] = 4 for d=4, and tr[1] = 2 for d=2.

Page 6: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED: Vacuum Polarization Diagram

• The denominator q2(1−Π) = q2 − e2

π. [e] = 1.

• There is a pole at q2 = e2

π, photon developes a mass.

Page 7: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED: Vacuum Polarization Diagram

In the background Aµ field, expectation value for thevector current at one-loop:

⟨jµ(q)⟩ =∫

d2xeiq·x⟨jµ(x)⟩ one loop−−−−−→ −ie∫

d2x d2y eiq·xψγµψ(x)ψγνψ(y)Aν(y)

=1ie (iΠ

µν(q))Aν(q) = −(gµν −qµqνq2 ) · e

πAν(q) .

conserved: qµ⟨jµ(q)⟩ = 0.The axial vector current:

⟨jµ5(q)⟩ = −ϵµν⟨jν(q)⟩

=eπϵµν

(Aν(q)−

qνqλq2 Aλ

)qµ⟨jµ5(q)⟩ = e

πϵµνqµAν(q)

x space−−−−−→ ∂µjµ5 =e

2π ϵµνFµν

So the axial vector is not conserved.

Page 8: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED: Vacuum Polarization Diagram

The problem comes from the regularization of the vacuum polarizationdiagram.• B is finite. Can unambiguously determined by the low energy structure of

the theory— residue of the q2 pole.• A is logrithmically divergent: Dimensional regularization automatically

subtract the divergent to have A = B. — Ward Id. satisfied.• Other regularization to have A = 0, then qµ⟨jµ5⟩ = 0, but

qµ⟨jµ⟩ = eπ

qνAν(q) — not gauge invariant.• It is impossible to regularize 2-d QED — both gauge inv. and axial current

conserved.

Page 9: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED: Axial Vector Current Operator Eq.Another point of view:• Classical EOM, ∂/ψ = −ieA/ψ , ∂µψγ

µ = ieψA/ .Classically

∂µjµ = ∂µ(ψγµψ) = ieψA/ψ − ieψA/ψ = 0

∂µjµ5 = ∂µ(ψγµγ5ψ) = ieψA/γ5ψ − ieψA/γ5ψ = 0

• Operator products at one point in QFT is always singular, needsregulariztion.Operator product expansion: O1(x)O2(0)→

∑n Cn

12(x)On(0)

G12 = ⟨O1(x)O2(0)ϕ(y1) . . . ϕ(ym)⟩ =∑

nCn

12(x)⟨On(0)ϕ(y1) . . . ϕ(ym)⟩

In the limit x→ 0, the coefficients may be divergent. eg. Free masslessfermions

T(ψ(x + ϵ)ψ(x)) =⟨0|T(ψ(x + ϵ)ψ(x))|0⟩+ : ψ(x + ϵ)ψ(x) :

=

∫ ddk(2π)d

ie−ik·ϵ

k/+∑n=0

1n!

: ((ϵ · ∂)nψ(x))ψ(x) :

in d = 2,∫ ddk(2π)d

ie−ik·(y−z)k/k2 =− ∂/y

∫ ddk(2π)d

e−ik·(y−z)

k2 = −i

4π∂/y log(y − z)2

=−i

2πγµ(y − z)µ(y − z)2

Page 10: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED: Axial Vector Current Operator Eq.d=2

T(ψ(x + ϵ)Γψ(x)) =− i2π

tr(γµϵµΓ)(ϵ)2 + regular terms

Regularize ψγµγ5ψ by separating the 2 ψ operators by ϵ. And insert a wilsonline to make it gauge invariant. Then take symmetric ϵ→ 0 limit.

jµ5 = symm limϵ→0

ψ(x +

ϵ

2 )γµγ5 exp

[− ie

∫ x+ ϵ2

x− ϵ2

dz ·A(z)]ψ(x− ϵ

2 )

Symmetric limit ϵ→ 0: symm limϵ→0

ϵµ

ϵ2

= 0, symm lim

ϵ→0

ϵµϵν

ϵ2

= 1

d gµν .

Page 11: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Two dimensional QED: Axial Vector Current Operator Eq.Keep to ϵ order:

∂µjµ5 =symm limϵ→0

(∂µψ)(x +

ϵ

2)γµγ5 exp

[− ie

∫ x+ ϵ2

x− ϵ2

dz · A(z)]ψ(x −

ϵ

2)

+ ψ(x +ϵ

2)γµγ5 exp

[− ie

∫ x+ ϵ2

x− ϵ2

dz · A(z)]∂µψ(x −

ϵ

2)

+ ψ(x +ϵ

2)γµγ5[−ieϵν∂µAν(x) exp

[− ie

∫ ϵ2

− ϵ2

dz · A(x + z)]]ψ(x −

ϵ

2)

=symm lim

ϵ→0

ψ(x +

ϵ

2)ieA/(x +

ϵ

2)γ5ψ(x −

ϵ

2)

−ψ(x +ϵ

2)γ5(−ieA/(x −

ϵ

2))ψ(x −

ϵ

2) + ψ(x +

ϵ

2)γµγ5[−ieϵν∂µAν(x)]ψ(x −

ϵ

2)

=symm limϵ→0

ieψ(x +

ϵ

2)ϵµ∂µA/(x)γ5ψ(x −

ϵ

2)

−ieψ(x +ϵ

2)γµγ5ϵν∂µAν(x)ψ(x −

ϵ

2)

=symm limϵ→0

ieψ(x +

ϵ

2)γνγ5ϵµ(∂µAν(x)− ∂νAµ(x))ψ(x −

ϵ

2)

OPE=====symm lim

ϵ→0

e2π

tr(γαϵαγνγ5)

(ϵ)2 ϵµFµν = symm limϵ→0

e2π

2εανϵα(ϵ)2 ϵµFµν

=e

2πεµνFµν

Page 12: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly in two dimensional QED: Non-conservation ofFermion numbers

For conserved currents: jµ, jµ5.• 0 =

∫dx1∂µjµ =

∫dx1∂0(j0

L + j0R) + j1|∞−∞ = NL + NR,

∆NL +∆NR =∫

dtNL + NR = 0Conservation of total left and right-moving charges.• 0 =

∫dx1∂µjµ5 =

∫dx1∂0(j0

R − j0L) = NR − NL,

∆NR −∆NL =∫

dtNR − NL = 0Conservation of the difference of the left and right-moving charges.• The left and right-moving charges are conserved separately,

∆NL = ∆NR = 0.Anomalous nonconservation of the axial current:

∂µjµ5 =e

2π εµνFµν =

e4π∂µ(ε

µνAν)

∆(NR −NL) =

∫dx0dx1∂µjµ5 =

e4π

∮∂

dxµAµ

• If Aµ fall off sufficiently rapidly at the infinity, the integral vanishes —charge conservation still preserved.• There can be situations where the integral not vanishing — charge

conservation is violated.

Page 13: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly in two dimensional QED: Non-conservation ofFermion numbers

Eg.• A background A1(t), varies very slowly. Finite spatial size L, with periodic

boundary condition.• This background can not be removed by gauge transformation with

periodic boundary condition , 1e∂1α ∼ A1(t), α(x + L) = α(x).

• Large gauge transformation: α(x) = 2nπL x, eiα(0) = eiα(L),

A1 → A1 − 2nπeL . A1 ∈ [0, 2π

eL ).• The wilson line is non-trivial, exp−ie

∫ L0 dx1A1(t) = 1, which is gauge

invariant — can not be removed by gauge trans.• The Hamiltonian:

H = −i∫

dx : ψγ1D1ψ :=

∫dx

−i :ψ†+(∂1 − ieA1)ψ+ : +i :ψ†−(∂1 − ieA1)ψ− :

• For constant A1, Eigenvalues and eigenfunctions of the covariant

derivative:

i(∂1 − ieA1)eiknx =− (kn − eA1)eiknx, eikn(x+L) = eiknx

⇒ kn =2πnL , n = −∞, . . . ,∞

Page 14: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly in two dimensional QED: Non-conservation ofFermion numbers

• Single particle state:

ψ+,n =eiknx, En = +(kn − eA1) ,

ψ−,n =eiknx, En = −(kn − eA1) .

• Vacuum: all the negative energy level are filled.

ψ+ =

∞∑En>0

ane−iEnt+iknx +

∞∑En<0

b†ne−iEnt+iknx

ψ− =

∞∑En>0

cne−iEnt+iknx +

∞∑En<0

d†ne−iEnt+iknx

Different kn’sa†n|Ω⟩, En > 0, kn > eA1: generate one right-moving fermion;b†n|Ω⟩, En < 0, kn < eA1: generate one right-moving hole, antifermion;c†n|Ω⟩, En > 0, kn < eA1: generate one left-moving fermion;d†n|Ω⟩, En < 0, kn > eA1: generate one left-moving hole, antifermion;

Page 15: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly in two dimensional QED: Non-conservation ofFermion numbers

• Adiabatically change A1, the fermionenergy level shift slowly.

ψ+,n =eiknx, En = +(kn − eA1) ,

ψ−,n =eiknx, En = −(kn − eA1) .

• If adiabatically change ∆A1 = 2πeL ,

for ψ+, En → En−1;for ψ−, En → En+1.occupation number on these level notchanged

• One left-moving fermion appear from the vacuum, and one right-movingfermion disappears from the vacuum.• The wilson line also does not change.

exp−ie∫ L

0 dx1A1(t) → exp−ie∫ L

0 dx1A1(t)− i2π• Anomalous nonconservation eq:

∆(NR −NL) =

∫d2x e

2π ϵµνFµν =

∫dt dx e

π∂0A1 =

L(−∆A1) = −2 .

Page 16: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly in Four Dimensional massless QEDMassless Four dimensional QED:

L = iψD/ψ − 14FµνFµν , Dµψ = (∂µ + ieAµ)ψ

γµ =

(0 σµ

σµ 0

), σµ = (1, σi), σµ = (1,−σi), γ5 = iγ0γ1γ2γ3 =

(−1 00 1

)Global symmetry:

ψ → eiαψ, vector current jµ = ψγµψ.

ψ → eiαγ5ψ, axial vector current jµ5 = ψγµγ5ψ.

∂µjµ5 =symm limϵ→0

ieψ(x +

ϵ

2 )γνγ5ϵµFµν(x)ψ(x−

ϵ

2 )

We then need to look at the operator product expansion of ψ(x + ϵ2 )ψ(x−

ϵ2 ),

with nonzero background Aµ, not as a quantum field.Vertex iL ∼ −e

∫dx4iψA/ψ, only fermions are contracted.

Page 17: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly in Four Dimensional massless QEDLeading order:

ψ(y)ψ(z) =∫ d4k

(2π)4 e−ik·(y−z) ik/k2 = −∂/(

i4π2

1(y − z)2 ) =

i2π2

γα(y − z)α(y − z)4

tr(γνγ5γα) = 0.Next to leading order: in-going state A(p) =

∫d4xeip·xA(x).

⟨ψ(y)ψ(z)⟩ =⟨ψ(y)ψ(z)∫

d4x(−ie)ψ(x)A/(x)ψ(x)⟩

=− ie∫ d4k

(2π)4d4p(2π)4

∫d4xe−ik·(x−z)e−i(k+p)·(y−x)

(ik/+ p/

(k + p)2 A/(x) ik/k2

)=− ie

∫ d4k(2π)4

d4p(2π)4 eik·ze−i(k+p)·y

(ik/+ p/

(k + p)2 A/(p) ik/k2

)⟨ψ(x +

ϵ

2)γµγ5ψ(x −

ϵ

2)⟩

=− ie∫ d4k

(2π)4d4p(2π)4 eik·ϵe−ip·(x− ϵ

2 )tr(−

i(k/+ p/)A/(p)ik/γµγ5

(k + p)2k2

)=− ie

∫ d4kd4p(2π)8 eik·ϵe−ip·x

(−4iϵαβγµ(k + p)αAβkγ

(k + p)2k2

)

=− 4e∫ d4kd4p

(2π)8 eik·ϵe−ip·x(ϵαβγµpαAβkγ(k + p)2k2

)tr(γ5γαγβγγγδ) = −4iϵαβγδ

Page 18: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly in Four Dimensional massless QEDFor ϵ→ 0, the most divergent part is from large k integral, k + p→ k

⟨ψ(x +ϵ

2)γµγ5ψ(x −

ϵ

2)⟩

=− 4e∫ d4kd4p

(2π)8 eik·ϵe−ip·x(ϵαβγµpαAβkγ(k + p)2k2

)

→− 4eϵαβγµ∫ d4p

(2π)4 e−ip·xpαAβ(p)∫ d4k

(2π)4 eik·ϵ(

kγk4

)=− 4eϵαβγµi∂α

∫ d4p(2π)4 e−ip·xAβ(p)

∫ d4k(2π)4 eik·ϵ

(kγk4

)=eϵαβγµiFαβ(

ϵγ

4π2ϵ2)

where ∫ d4k(2π)4 eik·ϵ

(kγk4

)=− i∂ϵγ

∫ d4kE(2π)4 e−ikE·ϵE

(i

k4E

)

=− i∂ϵγ−i ln(−ϵ2)

16π2 = −ϵγ

8π2ϵ2

∂µjµ5 =symm limϵ→0

ieψ(x +

ϵ

2)γνγ5ϵµFµν(x)ψ(x −

ϵ

2)

=symm limϵ→0

ieϵµFµν(x)(eϵαβγν iFαβ(

ϵγ

4π2ϵ2))

= −e2

16π2 ϵαβµνFαβFµν

This is know as Adler-Bardeen-Jakiw anomaly.

Page 19: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: perturbation calculation,triangle diagram

Matrix element: of ∂µj5µ with two photon, look first at∫d4xe−iq·x⟨p, k|j5µ(x)|0⟩ = (2π)4δ(4)(p + k− q)ϵ∗ν(p)ϵ∗λ(k)Mµνλ(p, k)

Leading order diagrams:

the first one:

the second: (p, ν)↔ (k, λ).

Page 20: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: perturbation calculation∂µ the amplitude ∼ iq· the triangle diagrams: usingqµγµγ5 = (l/+ p/− l/+ k/)γ5 = (l/+ p/)γ5 + γ5(l/− k/)The first one:

ie2∫

d4l(2π)4 tr

[((l/+ p/)γ5 + γ5(l/− k/)

) i(l/− k/)(l− k)2 γ

λ il/l2 γ

ν i(l/+ p/)(l + p)2

]=e2

∫d4l

(2π)4 tr[γ5 (l/− k/)

(l− k)2 γλ l/

l2 γν + γ5γλ

l/l2 γ

ν (l/+ p/)(l + p)2

]=e2

∫d4l

(2π)4 tr[γ5 (l/− k/)

(l− k)2 γλ l/

l2 γν − γ5 l/

l2 γν (l/+ p/)(l + p)2 γ

λ]

l−k→l======e2

∫d4l

(2π)4 tr[γ5 l/

l2 γλ l/+ k/(l + k)2 γ

ν − γ5 l/l2 γ

ν (l/+ p/)(l + p)2 γ

λ]

• Anti-symmetric under (p, ν)↔ (k, λ). Cancels with the second diagram.• However, the integral is linearly divergent, the shift of integration variable

may not be valid.• The integral should be regularized first and then the integration variable

can be shifted.• The shift may not be consistent with the regularization.

Page 21: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: perturbation calculationDimenaional regularization: How to define γ5? ’t Hooft and Veltmanγ5 = iγ0γ1γ2γ3, anti-commutes with γµ, µ = 0, 1, 2, 3, but commutes withothers.

• All external momenta pµ, kµ are physical four components vector, onlyinternal momentum l is in d dimensions: l = l∥ + l⊥.• qµγµγ5 = (l/∥ + p/− l/∥ + k/)γ5 = (l/+ p/)γ5 + γ5(l/− k/)− 2γ5l/⊥• The first two terms cancel. The last term gives

• Feynmann parameterization:l→ l + (kx− py), l⊥ not change.denominator → [l2 + k2x(1− x) + p2y(1− y) + 2xyp · k]3 = (l2 +∆)3,numerator → 2tr(l→ l + (kx− py)) , the 2 from Feynmannparameterization. And the overall integral

∫ 10 dx

∫ x0 dy.

• l/⊥ can only be paired with another l⊥ to give non-zero integral.l/⊥l/⊥ = l2⊥ → d−4

d l2• tr(γ5γαγβγγγδ) = −4iϵαβγδ, ϵαβγδ lαlβ = 0. One lα → 0• Only terms like tr(γ5l/⊥l/⊥k/p/γλγν) are left.

Page 22: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: perturbation calculationNumerator:

− 4tr(γ5l/⊥(l/⊥ + k/(x− 1)− p/y)γλ(l/⊥ + k/x− p/y)γν(l/⊥ + p/(1− y) + k/x))

→− 4tr(γ5l/⊥l/⊥(γλ

(k/xγνp/(1− y)− p/yγνk/x

)+

(k/(x− 1)γλγνp/(1− y)− p/yγλγνk/x

)−

(k/(x− 1)γλp/yγν + p/yγλk/xγν

))→− 4tr(γ5l/⊥l/⊥k/γλp/γν)

→− 4d− 4d l2tr(γ5k/γλp/γν)

∫ddl

(2π)dl/⊥l/⊥

(l2 −∆)3 =d− 4

di

(4π)d/2d2

Γ(2− d2 )

Γ(3)∆2−d/2 →−i

2(4π)2

The second graph, (p, ν)↔ (k, λ), the same as the first graph.

Page 23: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: perturbation calculationThe total amplitude:

⟨p, k|∂µjµ5(0)|0⟩ =− e2

2π2 ϵανβλkαpβϵ∗ν(p)ϵ∗λ(k)

=− e2

2π2 ϵανβλ(−ipα)ϵ∗ν(p)(−ikβ)ϵ∗λ(k)

=− e2

16π2 ⟨p, k|ϵανβλFανFβλ(0)|0⟩

The same ABJ anomaly equation as before.

Page 24: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: Linear divergenceLet’s look at the correlation function: j5µ(q) =

∫d4xeiqxj5µ(x),

jν(p) =∫

d4xe−ipxjν(x).

iMµλν5 (q, k, p)(2π)4δ(q− p− k) = ⟨Ω|j5µ(q)jλ(k)jν(p)|Ω⟩

iMµλν5 =−

∫d4l

(2π)4 tr[γµγ5 i(l/− k/)

(l− k)2 γλ il/

l2 γν i(l/+ p/)(l + p)2 + γµγ5 i(l/− p/)

(l− p)2 γν il/

l2 γλ i(l/+ k/)(l + k)2

]

−qµMµλν5 =−

∫d4l

(2π)4 tr[γ5 (l/− k/)

(l− k)2 γλ l/

l2 γν − γ5 l/

l2 γν (l/+ p/)(l + p)2 γ

λ]+ (p, ν)↔ (k, λ)

=− 4iϵµλρν∫

d4l(2π)4

[ kµlρ(l− k)2l2 +

pµlρl2(l + p)2 −

pµlρ(l− p)2l2 −

kµlρl2(l + k)2

]• ∫ d4l

(2π)4kµlρ

(l−k)2l2 ∼ kµkρ, contracted with ϵµλρν , appears to vanish.

Page 25: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: Linear divergence

pνMµλν5 =

∫d4l

(2π)4 tr[γµγ5

( (l/− k/)(l− k)2 γ

λ l/l2 −

(l/− k/)(l− k)2 γ

λ (l/+ p/)(l + p)2 )

− l/l2 γ

λ (l/+ k/)(l + k)2 +

(l/− p/)(l− p)2 γ

λ (l/+ k/)(l + k)2

)]=4iϵµρλν

∫d4l

(2π)4

[ (l− k)ρlν(l− k)2l2 −

(l− k)ρ(l + p)ν(l− k)2(l + p)2

− lρ(l + k)νl2(l + k)2 +

(l− p)ρ(l + k)ν(l− p)2(l + k)2

]• Shift l→ l + k in the first term, and l→ l− p + k in the fourth term, then

all terms cancel.• The above integrals are linear divergent, shift integration variable is not

valid.• Consider ∆(a) =

∫∞−∞ dx[f(x + a)− f(x)], where f→ c1 as x→∞ and

f→ c2 as x→ −∞ ; c1, c2 are constants

∆(a) =∫ ∞−∞

dx[af′(x) + a2

2 f′′(x) + . . .] = a[f(∞)− f(−∞)] = a(c1 − c2)

Page 26: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: Linear divergenceIn four dimension: consider integral

∆α =

∫d4k(2π)4 (F

α[k + a]− Fα[k]) wick rot.======= i

∫d4kE

(2π)4 (Fα[kE + a]− Fα[kE])

For linear divergence: limkE→∞ Fα(kE) = A kαEk4

E. Expand around a = 0

∆α(aµ) =i∫

d4kE

(2π)4

[aµ∂µFα[kE] +

12aµaν∂µ∂νFα[kE] + . . .

]=iaµ

∫d3Sµ(2π)4 Fα[kE]

The higher derivative terms vanish too quickly such that the integral over theinfinite surface → 0 after using Gauss theorem.The infinitesimal surface area of the dSµ is normal to the 3-sphere at kE →∞,d3Sµ = k2kµdΩ3.

∆α(aµ) =iaµ lim|k|→∞

∫dΩ3

(2π)4 Akµkαk2 = iaµ lim

|k|→∞

∫dΩ3

(2π)4 Ak2δµα

4k2

=i

32π2 Aaα

∆α is finite.

Page 27: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: Linear divergence

pνMµλν5 =4iϵµρλν

∫d4l

(2π)4

[ (l− k)ρlν(l− k)2l2 −

(l− k)ρ(l + p)ν(l− k)2(l + p)2

− lρ(l + k)νl2(l + k)2 +

(l− p)ρ(l + k)ν(l− p)2(l + k)2

]=4iϵµρλν

∫d4l

(2π)4

[ −kρlν(l− k)2l2 −

−(k + p)ρlν(l− k)2(l + p)2

+kρlν

l2(l + k)2 +−(p + k)ρlν

(l− p)2(l + k)2

]The first term and the third term: l→ l + k, aν = −kν , contract with ε, notcontribute, or depend only on k, contracted with ϵ and gives zero.The second term can be obtained from the fourth term by l→ l− k + p,aµ = p− k,

4iϵµρλν(p + k)ρFν(lE) = 4iϵµρλν (p + k)ρlν(l− k)2(l + p)2

k→∞−−−−→ 4iϵµρλν(p + k)ρlνl4

Thus,

pνMµλν5 =

14π2 ϵ

µρλνkρpν = 0

Not as we expected: The vector current is not conserve, but the axial currentseems conserved.

Page 28: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: Linear divergenceThe problem: the initial internal integral momentum is chosen by hand, can beshift arbitrarily. We can make an arbitrary shift lµ → lµ + b1p + b2k for the firstdiagram and lµ → lµ + b1k + b2p for the second to keep Bose symmetry.

−qµMµλν5 =− 4iϵµλρν

∫d4l

(2π)4

[ kµlρ(l− k)2l2 +

pµlρl2(l + p)2−

pµlρ(l− p)2l2 −

kµlρl2(l + k)2

]lµ→lµ+b1p+b2k============

lµ→lµ+b2p+b1k− 4iϵµλρν i

32π2

((k + p)µ(b1p + b2k)ρ−(p + k)µ(b2p + b1k)ρ

)=

14π2 ϵ

µλρνkµpρ(b1 − b2)

Page 29: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: Linear divergenceFor vector current: l1 = l + b1p + b2k, l2 = l + b1k + b2p.The first term = -The third term(l→ l + (b2 − b1)(k− p)− k,The second term = -The fourth term(l→ l + (−1 + b2 − b1)(k− p),

pνMµλν5 =4iϵµρλν

∫d4l

(2π)4

[ −kρl1,ν(l1 − k)2l21

− −(k + p)ρl1,ν(l1 − k)2(l1 + p)2

+kρl2,ν

l22(l2 + k)2 +−(p + k)ρl2,ν

(l2 − p)2(l2 + k)2

]→4iϵµρλν i

32π2

[−kρ(b2 − b1)(k− p)ν + (k + p)ρ(−1 + b2 − b1)(k− p)ν

]=− ϵµρλν 1

8π2

[kρpν(b2 − b1)− 2kρpν(−1 + b2 − b1)

]=− 1

8π2 ϵµρλνkρpν(2 + b1 − b2)

Page 30: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED: Linear divergence

−qµMµλν5 =

14π2 ϵ

µλρνkµpρ(b1 − b2)

pνMµλν5 =− 1

8π2 ϵµρλνkρpν(2 + b1 − b2)

• If b1 − b2 = 0, the axial current is conserved but the vector current is not.• If b1 − b2 = −2, the vector current is conserved but the axial current is

not, and this is consistent with what we expected.

Page 31: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

with Non-abelian gauge fields: Linear divergenceLet’s look at the correlatoin function for most general current:

j5a,µ(q) =∫

d4xeiqxja,5µ(x) =∫

d4xeiqxψiγµγ5Ta

ijψj,

jb,ν(p) =∫

d4xe−ipxjb,ν(x) =∫

d4xeiqxψiγνTb

ijψj.

Ta is the generator for all the symmetries, not necessarily irreducible, includingglobal and local symmetry, G1 ⊗G2 ⊗ . . . .

iMµλν5,abc(q, k, p)(2π)

4δ(q− p− k) = ⟨Ω|ja,5µ(q)jb,λ(k)jc,ν(p)|Ω⟩

iMµλν5,abc =−

∫d4l

(2π)4 tr[γµγ5Ta i(l/− k/)

(l− k)2 γλTb il/

l2 γνTc i(l/+ p/)

(l + p)2

+ γµγ5Ta i(l/− p/)(l− p)2 γ

νTc il/l2 γ

λTb i(l/+ k/)(l + k)2

]

Page 32: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

with Non-abelian gauge fields: Linear divergenceShift arbitrarily: lµ → l1 = lµ + b1p + b2k for the first diagram andlµ → l2 = lµ + b1k + b2p for the second to keep Bose symmetry.

−qµMµλν5,abc =− 4iϵµλρν

∫d4l

(2π)4

[( kµl1,ρ(l1 − k)2l21

+pµl1,ρ

l21(l1 + p)2

)tr(TaTbTc)

−( pµl2,ρ(l2 − p)2l22

+kµl2ρ

l22(l2 + k)2

)tr(TaTcTb)

]=− 4iϵµλρν i

32π2

((k + p)µ(b1p + b2k)ρtr(TaTbTc)

−(p + k)µ(b2p + b1k)ρtr(TaTcTb))

=1

8π2 ϵµλρνkµpρ(b1 − b2)tr(TaTb,Tc)

Page 33: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

with Non-abelian gauge fields: Linear divergence

pνMµλν5,abc =4iϵµρλν

∫d4l

(2π)4

[( (l1 − k)ρl1,ν(l1 − k)2l21

− (l1 − k)ρ(l1 + p)ν(l1 − k)2(l1 + p)2

)tr(TaTbTc)

+(− l2,ρ(l2 + k)ν

l22(l2 + k)2 +(l2 − p)ρ(l2 + k)ν(l2 − p)2(l2 + k)2

)tr(TaTcTb)

]=4iϵµρλν

∫d4l

(2π)4

[( −kρl1,ν(l1 − k)2l21

− −(k + p)ρl1,ν(l1 − k)2(l1 + p)2

)tr(TaTbTc)

+( kρl2,ν

l22(l2 + k)2 +−(p + k)ρl2,ν

(l2 − p)2(l2 + k)2

)tr(TaTcTb)

]→4iϵµρλν i

32π2

[(− kρ(b1p + b2k)ν + (k + p)ρ(p + b1p + b2k)ν

)tr(TaTbTc)

+(kρ(b1k + b2p)ν − (k + p)ρ(−p + b1k + b2p)ν

)tr(TaTcTb)

]=− 1

8π2 ϵµρλνkρpν

[(1− b2)tr(TaTbTc) + (1 + b1)tr(TaTcTb)

]

Page 34: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

with Non-abelian gauge fields: Linear divergence

−qµMµλν5,abc =

18π2 ϵ

µλρνkµpρ(b1 − b2)tr(TaTb,Tc)

pνMµλν5,abc =− 1

8π2 ϵµρλνkρpν

[(1− b2)tr(TaTbTc) + (1 + b1)tr(TaTcTb)

]• Vector current conserved:b1 = −b2 = −1,

−qµMµλν5,abc = − 1

4π2 ϵµλρνkµpρtr(TaTb,Tc)

• Axial current conserved: b1 = b2,

pνMµλν5 = − 1

8π2 ϵµρλνkρpνtr(TaTb,Tc)

• Symmetric: Chiral current γ5 → 1−γ5

2 , q→ −q, q + k + p = 0,qµMµλν

L,abc(q, k, p) = − 12 qµMµλν

5,abc(q, k, p)

qµMµλνL,abc(q, k, p) = kµMνµλ

L,abc(q, k, p) = pµMλνµL,abc(q, k, p)

Condition: −(1− b2) = b1 − b2, −(1 + b1) = b1 − b2, ⇒ b1 = −b2 = − 13

qµMµλν5,abc =

124π2 ϵ

µλρνkµpρtr(TaTb,Tc)

Page 35: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralThe Axial vector Ward Id. Consider the functional integral: More general, nfermions, ψn, with continuous non- Abelian or abelian gauge symmetry, e.g.

Z =

∫ ∏n[Dψn][Dψn] exp

[i∫

d4xψi(iD/)ijψj],Dµ = ∂µ − igAa

µta

• The classical conserved current of the global axial transformation.Change variable :(Aµ not change), t: Can be any global axial symmetrygenerator, [t, ta] = 0.

ψ(x) → ψ′(x) = eiα(x)γ5tψ = (1 + iα(x)tγ5)ψ(x),

ψ(x) → ψ′(x) = ψeiα(x)tγ5= ψ(x)(1 + iα(x)tγ5) ,

The global transformation is a symmetry,∫d4xL[ψ′,A] =

∫d4x[L[ψ,A]− ∂µα(x)jµ5]

=

∫d4x[L[ψ,A] + α(x)∂µjµ5] .

for ψ satisfies EOM, since α(x) arbitrary, we have ∂µjµ5 = 0.• Ward Id. From 0 = Zψ′ − Zψ

0 =δZ ?==

∫[Dψ][Dψ]

∫d4xα(x)∂µjµ5eiS =

∫d4xα(x)⟨Ω|∂µjµ5|Ω⟩

Page 36: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralWe have assumed that the measure is invariant under the symmetrytransformation. For a general transformation:

ψ(x) →U(x)ψ(x) =∫

yU(x)δ(x − y)ψ(y) ≡

∫yU(x, y)ψ(y),

ψ(x) →ψ(x)γ0U†(x)γ0 =

∫yψ(y)δ(x − y)γ0U†(y)γ0 ≡

∫yψ(y)U(x, y).

U(x, y) = U(x)δ(x − y) , U(x, y) = δ(x − y)γ0U†(y)γ0

[Dψ][Dψ] → [Dψ][Dψ] det[U(x, y)]−1 det[U(x, y)]−1

• Vector like symmetry: U(1) symmetry, U = eiα(x)t,γ0U†γ0 = U† = e−iα(x)t.

[U(x, y)]−1 = U(x, y),detU(x, y) det U(x, y) = 1

Page 37: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integral• Axial vector like symmetry: U(x) = eiα(x)tγ5 ,γ0U†γ0 = eiα(x)tγ5 .

[dψ(x)][dψ(x)]→[dψ(x)][dψ(x)] det[eiα(x)γ5tδ(x− y)]−2

=[dψ(x)][dψ(x)] exp(−2iTr(γ5α(x)tδ(x− y))

=[dψ(x)][dψ(x)] exp∫

d4x iα(x)A(x),

A(x) =− 2tr(γ5t)δ(x− x)

detM = expTr lnM is used. Tr is over both lorentz spinor indices,flavor indices and x. tr does not include the trace over x.• Ward id.

Z[A] =

∫ ∏n[Dψn][Dψn] exp

[i∫

d4xψi(iD/)ijψj + α(∂µJµ +A)]

0 = δZ[A] =

∫[Dψ][Dψ]

∫d4xα(x)(∂µjµ5 +A)eiS =

∫d4xα(x)⟨Ω|∂µjµ5 +A|Ω⟩

• Spinor space trace: trγ5 = 0. Seems to be invariant.However,

tr(α(x)δ(x− y)) =∫

d4xα(x)δ(x− x)→∞.

We need regularization first.

Page 38: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralRegularize the δ(x− x) in a gauge invariant manner:

AM(x) = −2[tr(γ5tf(D/2

x/M2))δ4(x− y)]

y→x

f(0) = 1, f(∞) = 0, sf ′(s)→ 0 at s→ 0 and s→∞.

At M→∞, AM → A(x), f(s) a smooth function, droping from 1 to 0 for sfrom 0→∞, e.g. e−s or 1

s+1 .Fourier transform δ4(x− y) to momentum space:

A(x) =− 2∫

d4k(2π)4

[tr(γ5tf(D/2

x/M2))e−ik·(x−y)]y=x

=− 2∫

d4k(2π)4

[tr(γ5tf([−ik/+ D/x]

2/M2))]

rescale k→Mk==========− 2M4

∫d4k(2π)4

[tr(γ5tf([−ik/+ D/x/M]2))

]=− 2M4

∫d4k(2π)4

[tr(γ5tf

(−k2 − 2k ·Dx

M +(D/x

M

)2))]

only 4γterm=========

1/M4 term− 2M4

∫d4k(2π)4

[tr(γ5t1

2 f′′(−k2)(D/x

M

)4)]

Higher terms vanish as M→∞. We have usedD/(e−ik·x . . . ) = e−ik·x(−ik/+ D/)(. . . ).

Page 39: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralWick rotation, k→ iκ, k2 → −κ2, this is equivalent to working in Euclideanspace from the begining∫

d4kf′′(−k2) =i∫

d4κf′′(κ2) = i∫ ∞

0dκ2π2κ3f′′(κ2)

=iπ2∫ ∞

0ds sf′′(s) = −iπ2

∫ ∞0

ds f′(s) = iπ2 .

The trace: tr(γ5γµγνγργδ) = −4iϵµνρδ

tr(γ5t(D/x)4) =− 4itr(tϵµνρδDµDνDρDδ) = −itr(tϵµνρδ[Dµ,Dν ][Dρ,Dδ])

=ig2tr(tϵµνρδFµνFρδ) = ig2ϵµνρδFbµνFc

ρδtr(ttbtc)

M4 cancelsA =

g2

16π2 ϵµνρδFb

µνFcρδtr(ttbtc)

So the anomalous Ward id. ∂µj5µ = − g2

16π2 ϵµνρδFb

µνFcρδtr(ttbtc) = −A

Page 40: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralAnother way to look at the path integral: go to Euclidean space path integral:• x0 = −ix4 , xi = xi; ∂0 = i∂4 = i∂/∂x4, ∂i = ∂i;

Scalar: iS = i∫

d4x(∂µϕ∂µϕ−m2ϕ2) =∫

d4x(−∂µϕ∂µϕ−m2ϕ2) = −SE

• A0 = iA4, Ai = Ai; F0i = ∂0Ai − ∂iA0 = i(∂4Ai − ∂iA4) = iF4i,Fij = Fij.Action: iS ∼ i

∫d4x(− 1

4 FµνFµν) = −∫

d4x( 14 Fµν Fµν)

ϵαβγδFαβFγδ = −iϵαβγδFαβFγδ, ϵ1234 = ϵ0123 = 1.• γ0 = γ4, γi = iγi; γµ = 㵆, γ5 = −γ1γ2γ3γ4; γ0γµγ0 = 㵆,γ4γ4γ4 = γ4†, γ4γiγ4 = −γi†.• Eucl: ψ and ψ are defined to be two independent spinors, not ψ = ψ†γ0 in

Minkowski. We integrate over ψ and ψ not over their complex conjugate.• Under SO(4) trans: ψ′E = e 1

2 Σµνωµν

ψE, ψ′†E = ψ†Ee− 12 Σµνω

µν ,Σµν = 1

4 (γµγν − γν γµ).SO(4) inv.: ψ†EψE. We define ψM = iψE to be transform the same as ψ†E,then ψψ is Lorentz invariant in Eucl..• Action: iS ∼ i

∫d4x ψ(i∂/−m)ψ → −

∫d4x ψ(i∂/+ im)ψ

Page 41: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralWe can define the measure more carefully• Covariant derivative in Eucl.:iD/ = i∂/+ gA/ata is hermitian, has real

eigenvalues.

(iD/)ϕm = λmϕm,

∫d4xEϕ

†m(x)ϕn(x) = δmn

Completeness:∑

k ϕk(x)ϕ†k(y) = δ4(x− y)I. I unit operator in spinorspace and flavor space.• If Aµ = 0, free Dirac theory, λ2

m = k2, in Eucl. For large k, and fixed Aµ,these eigenvalues gives asymptotic eigenvalues.• Expand ψ and ψ using the basis of the eigenstates of iD/

ψ(x) =∑

mamϕm(x), ψ(x) =

∑m

amϕ†m(x)

am and am are anti-commuting coefficients.• the functional measure

[Dψ][Dψ] = Πmdamdam,

Page 42: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralThe transformation ψ′(x) = eiαγ5tψ(x) = (1 + iα(x)γ5t)ψ(x) ,ψ′(x) = ψ(x)eiαγ5t = ψ(x)(1 + iα(x)γ5t)

a′m =∑

n

∫d4xϕ†m(x) expiα(x)γ5tϕn(x)an = (eC)mnan ,

a′m =∑

n

∫d4xanϕ

†n(x) expiα(x)γ5tϕm(x) = an(eC)nm

Cnm =

∫d4xϕn(x)(iα(x)γ5t)ϕm(x), J = eC = I + C + O(C2)

[Dψ′][Dψ′] =Πmda′mda′m = ΠmdamdamJ−2,

J−2 =det[eC]−2 = exp[−2Tr log[eC]] = exp[−2∑

nCnn].

Note:∫d4xϕn(x)(iα(x)γ5t)2ϕm(x) =

∫d4x

∫d4yϕn(x)(iα(x)γ5t)δ4(x − y)(iα(y)γ5t)ϕm(y)

=∑

l

∫d4xϕn(x)(iα(x)γ5t)ϕl(x)

∫d4yϕl(y)(iα(y)γ5t)ϕm(y)

=(C · C)nm

Page 43: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralRegularize: The same as before,

∫d4x iα(x)A(x) = −2iTr(γ5α(x)tδ(x− y))

−2TrC =− 2∑

ni∫

d4xϕ†n(x)α(x)γ5tϕn(x) ≡∫

d4xα(x)A(x)

=− 2 limM→∞

∑n

i∫

d4xϕ†n(x)α(x)γ5tϕn(x)f(λ2

nM2 )

=− 2 limM→∞

∑n

i∫

d4xϕ†n(x)α(x)γ5tf(−D/2

M2 )ϕn(x)

Page 44: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralUsing the completeness relation: ∑n ϕn(x)ϕ†n(y) = δ4(x − y)I.

limM→∞

∑n

i∫

d4xϕ†n(x)α(x)γ5tf(−D/2

M2 )ϕn(x)

= limM→∞

i∫

d4xα(x)tr(γ5t(

f(−D/2

M2

)δ4(x − y)

)∣∣∣y→x

)= lim

M→∞i∫

d4x∫ d4k

(2π)4 α(x)tr(γ5t(

f(−D/2

M2

)eik·(x−y)

)∣∣∣y→x

)= lim

M→∞i∫

d4x∫ d4k

(2π)4 α(x)tr(γ5t(

eik·(x−y)f(−(ik/+ D/)2

M2

))∣∣∣y→x

)= lim

M→∞i∫

d4x∫ d4k

(2π)4 α(x)tr(γ5t(

f( k2 − 2ik · D − D/2

M2

)))Expand f

===========keep 4γ terms

limM→∞

i∫

d4x∫ d4k

(2π)4 α(x)tr(γ5t 1

2

(f′′( k2

M2

)(−D/2

M2

)2))k→kM======i

∫d4xα(x)tr(γ5tD/4)

12

∫ d4k(2π)4 f′′(k2)

=i2

∫d4xα(x)(−4ϵαβγδ)(− g2

4)tr(tFαβFγδ)(

116π2 ))

=i2

∫d4xα(x)

(g2

16π2 ϵαβγδtr(tFαβFγδ)

)

Page 45: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integral

[Dψ′][Dψ′] =ΠmdamdamJ−2

=Πmdamdam exp

−i

∫d4xα(x)

(g2

16π2 ϵαβγδtr(tFαβFγδ)

)Minkowski========Πmdamdam exp

−i

∫id4xα(x)

(g2

16π2 ϵαβγδtr(itFαβFγδ)

)=Πmdamdam exp

i∫

d4xα(x)(

g2

16π2 ϵαβγδtr(tFαβFγδ)

)In Minkowski:

Z =

∫[dψ][dψ] exp

[iS + i

∫d4xα(x)

(∂µjµ5 +

g2

16π2 ϵαβγδtr(tFαβFγδ)

)]Anomalous axial current eq:

∂µjµ5 = − g2

16π2 ϵαβγδtr(tFαβFγδ)

This can be easily generalized to d = 2n dimensions.

Page 46: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralWe have seen the trace over x, y, spinor and flavor index (Euclidean space)

limM→∞

Tr(∫

d4xϕ†m(x)γ5tf(−D/2

M2

)ϕn(x)) =

g2

32π2

∫d4xϵαβγδtr(tFαβFγδ)

For any nonzero eigenvalue λk,• iD/ϕk = λkϕk• there is another ϕ−k = γ5ϕk,

iD/ϕ−k = iD/γ5ϕk = −γ5iD/ϕ = −λkϕk

• ∫d4xϕ†−kϕk =

∫d4xϕ†kγ

5ϕk = 0• For U(1) generator t, [t, ta] = 0, we can choose tϕk = tkϕk and then

tϕ−k = tkϕ−k.• For α(x) =const., Ckk ∼

∫d4xϕ†kγ

5f(λ2k/M2)tkϕk = 0 for λk = 0.

• Only for λk = 0, zero modes, there are not such cancellations. We canchoose eigenfunctions both for γ5 and iD/ for zero modes. SinceiD/ϕ0 = iD/γ5ϕ0 = 0, γ5( 1±γ5

2 )ϕ0 = ±( 1±γ5

2 )ϕ0.

iD/φu = 0, γ5φu = φu, u = 1, . . .n+, tφu = t+u φu;

iD/ψv = 0, γ5ψv = −ψv, v = 1, . . .n−, tψv = t−v ψv.∫d4xφ†u1φu2 = δu1u2 ,

∫d4xψ†v1ψv2 = δv1v2 ,

∫d4xψ†vφu = 0.

Page 47: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

4D-Anomaly in massless QED:Path integralSince f(0) = 1, the trace

Tr(γ5tf(D/2/M2)δ4(x− y))

= limM→∞

∑n

i∫

d4xϕ†n(x)γ5tf(−D/2

M2 )ϕn(x)

=

∫d4x

[∑u

t+u (φ†u(x)φu(x))−∑

vt−v (ψ†v(x)ψv(x))

]=∑

ut+u −

∑v

t−vfor t=1

=========t+=1,t−=1

n+ − n−

So, we have

n+ − n− =g2

32π2

∫d4xϵµνρδFb

µνFcρδtr(tbtc)

• This is a special case of Atiyah-Singer index theorem.• The left hand is an integer. The right hand side can not be changed

smoothly, and only depends on the topology of the gauge field.• Difference of left-handed and right-handed zero modes of the Covariant

Dirac operator iD/ (Eucl.)— algebraic index;Topological invariant numbers — topology index;Atiyah-singer index theorem relate the algebraic index and the topologicalindex.

Page 48: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Global Symmetry in QCDQCD, SU(3) gauge theory: quarks, uc, dc, cc, sc, tc, bc, have color indicesc = 1, 2, 3. Gauge field: Aa

µ, a = 1, 2, . . . , 8. We discuss only the lightest u andd here.

L =(u d

)(iD/ 00 iD/

)(ud

)−(u d

)(mu 00 md

)(ud

)• If mu = md = 0, we have chiral symmetry

U(2)L ×U(2)R = U(1)L ×UR(1)× SU(2)L × SUR(2) for uL = 1−γ5

2 u,uR = 1+γ5

2 u.

QL ≡(

ud

)L→ UL

(ud

)L, QR ≡

(ud

)R→ UR

(ud

)R,

Conserved currents:

jµL = QLγµQL, jµR = QRγ

µQR,

jµaL = QLγ

µτaQL, jµaR = QRγ

µτaQR,

Combinations give baryon number and isospin vector currents forUL = UR:

jµ = QγµQ, jµa = QγµτaQ,and axial current:

jµ5 = Qγµγ5Q, jµ5a = Qγµγ5τaQ,

Page 49: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Global Symmetry in QCDSSB of the symmetry: quark and anti-quark have strong interaction, thevacuum may contain a condensate of quark-antiquark pairs with zeromomentum and angular momentum.• The v.e.v ⟨0|QQ|0⟩ = ⟨0|QLQR + QRQL|0⟩ = 0.• Inv. under UL = UR, not inv. under UL = UR. The axial transformation

symmetries are spontaneously broken.• There should be 4 goldstones corresponding to the four axial symmetry

generators.• Low energy strong interaction have three light pseudo-scalars, πa, isospin

triplet. Can be regarded as the goldstones, generated by the three isospinvectors ⟨0|jµ5a|πb(p)⟩ = −ipµfπδabe−ip·x, fπ: pion decay constant.• ∂µjµ5a = 0, p2 = 0, this is the Goldstone theorem.

Page 50: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

• With quark masses, only conserve the vector symmetry: axial current nolonger conserved. EOM:

iD/Q = mQ , ⇒ ∂/Q = −imQ + igA/aTaQ

−iD∗µQγµ = Qm, ⇒ Q←−∂/ = iQm− igQA/aTa

m =

(mu 00 md

).

• Current conservation:

∂µjµ5a =∂µ(Qγµγ5τaQ)

=(iQm− igQA/bTb)γ5τaQ− (Qγ5τa(−imQ + igA/bTbQ))

=iQm, τaQ

∂µ⟨0|jµ5a(0)|πb(p)⟩ = −p2fπδab = ⟨0|iQm, τaγ5Q|πb(p)⟩.The right hand : ⟨Ω|iQjγ5Qi|πb⟩ = −(τ b)ijM2

tr[m, τaτ b] =12δ

ab(mu + md) ⇒ m2π = (mu + md)

M2

fπ• M estimated to be ∼ 400 MeV, mπ ∼ 140 MeV, mu + md ∼ 10MeV≪ 300 MeV, the effective mass of the quark from the SSB. Isospin is anapproximated symmetry.

Page 51: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomaly of Chiral currents• For axial isospin current: in the massless limit, there is an anomaly

∂µjµ5a = − g2

16π2 ϵµνρδFb

µνFcρδtr(τatbtc)

τa is the flavor SU(2) symmetry generator, tc is the color SU(3) matrix.tr(τatbtc) = tr(τa)tr(tbtc)) = 0• Axial U(1) current: for nf = 2 here

∂µjµ5 = − g2nf

32π2 ϵµνρδFc

µνFcρδ

So the Axial isospin singlet current is not conserved. However, the righthand side is a total derivative. There are field configurations that givenontrival space-time integration of the right hand side. Thus, thissymmetry is not the real good symmetry of QCD. So, no goldstone isassociated with this symmetry.

Page 52: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Isospin current AnomalyAxial isospin currents have anomaly associated with the couplings of quarks tothe electromagnetism.

∂µjµ5a = − e2

16π2 ϵµνρδFµνFρδtr(τaQ2), Q =

( 23 00 − 1

3

).

∂µjµ53 = − e2

32π2 ϵµνρδFµνFρδ.

Since jµ53 annihilates/creates a π0, this contributes to π0 → 2γ.• Consider matrix element: ⟨p, k|jµ53(q)|0⟩ = ϵ∗νϵ

∗λMµνλ(p, k).

• Symmetry: interchange (p, ν) and (k, λ), pνMµνλ = kλMµνλ = 0.• The most general: with p2 = k2 = 0

Mµνλ =qµϵνλαβpαkβM1 + (ϵµναβkλ − ϵµλαβpν)kαpβM2

+ [(ϵµναβpλ − ϵµλαβkν)kαpβ − ϵµνλσ(p− k)σp · k]M3

• Using q = p + k, red terms vanish; and using q2 = 2p · kiqµMµνλ =iq2ϵνλαβpαkβM1 − iϵµνλσqµ(p− k)σp · kM3

=iq2ϵνλαβpαkβ(M1 + M3).

Vanishes in the limit q2 → 0.• Compared with axial anomaly: iqµMµνλ = − e2

4π2 ϵνλαβpαkβ . There must

be a 1q2 pole in M1 or M3.

Page 53: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Isospin current Anomaly

The current create a π0 goldstone and then decay to two γ, giving a 1q2 pole.

Amplitude iM(π0 → 2γ) = iAϵ∗νϵλϵνλαβpαkβ . Using⟨0|jµ5a|πb(p)⟩ = −ipµfπδabe−ip·x This contributes to

Mµνλ ∼ (iqµfπ)i

q2 (iAϵ∗νϵ∗λϵνλαβpαkβ)

Contributes to M1 = − 1q2 fπA. Compared with the anomaly equation

iqµMµνλ = − e2

4π2 ϵνλαβpαkβ ., we have A = e2

4π21

fπ .

This amplitude can be used to calculate the decay width of π0 → 2γ

Γ(π0 → 2γ) = 12mπ

18π

12∑pols

|M(π0 → 2γ)|2 = A2 m3π

64π

=α2

64π3m3

f2π

.

Page 54: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomalous variation of the effective actionConsider the generating functional:

Z[χ, χ] =∫

[dA][dψ][dψ] expi∫

d4xLgauge[A] + LM[ψ,Dψ, ψ,Dψ] + ψ(x)χ(x) + χ(x)ψ(x)

=

∫[dA] expi(Sgauge + W[χ, χ,A])

eiW[χ,χ,A] =

∫[dψ][dψ] expi

∫d4xLM[ψ,Dψ, ψ,Dψ] + ψ(x)χ(x) + χ(x)ψ(x)

• W is just taking A as external fields— invariant under the gaugetransformation. All the gauge fixing procedure and Faddeev-Popovquantization can be done after integration over fermions.• Anomaly of the global symmetry is only caused by fermion integration,

thus only appear in W[χ, χ,A].• If there is no anomaly, W[χ, χ,A] is invariant under the original axial

transformaion symmetry. ψ → ψ′ = eiαγ5tψ, α const

W[χ, χ,A] =

∫[dψ][dψ] expi

∫d4xLM[ψ,Dψ, ψ,Dψ] + ψ(x)χ(x) + χ(x)ψ(x)

=

∫[dψ′][dψ′] expi

∫d4xLM[ψ′,Dψ′, ψ′,Dψ′] + ψ(x)eiαγ5tχ(x) + χ(x)eiαγ5tψ(x)

No anomaly========= W[χ′, χ′,A]

Page 55: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomalous variation of the effective actionWith anomaly, Slavnov-Taylor i.d.

eiW[χ,χ,A] =

∫[dψ][dψ] expi

∫d4xLM[ψ,Dψ, ψ,Dψ] + ψ(x)χ(x) + χ(x)ψ(x)

=

∫[dψ′][dψ′] expi

∫d4xLM[ψ′,Dψ′, ψ′,Dψ′] + ψ(x)eiαγ5tχ(x) + χ(x)eiαγ5tψ(x)

=

∫[dψ][dψ] expi

∫d4xLM[ψ,Dψ, ψ,Dψ]

+ ψ(x)(χ(x) + δχ(x)) + (χ(x) + δχ(x))ψ(x) + αA(x)

0 =

∫d4x←−δ W[χ, χ,A]

δχ(x) δχ(x) +∫

d4xδχ(x)δW[χ, χ,A]

δχ(x) + α

∫d4xA

=

∫d4x⟨ψ⟩χiαγ5tχ+

∫d4xχtγ5iα⟨ψ⟩χ + α

∫d4xA

We have defined: Ψ = ⟨ψ⟩χ = δW[χ,χ,A]δχ

, Ψ = ⟨ψ⟩χ =←−δ W[χ,χ,A]

δχ

Define effective action: Γ[Ψ, Ψ,A] = W[χ, χ,A]−∫Ψχ−

∫χΨ.

We then have δΓ[Ψ,Ψ,A]

δΨ(x) = −χ(x),←−δ Γ[Ψ,Ψ,A]δΨ(x) = −χ(x).∫

d4xΨ(x)γ5t iδΓ[Ψ, Ψ,A]

δΨ(x)+

∫d4x i←−δ Γ[Ψ, Ψ,A]

δΨ(x) tγ5Ψ(x) = −∫

d4xA

Page 56: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Anomalous variation of the effective actionFor α(x), χ′(x) = χ(x) + α(x)∆χ,

eiW[χ,χ,A] =

∫[dψ][dψ] expi

∫d4xLM[ψ,Dψ, ψ,Dψ] + ψ(x)χ(x) + χ(x)ψ(x)

=

∫[dψ′][dψ′] expi

∫d4xLM[ψ′,Dψ′, ψ′,Dψ′] + ψ(x)eiαγ5tχ(x) + χ(x)eiαγ5tψ(x)

=

∫[dψ][dψ] expi

∫d4xLM[ψ,Dψ, ψ,Dψ] + ψ(x)(χ(x) + α(x)∆χ(x))

+ (χ(x) + α(x)∆χ(x))ψ(x) + α(x)∂µJµ5 + αA(x)

∂µ⟨Jµ5(x)⟩χ,χ,A = −A(x)−←−δ W[χ, χ,A]

δχ(x) ∆χ(x)−∆χ(x)δW[χ, χ,A]

δχ(x)

Page 57: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Gauge anomalyWe have studied the global symmetry anomaly:• The global symmetry is different from the gauge symmetry. [t, ta] = 0.

Fermions are coupled to the gauge theory by vector current.• We regularize the UV divergence respecting the gauge symmetry.• If the Gauge fields couples to the chiral current, like GWS model, there

could be gauge anomaly — We don’t want this to happen. This causes thetheory not well-defined. In reality the gauge anomaly must be cancelled.

Page 58: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Chiral fermionsMassless fermions: Helicity = Chirality for fermions, Helicity= − Chirality forantifermions. Σi = 1

2

(σi 00 σi

)

ψ(x) =∑

s

∫d3p√

(2π)32Ep[u(p, s)e−ip·xb(p, s) + v(p, s)eip·xd†(p, s)] ,

Σ · pu(p, h) = hu(p, h) , Σ · pv(p, h) = −hv(p, h)

h u(p, h) = Σ · p u(p, h) = γ5

2 u(p, h) , h v(p, h) = −Σ · p v(p, h) = −γ5

2 v(p, h).

• Dirac fermion: ψ = ψL + ψR, ψL,R = 1∓γ5

2 ψ

• For Weyl rep.: γµ =

(0 σµ

σµ 0

), γ5 =

(−1 00 1

). ψ =

(ψLψR

).

L = ψi(x)i∂/ψi(x) = ψ†Liiσ · ∂ψLi + ψ†Riiσ · ∂ψRi

• The left- and right-Chirality fermions can be assigned to differentrepresentions.

ψLi → eiαataLiψL, ψR → eiαata

RψR, Aaµ → Aa

µ +1g Dµα

a.

Page 59: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

• Transform the right-Chirality fermion fields to left-Chirality fermion fields:

ψ′Li = σ2ψ∗Ri, ψ′†Li = ψTRiσ

2.

Lorentz transform: exp i2Σ

µνϵµν

Σµν = − i4 [γ

µ, γν ] =

((σµν)β

α 00 (σµν)β

)α ,

σµν = − i4 (σ

µσν − σν σµ)σµν = − i

4 (σµσν − σνσµ)

σµν† = σµν

using σ2σµ = σµ∗σ2 and σµ = 1,−σi, σ2σµν∗ = σµνσ2.Right-handed fermions h = 1/2 → Right-handed anti-fermions h = 1/2Left-handed antifermions h = −1/2 → Left-handed fermions h = −1/2.• Lagrangian:∫

d4xψ†Riiσ · ∂ψRi =

∫d4x(ψ′TLiσ

2)iσ · ∂(σ2ψ′∗Li)

=

∫d4x(ψ′TLi )i(σT) · ∂(ψ′∗Li)

int. by part==========

interchage

∫d4xψ′†Liiσ · ∂ψ′Li

∫d4xψ†Riiσ · (∂ − igAata

r )ψRi =

∫d4x(ψ′Li

T)i(σT) · (∂ − igAatar )(ψ

′Li∗)

=

∫d4xψ′Li

†iσ · (∂ + igAa(tar )

T)ψ′Li =

∫d4xψ′Li

†iσ · (∂ − igAa(tar ))ψ

′Li

Page 60: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Chiral Fermions• Dirac fermion ψ: rep r, then ψ → ψL: r; ψ′L(x) belongs to the conjugate

rep r.ψL ⊕ ψ′L : r⊕ r, Real rep.• Dirac mass: Can not be chiral, left right fermion should transform in the

same rep, ψL → eiαatarψL, ψR → eiαata

rψR, ψ′L → eiαatarψ′L

mψiψi = m(ψ†RiψLi + ψ†LiψRi) = −m(ψ′TLiσ2ψLi + ψ†Liσ

2ψ′∗Li)

• Most general Mass term: ∆L = MijψTLiσ

2ψLj + h.c. Mij symmetric. (sinceσ2 is anti-symmetric and ψ are grassman field.)• If gauge invariant, strictly real rep. For intrinsic Chiral theory, no gauge

invariant mass term.

Page 61: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Gauge anomaly• The current: jµa = ψγµ

(1−γ5

2

)ψ is coupled the the gauge bosons.

• There could be axial current anomaly in one-loop: If regularize as previous,

∂µ⟨p, ν, b; k, λ, c|jµa|0⟩ = g2

8π2 ϵανβλpαkβAa,b,c,

Aabc =tr[tatb, tc].

• We have made the transformation of ψR → ψL. tr is the trace over all leftfermions.• Current conservation is violated — Gauge symmetry is broken, Ward id is

not true any more, unphysical state may not be cancelled in the S-matrix,violate unitarity — the theory is not well-defined.• Realistic chiral gauge theory, the gauge symmetry must be anomaly free.Aabc = tr[tatb, tc] = 0

Page 62: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Chiral Gauge anomalyAabc = tr(tatb, tc) gauge invariant.e.g.• SU(2) chiral gauge theory. Fermions are in fundamental rep. ta = σa

2 ,a = 1, 2, 3.

Aabc = tr(tatb, tc) = 12tr(taδbc) = 0

No anomaly.• U(1) chiral gauge theory. U(1) charge Q. We need to look atAabc ∼ tr(Q3).• For real Rep R, equivalent to its conjugate rep R. ta

R ∼ taR = −(ta

R)T by

unitary trans:Aabc = tr[(−ta

R)T(−tb

R)T, (−tc

R)T] = −tr[tb

R, tcRta

R] = −Aabc = 0

Thus, for real representation , the anomaly cancels.Dirac Fermions, real rep.• For SU(n), n > 3, there is a unique symmetric invariant dabc using

fundamental rep tan: ta

n, tbn = 1

nδab + dabctc

n.For each rep r, we can define anomaly coefficient A(r):tr(tatb, tc) = 1

2 A(r)dabc.For r, A(r) = −A(r).• Coupling to gravity: A ∼ tr[ta

R], only for U(1), the anomaly can benon-zero.

Page 63: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Gauge anomaly cancellation in Electro-Weak theoryStandard model: SUc(3)× SU(2)×UY(1) gauge theory.GWS: we work in the basis of the gauge bosons before the symmetry breaking.Triangle Diagrams:Aabc = tr(TaTb,Tc). ta SU(3)c generator. τa: SU(2)generator.

• SU(3)-SU(3)-SU(3) color alone, SU(3)-G-G, SU(3)-SU(3)-G: gaugefields couples to vector current. Left- and right-handed fermions in thesame rep. — NO anomaly.• SU(2)-SU(2)-SU(2) ∼ tr(τaδbc), No anomaly.• SU(3)-SU(2)-SU(2) ∼ tr[ta]tr[τ b, τ c] = 0,

SU(2)-SU(3)-SU(3) ∼ tr[τa] = 0,SU(2)-U(1)-U(1) ∼ tr[τa] = 0.SU(2)-SU(3)-U(1) ∼ tr[τa]tr[ta] = 0.• U(1)-SU(3)-SU(3) ∼ 1

2δab ∑

q Yq

Page 64: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Gauge anomaly cancellation in Electro-Weak theoryleft-handed Q T3 Y right-handed Q T3 Y

QL =

(uLdL

) 23− 1

3

12− 1

2

16

uRdR

23− 1

3

00

23− 1

3

EL =

(νLeL

)0−1

12− 1

2− 1

2(νR)not consider

eR

0−1

00

0−1

• U(1)-SU(3)-SU(3) ∼ 12δ

ab ∑q Yq,

For one generation of quarks uL, dL, u∗R, d∗R:∑q Yq = 2× 1

6 + (− 23 ) +

13 = 0.

• U(1)-SU(2)-SU(2) ∼ 12δ

ab ∑fL YfL,

Only for left-handed fermions: QL, EL,∑

fL YfL = 3× 16 −

12 = 0

• U(1)-U(1)-U(1): Sum over all left- and (right-handed∗) fermions,

tr[Y3] =2× (−12 )

3 + 13 + 3×[2× (

16 )

3 − (23 )

3 + (13 )

3]

=− 14 + 1 + 3× [

14× 27 −

827 +

127 ] = 0

• U(1)-G-G ∼ trY

trY =2× (−12 ) + 1 + 3×

[2× (

16 )− (

23 ) + (

13 )

]= 0

So for one generation of fermions, the anomaly cancels. For eachgeneration, the anomaly cancels separately.

Page 65: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Gauge anomalyWe define: W[Aa] ≡ W[0, 0,Aa] = Γ[0, 0,A], we include g into Aµ,Dµ → ∂µ − iAµ(x).Then, if there is no gauge anomaly, under gauge transformationAaµ → A′aµ = Aa

µ + Dµαa, W[A′] = W[A]

If gauge symmetry has anomaly,∫[dψ][dψ]→

∫[dψ′][dψ′] =

∫[dψ][dψ]ei

∫αa(x)Aa .

eiW[A′] =

∫[dψ][dψ] expiSM[ψ,D′ψ, ψ,D′ψ]

=

∫[dψ′][dψ′] expiSM[ψ′,D′ψ′, ψ′,D′ψ′]

gauge inv.=========

∫[dψ][dψ] expiSM[ψ,Dψ, ψ,Dψ] + i

∫d4xαa(x)Aa

⇒ W[A′] =W[A] +

∫d4xαa(x)Aa

0 =

∫d4x δW[A]

δAaµ(x)

δAaµ(x)−

∫d4xαa(x)Aa =

∫d4x δW[A]

δAaµ(x)

Dµαa(x)−∫

d4xαa(x)Aa

=−∫

d4xDµδW[A]

δAaµ(x)

αa(x)−∫

d4xαa(x)Aa

So Dµ δW[A]δAa

µ(x) = −Aa ⇒ Dµ⟨Jµa ⟩A = (∂µδba + CacbAc

µ)⟨Jµb (x)⟩A = −Aa

Page 66: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Gauge anomaly

∂µδW[A]

δAaµ(x)

+ CadeAdµ(x)

δW[A]

δAeµ(x)

= −Aa

Take two times δδA , then A→ 0

∂µδ2W[A]

δAaµ(x)δAb

ν(y)+ Cabeδ

4(x − y) δW[A]

δAeν(x)

+ CadeAdµ(x)

δ2W[A]

δAeµ(x)δAb

ν(y)= −

δAa

δAbν(x)

(∂µ

δ3W[A]

δAaµ(x)δAb

ν(y)δAbρ(z)

+ Cabeδ4(x − y) δ2W[A]

δAeν(x)δAc

ρ(z)

+ Caceδ4(x − z) δ2W[A]

δAeρ(x)δAb

ν(y)

)∣∣∣A=0

= −δ2Aa

δAbν(y)δAc

ρ(z)

∣∣∣A=0

i∂µ⟨Jµa (x)Jνb (y)Jρc (z)⟩

=− Cabeδ4(x − y)⟨Jνe (x)Jρc (z)⟩ − Caceδ

4(x − z)⟨Jρe (x)Jνb (y)⟩+δ2Aa

δAbν(y)δAc

ρ(z)

∣∣∣A=0

=− (Cabcδ4(x − y)ΠνρM − δ4(x − z)ΠρνM ) +

δ2Aa

δAbν(y)δAc

ρ(z)

∣∣∣A=0

Reference: Weinberg II, arXiv:0802.0634

Page 67: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Appendix:An integralIn Euclidean space, x2 = r2∫

dxd|x|−αeik·x

=

∫(rd−1dr)(sin θ)d−2dθdΩd−2r−αeikr cos θ

=Ωd−2

(( ∫ π/2

0dθ +

∫ π

π/2dθ

)(sin θ)d−2

∫ ∞0

(rd−α−1dr)eikr cos θ)

=Ωd−2

(∫ π/2

0dθ(sin θ)d−2

∫ ∞0

(rd−α−1dr)(eikr cos θ + e−ikr cos θ))

r cos θ→r=======Ωd−2

(∫ π/2

0dθ(sin θ)d−2(cos θ)α−d

)(∫ ∞0

(rd−α−1dr)(eikr + e−ikr))

=Ωd−2

(∫ π/2

0dθ(sin θ)d−2(cos θ)α−d

)(∫ ∞0

(2rd−α−1 cos kr)dr)

Using integral: (Ωd−2 = 2π(d−1)/2

Γ( d−12 )

)

∫ π/2

0dθ sinα θ cosβ θ =

Γ( 1+α2 )Γ( 1+β

2 )

2Γ( 2+α+β2 )

,

∫ ∞0

dr(rα cos(kr)

)= −

Γ(1 + α) sin(απ2 )

|k|α+1

Page 68: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Appendix:An integral

∫dxd|x|−αeik·x

=− 2π(d−1)/2

Γ( d−12 )

Γ( d−12 )Γ( 1+α−d

2 )

2Γ(α2 )2Γ(d− α) sin( (d−α−1)π

2 )

|k|d−α

=−π(d−1)/2Γ( 1+α−d

2 )

Γ(α2 )

2Γ(d− α) sin( (d−α−1)π2 )

|k|d−α

Using the Γ function relation

Γ(1− z)Γ(z) = π

sin(πz) , Γ(z)Γ(z + 1/2) = 21−2z√πΓ(2z)

we have Γ(d− α) = Γ( d−α2 )Γ( d−α+1

2 )

21+α−dπ1/2 , Γ( 1+α−d2 )Γ( 1−α+d

2 ) = πsin(π(1+α−d)/2) ,∫

dxd|x|−αeik·x = −2π(d−1)/2Γ( d−α

2 )

21+α−dπ1/2Γ(α2 )

π sin( (d−α−1)π2 )

sin( (1+α−d)π2 )|k|d−α

=πd/2Γ( d−α

2 )

2α−dΓ(α2 )

1|k|d−α =

πα/2Γ( d−α2 )

Γ(α2 )

( 4π|k|2

)(d−α)/2

(d→ α limit) = πα/2

Γ(α2 )

(Γ(

d− α2 ) + ln

( 4π|k|2

))

Page 69: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Appendix:An integralAnother more effective derivation: |x|−α scales as λ−α,

∫dxd|x|−αeik·x should

scale as |k|α−d. Thus ∫dxd|x|−αeik·x = cd,α|k|α−d

Next, determine cd,α. Using the fourier transform

F [e−x2] =

∫ddx

(2π)d/2 e−x2e−ik·x =

e−k2/4

2d/2 ,

and ∫ddkF [f]kF [g]k =

∫ddxf(x)g(x) .

Thus ∫ddx|x|−αe−x2

=

∫ddkF [|x|−α]kF [e−x2

]k

=1

(2π)d/2

∫ddk cd,α|k|α−d e−k2/4

2d/2

=cd,α

(2π)d/22d/2

∫ddk |k|α−de−k2/4

Page 70: Perturbation Theory Anomalystaff.ustc.edu.cn/~xiaozg/QFT2019/lecture-Anomaly.pdf · Perturbation Theory Anomaly Zhiguang Xiao June 14, 2019. Contents 1 Two dimensional axial anomaly

Appendix:An integralFrom Ωd−1 = 2πd/2

Γ(d/2)∫ddx|x|αe−x2

=

∫rd−1dr dΩd−1 rαe−r2

= Ωd−1

∫ ∞0

dr rα+d−1e−r2

=Ωd−1

∫ ∞0

dr2

2 (r2)(α+d−2)/2e−r2

=2πd/2

Γ(d/2)Γ(α+d

2 )

2

=πd/2Γ(α+d

2 )

Γ(d/2)

Thus

cd,α =πd/2Γ(−α+d

2 )

Γ(d/2)(2π)d/22d/2Γ(d/2)

2απd/2Γ(α/2)

=2d−απd/2Γ( d−α

2 )

Γ(α/2)