Pediatric Short Bowel Syndrome AbdulAziz Al-Gain Abdullah Al-Rashed Abdulrahman Arafah A

  • View
    217

  • Download
    1

Embed Size (px)

Text of Pediatric Short Bowel Syndrome AbdulAziz Al-Gain Abdullah Al-Rashed Abdulrahman Arafah A

  • Slide 1
  • Pediatric Short Bowel Syndrome AbdulAziz Al-Gain Abdullah Al-Rashed Abdulrahman Arafah A
  • Slide 2
  • Definition There are numerous definitions for short-bowel syndrome (SBS). The simplest definition is that there is inadequate intestine to maintain normal nutrition by eating. State of malabsorption and malnutrition that occurs following massive anatomical or functional loss of the small intestine.
  • Slide 3
  • Definition Overall, patient with 30 cm or more of small bowel are more likely to survive on enteral nutrition, whereas with less than 30 cm they are more likely to need parenteral nutrition.
  • Slide 4
  • Because infants and children require increased calories to grow and develop, SBS can have a more devastating effect in these patients Before the availability of total parenteral nutrition (TPN, food delivered into the veins), most infants and children with SBS died from malnutrition.
  • Slide 5
  • Etiology The majority of SBS involves anatomical loss of segments of the small intestine caused by surgical resection. Functional loss, as seen in severe Hirschsprung's disease, is a state of decreased motility and resultant decreased absorption.
  • Slide 6
  • Etiology The etiology of SBS can be congenital or postnatal in origin. Congenital causes of SBS include : midgut volvulus, Gastroschisis, and omphalocele; superior mesenteric artery deformities such as "apple-peel" or "Christmas tree" deformities;
  • Slide 7
  • Etiology Continue Congenital causes : intestinal atresias; Aganglionosis (Hirschsprung's disease).
  • Slide 8
  • Etiology Postnatal causes include: necrotizing enterocolitis (NEC) Malrotation may result in volvulus with bowel resection secondary to ischemic injury. Intestinal resection secondary to Crohn disease, trauma, pseudo-obstruction syndrome Trauma
  • Slide 9
  • Necrotizing enterocolitis and midgut volvulus from malrotation are the two most common causes of SBS. Necrotizing enterocolitismidgut volvulus from malrotation
  • Slide 10
  • Normal physiology & Pathophysiology
  • Slide 11
  • The small intestine is completely formed by 20 weeks gestation. Most of its growth prior to birth occurs in the third trimester. Before 27 weeks gestation, the average length of the small intestine is 115 cm.
  • Slide 12
  • This length increases to approximately 250 cm with a diameter of 1.5 cm after 35 weeks gestation. In contrast, the adult intestine is 600 to 800 cm in length and 4 cm in diameter. The mucosal surface area increases with age. Infants have 950 cm2; adults have 7500 cm2.
  • Slide 13
  • Nutrients, vitamin B12, calcium, iron, and bile acids are absorbed through the cells of this lining. Mucus covers the surface of the mucosa cells and acts as a trap to hold nutrients in contact with the cell surface. Mucus also acts as a bacterial barrier.
  • Slide 14
  • Slide 15
  • The most crucial factor is the length of the remaining intestine. Removal of the stomach, jejunum, or colon is better tolerated than removal of the ileum
  • Slide 16
  • The stomach digests nutrients by the action of acid and enzymes and produces intrinsic factor, which is essential for vitamin B12 absorption. The stomach reacts to massive loss of intestine by secreting large volumes of high acidcontaining stomach juices at least for a time.
  • Slide 17
  • The jejunum is the site of absorption of most nutrients and minerals, such as calcium, magnesium, and iron. With removal of the jejunum, there is loss of some of the enzymes that break down sugars, which decreases sugar absorption.
  • Slide 18
  • Unfortunately, bacteria can use these unabsorbed sugars and produce lactic acid. The absorption of the increased lactic acid can lead to increased acid in the bloodstream
  • Slide 19
  • Fat and protein digestion may be reduced if the jejunum is gone. Calcium and magnesium losses are increased
  • Slide 20
  • Carbohydrate, protein, fluid, and electrolytes are also absorbed in the ileum. The ileum is the principal source of absorption of bile acids; vitamin B12; and the fat- soluble vitamins A, D, E, and K. Removal of most of the ileum results in vitamin B12 and fat-soluble vitamin deficiencies and diarrhea.
  • Slide 21
  • The diarrhea is from both the large volume of fluid passed into the colon (large intestine), and the unabsorbed bile salts can cause the colon to release water. Loss of these bile salts can also result in a decrease in fat absorption since the bile salts help the intestine to absorb fats.
  • Slide 22
  • The ileocecal valve slows the progress of intestinal fluids into the colon. It also increases the pressure gradient between the ileum and the colon to prevent the colon fluids with high concentrations of bacteria from moving back up into the small intestine.
  • Slide 23
  • Removal of the large intestine has minimal effect on digestion and absorption. The colon is the site of absorption of fluid and sodium and the excretion of potassium and bicarbonate. In SBS, the presence of the colon is of value because it increases the absorption of fluids and electrolytes and decreases diarrhea
  • Slide 24
  • Short Bowel Syndrome - pathophysiology in points Markedly decreased mucosal surface area due to resection Loss of trophic hormones Loss of peptide hormones that regulate motility Abnormal transit Malabsorption of protein, fat, carbohydrate, vitamins, electrolytes, and trace elements, depending on site of resected intestine.
  • Slide 25
  • Short Bowel Syndrome - pathophysiology in points Bowel adaptation can occur over time. Increased surface area due to bowel dilatation, villus hypertrophy, and bowel lengthening can occur. Stimulation of luminal contents is needed for bowel growth and factors such as glutamine, short-chain fatty acids, tropic hormones, and growth factors may be important for bowel growth.
  • Slide 26
  • Short Bowel Syndrome - pathophysiology in points The patient can lose as much as half of the intestine if the duodenum, distal ileum, and ileocecal valve (ICV) are present. If the ICV is gone, patients may not be able to tolerate even a 25% loss of intestine without the help of total parenteral nutrition (TPN). Normal bowel length: 150200 cm (26 weeks gestation); 200300 cm (at birth in full-term infant); 600800 cm (adult)
  • Slide 27
  • Short Bowel Syndrome - pathophysiology in points Infants have no intestinal reserve and do not tolerate small-bowel resection as well as do adults. However, long-term prognosis may be better because of hypertrophy and hyperplasia of the intestine. Gastric acid hypersecretion occurs soon after intestinal resection, but is transient.
  • Slide 28
  • Adaptation of the Intestine Loss of a significant amount of the small intestine produces changes in the bowel result is an increase in the intestinal surface area of the inside lining (mucosa) of the intestine and an increase in absorption and digestion. The inside lining of the intestine is made of strands of mucosa (villi) that increase the surface area
  • Slide 29
  • Adaptation of the Intestine The first and most significant adaptive change is an increase in growth of the villi. The villi are longer and thicker. The inside diameter of the intestine also increases. Resulting in an increase in water and electrolyte absorption.
  • Slide 30
  • Adaptation of the Intestine Providing enough calories to support growth and development is important. The villi get smaller in patients getting calories only from TPN exclusively. This condition can be reversed by feeding small amounts of nutrition into the stomach or intestines, typically referred to as trophic feeds.
  • Slide 31
  • Management of Short Bowel Syndrome
  • Slide 32
  • In the early period after intestinal loss, attention is directed toward keeping the fluids and electrolytes in the body normal. TPN is begun. Balanced solutions of protein, glucose, and fat should be administered. Prophylactic measures to prevent PN-induced liver damage should be instituted (e.g., prevention of overfeeding, early introduction of enteral feeds, cycling of PN when patient is stable). If cholestasis is present, it is necessary to modify amount of trace elements in PN.
  • Slide 33
  • Need permanent central access to deliver concentrated PN solutions. Excess secretions, which are lost through stomas or diarrhea, must be replaced. Blood levels of calcium, magnesium, trace elements, and vitamins and blood pH (acid) must be monitored. Fat (40% of calories) is given into the bloodstream daily or at least three times per week.
  • Slide 34
  • As soon as GI function has returned, intestinal feeds are introduced gradually. This is usually accomplished through a gastrostomy or nasogastric tube. Infants and young children must be fed at least in part orally, however, to establish their ability to suck and eat. Because adaptation begins early after loss of intestine, small amounts of feeds are started early to stimulate adaption of the intestine. Small volumes of liquid feedings are introduced first.
  • Slide 35