PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

Embed Size (px)

DESCRIPTION

Calcul rezervor 14015

Citation preview

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    1/33

    Contractor: Company:

    Company Job. No.:

    Contractor doc. no.: Contractor Job. No.:

    Sheet 1 of xx

    REV. DATE CONTR. PREP. CONTR. CHECK CONTR. APP. COMP APP.REVISION TITLE

    FRDP VIDELE G2 BLOCK Stage 1

    DETAIL DESIGN

    CALCULATION SHEET ACC. EN 14015

    44-TK-001_VAR_3

    Framework Agreement no.:

    Vi10-422.023

    Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    2/33

    Rev.:

    Sheet of

    DESIGN CODE : EN 14015 : 2005

    1. TANK DESIGN INPUT SUMMARY

    INTERNAL SHELL DIA., D= 17500 mm SHELL HEIGHT, H= 11012 mm

    NO. COURSES: 7 (including welding gap between shell courses)

    ROOF TYPE : sloped conical roof with rafters

    ROOF DIAMETER: 17532 mm degrees slope

    ROOF RADIUS, R= 8962 mm 12 1:4,704

    FOUNDATION TYPE : Concrete ring wall

    FLUID NAME : Produced water

    MAX. CAPACITY: 2651 m3 Volume between tank bottom and the top incl. top angle.

    LIQUID SPECIFIC GRAVITY: GASOLINE kg/m3

    MAXIMUM DESIGN DENSITY: Produced water W = 1015.6 kg/m3

    (STORAGE CONDITIONS)

    Wt= 1000 kg/m3

    (TEST CONDITIONS)

    PRESSURE :

    OPERATING : 2.0 kPa 20 mbar

    DESIGN PRESS. , p= 2.5 kPa 25 mbar 2500.0 N/m2

    VACUUM PRESS., pv= 0.5 kPa 5 mbar

    HIDROSTATIC LIQ. LEVEL : FOR TEST 11.062 mm

    TEST PRESSURE, ACC. EN 14015 Sect. 9.2.2 : pt=1.1*p

    pt= 2.8 kPa 27.5 mbar

    TEMPERATURE :

    MAX OPERATING TEMPERATURE : 40 C

    LODMAT : -21 C

    MIN. DESIGN METAL TEMP.: -28 C

    MAXIMUM DESIGN TEMP: 60 C

    CORROSION ALLOWANCE (c ) :

    SHELL : 3 mm BOTTOM : 3 mm

    ROOF 1 mm STEL PLATES INTERNAL AND EXTERNAL PAINTED IS MANDATORY

    NOMINAL PLATE WIDTHS : DESIGN THK. Heigth of COURSES

    FIRST LOWEST SHELL COURSE 1) 9 2000 mm

    2) 8 1500 mm

    3) 7 1500 mm

    4) 6 1500 mm

    5) 6 1500 mm

    6) 6 1500 mm

    7) 6 1500 mm

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    ACC. EN 14015 5.1 Table 3

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 2 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    3/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    MAX. LIQUID LEVEL :

    11012 mm

    FAILURE CASE: 10350 mm

    LOAD DATA:

    WIND LOAD: 0.58 KN/m2

    580.0 N/m2

    ZONE WIND VELOCITY: 30 m/s 108.0 km/h

    3 SEC. WIND GUST VELOCITY:(SR EN 14015) 45 m/s 162.0 km/h

    SNOW LOAD : 2 kPa 2000.0 N/m2

    LIVE LOAD (ROOF) : 2.5 kPa 2500.0 N/m2

    SEISMIC LOAD :

    PERIOD OF CONTR. Tc = 1.6 s

    ACCELERATION : 0.25 *g

    LATERAL FORCE COEFFICIENT G1= 0.25

    SITE COEFFICIENT j = 1.5 (Table G.1 - soil profile coeficient)

    INSULATION: YES 60mm

    MATERIAL SPECIFICATION:SHELL AND ANNULAR PLATE S355J2+N

    BOTTOM AND ROOF PLATES S355J2+N

    JOINT EFF. FACTOR (EN 14015-Sect.10.3.6) : J= 1 For butt weldsfor shell and roof

    JOINT EFF. FACTOR (EN 14015-Sect.10.3.6) : J= 0.35 For overlap weldsfor bottom

    2. SHELL DESIGN ( EN 14015 Sect. 9)

    2.1. INTERNAL LOADS (EN 14015 Sect. 9.2)

    TANK HEIGHT: (including welding gap between shell courses) H= 11.012 m

    INTERNAL TANK DIAMETER : D = 17.50 m

    DESIGN PRESSURE : p = 25 mbar

    TEST PRESSURE : pt = 27.5 mbar

    DESIGN TEMPERATURE : T = 60 C

    MAXIMUM DESIGN DENSITY : W = 1.0156 kg/lMAXIMUM DESIGN DENSITY (TEST CONDTIONS) : Wt = 1.0 kg/l

    CORROSION ALLOWANCE: c = 3 mm

    MATERIAL : S355J2+N

    Yield Strength Re = 355 N/mm2

    Tensile Strength Rm = 510 N/mm2

    Allowable design stress: Min.(2/3*Re; 260) S= 236.7 N/mm2

    Allowable test stress : Min.(3/4*Re; 260) St = 260.0 N/mm2

    COURSE NUMBER 7

    HEIGHT OF THE COURSE: H= 1.500 m

    DESIGN LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hc= 1.500 m

    TEST LIQ. LEVEL FROM THE BOT. OF THE COURSE: (40mm over the top angle) Hct= 1.550 m

    SHELL THICKNESS REQUIRED FOR DESIGN CONDITIONS:ec= [D/(20*S)]*[98*W*(Hc-0.3)+p]+c= 3.534 mm

    SHELL THICKNESS REQUIRED FOR TEST CONDITIONS:

    et= [D/(20*St)]*[98*Wt*(Hct-0.3)+pt]= 0.505 mm

    CONCLUSION:

    ADOPTED DESIGN THICKNESS

    IS HIGHER THAN SHALL THICKNESS REQUIRED FOR DESIGN AND TEST CONDITION,

    6 > 3.534

    6 > 0.505

    MIN. NOM. THICKNESS (ACC. EN 14015 Table 16 ) 6 mm

    DESIGN THICKNESS WITH CORROSION ALLOWANCE: 6 mm

    SHELL HEIGHT

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 3 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    4/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    COURSE NUMBER 6

    HEIGHT OF THE COURSE: H= 1.500 m

    DESIGN LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hc= 3.002 m

    TEST LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hct= 3.052 mSHELL THICKNESS REQUIRED FOR DESIGN CONDITIONS:

    ec= [D/(20*S)]*[98*W*(Hc-0.3)+p]+c= 4.087 mm

    SHELL THICKNESS REQUIRED FOR TEST CONDITIONS:

    et= [D/(20*St)]*[98*Wt*(Hct-0.3)+pt]= 1.000 mm

    CONCLUSION:

    ADOPTED DESIGN THICKNESS

    IS HIGHER THAN SHALL THICKNESS REQUIRED FOR DESIGN AND TEST CONDITION,

    6 > 4.087

    6 > 1.000

    MIN. NOM. THICKNESS (ACC. EN 14015 Table 16 ) 6 mm

    DESIGN THICKNESS WITH CORROSION ALLOWANCE: 6 mm

    COURSE NUMBER 5

    HEIGHT OF THE COURSE: H= 1.500 mDESIGN LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hc= 4.504 m

    TEST LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hct= 4.554 m

    SHELL THICKNESS REQUIRED FOR DESIGN CONDITIONS:

    ec= [D/(20*S)]*[98*W*(Hc-0.3)+p]+c= 4.639 mm

    SHELL THICKNESS REQUIRED FOR TEST CONDITIONS:

    et= [D/(20*St)]*[98*Wt*(Hct-0.3)+pt]= 1.496 mm

    CONCLUSION:

    ADOPTED DESIGN THICKNESS

    IS HIGHER THAN SHALL THICKNESS REQUIRED FOR DESIGN AND TEST CONDITION,

    6 > 4.639

    6 > 1.496

    MIN. NOM. THICKNESS (ACC. EN 14015 Table 16 ) 6 mm

    DESIGN THICKNESS WITH CORROSION ALLOWANCE: 6 mm

    COURSE NUMBER 4

    HEIGHT OF THE COURSE: H= 1.500 m

    DESIGN LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hc= 6.006 m

    TEST LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hct= 6.056 m

    SHELL THICKNESS REQUIRED FOR DESIGN CONDITIONS:

    ec= [D/(20*S)]*[98*W*(Hc-0.3)+p]+c= 5.192 mm

    SHELL THICKNESS REQUIRED FOR TEST CONDITIONS:

    et= [D/(20*St)]*[98*Wt*(Hct-0.3)+pt]= 1.991 mm

    CONCLUSION:

    ADOPTED DESIGN THICKNESS

    IS HIGHER THAN SHALL THICKNESS REQUIRED FOR DESIGN AND TEST CONDITION,

    6 > 5.192

    6 > 1.991

    MIN. NOM. THICKNESS (ACC. EN 14015 Table 16 ) 6 mmDESIGN THICKNESS WITH CORROSION ALLOWANCE: 6 mm

    COURSE NUMBER 3

    HEIGHT OF THE COURSE: H= 1.500 m

    DESIGN LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hc= 7.508 m

    TEST LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hct= 7.558 m

    SHELL THICKNESS REQUIRED FOR DESIGN CONDITIONS:

    ec= [D/(20*S)]*[98*W*(Hc-0.3)+p]+c= 5.744 mm

    SHELL THICKNESS REQUIRED FOR TEST CONDITIONS:

    et= [D/(20*St)]*[98*Wt*(Hct-0.3)+pt]= 2.486 mm

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 4 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    5/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    CONCLUSION:

    MINIMUM DESIGN THICKNESS WITHOUT CORROSION ALLOWANCE

    IS HIGHER THEN SHALL THICKNESS REQUIRED FOR DESIGN AND TEST CONDITION,

    7 > 5.7447 > 2.486

    MIN. NOM. THICKNESS (ACC. EN 14015 Table 16 ) 6 mm

    DESIGN THICKNESS WITH CORROSION ALLOWANCE: 7 mm

    COURSE NUMBER 2

    HEIGHT OF THE COURSE: H= 1.500 m

    DESIGN LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hc= 9.010 m

    TEST LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hct= 9.060 m

    SHELL THICKNESS REQUIRED FOR DESIGN CONDITIONS:

    ec= [D/(20*S)]*[98*W*(Hc-0.3)+p]+c= 6.297 mm

    SHELL THICKNESS REQUIRED FOR TEST CONDITIONS:

    et= [D/(20*St)]*[98*Wt*(Hct-0.3)+pt]= 2.982 mm

    CONCLUSION:

    MINIMUM DESIGN THICKNESS WITHOUT CORROSION ALLOWANCEIS HIGHER THEN SHALL THICKNESS REQUIRED FOR DESIGN AND TEST CONDITION,

    8 > 6.297

    8 > 2.982

    MIN. NOM. THICKNESS (EN 14015 Table 16 ) 6 mm

    DESIGN THICKNESS WITH CORROSION ALLOWANCE: 8 mm

    COURSE NUMBER 1

    HEIGHT OF THE COURSE: H= 2.000 m

    DESIGN LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hc= 11.012 m

    TEST LIQ. LEVEL FROM THE BOT. OF THE COURSE: Hct= 11.062 m

    SHELL THICKNESS REQUIRED FOR DESIGN CONDITIONS:

    ec= [D/(20*S)]*[98*W*(Hc-0.3)+p]+c= 7.034 mm

    SHELL THICKNESS REQUIRED FOR TEST CONDITIONS:et= [D/(20*St)]*[98*Wt*(Hct-0.3)+pt]= 3.642 mm

    CONCLUSION:

    MINIMUM DESIGN THICKNESS WITHOUT CORROSION ALLOWANCE

    IS HIGHER THEN SHALL THICKNESS REQUIRED FOR DESIGN AND TEST CONDITION,

    9 > 7.034

    9 > 3.642

    MIN. NOM. THICKNESS (ACC. EN 14015 Table 16 ) 6 mm

    DESIGN THICKNESS WITH CORROSION ALLOWANCE: 9 mm

    MIN. NOM. THICKNESS (ACC. EN 14015 Table 16 ) 6 mm

    6 mm

    7 mm

    8 mm9 mm

    ADOPTED DESIGN THICKNESS for shell 4,5,6,7

    ADOPTED DESIGN THICKNESS INCLUDING CORROSION ALLOWANCE for shell 2

    ADOPTED DESIGN THICKNESS INCLUDING CORROSION ALLOWANCE for shell 3

    ADOPTED DESIGN THICKNESS INCLUDING CORROSION ALLOWANCE for shell 1

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 5 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    6/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    2.2. WIND AND VACUUM LOADS

    (EN 14015 Sect. 9.3 & Annex J)

    STIFFENING RINGS2.2.1. PRIMARY STIFFENING RINGS

    NOTE: FIXED ROOF TANK WITH ROOF STRUCTURE SHALL BE CONSIDERED TO BE ADEQUARELY STIFFENED AT THE

    TOP OF THE SHELL BY THE STRUCTURE AND A PRIMARY STIFFENING RING.

    2.2.2. SECONDARY STIFFENING RINGS

    TANK DIAMETER : D= 17.5 m

    THICKNESS OF THE TOP COURSE WHITOUT CORROSION ALLOWANCE FOR SERVICE LIVE:

    emin= 3 mm CORRODED

    CORROSION ALLOWANCE c= 3 mm

    THICKNESS OF EACH COURSE : e = See tab. CORRODED

    HEIGHT OF EACH COURSE : h = See tab.

    EQUIV. STABLE HEIGHT OF EACH COURSE :

    He=h*(emin/e)5/2= See tab.

    EQUIV. STABLE FULL SHELL HEIGHT :

    HE= He = See tab.

    DESIGN INT. NEGATIVE PRESSURE: pv= 5 mbar

    3 SEC. WIND GUST VELOCITY Vw= 45 m/s

    FACTOR: K=95000/(3,563*Vw2+580*pv) = 9.392

    MAXIMUM PERMITTED SPACING OF STIFFENING RINGS ON SHELL OF MINIMUM THICKNESS:

    Hp=K*(emin5/ D

    3)

    1/2= 2.00 m

    COURSE h e He He=h*(emin/e)5/2

    =

    m mm m

    7 1.5 3 1.500

    6 1.5 3 1.500

    5 1.5 3 1.500

    4 1.5 3 1.500

    3 1.5 4 0.731

    2 1.5 5 0.418

    1 2 6 0.354

    HE = 7.503 m

    WHEN : HE > HP ONE OR MORE SECONDARY STIFFENING RINGS( WIND GIRDERS) ARE REQUIRED

    SINCE 3HP < HE < 4HP THEN Three SECONDARY STIFFENING RINGS( WIND GIRDERS) ARE REQUIRED

    6.00 < 7.503 < 8.00

    The first SECONDARY STIFFENING RING will be placed at HE/4 from the (top angle) primary STIFFENING RING

    Hp1=HE/4 HP1= 1.876 m

    The second SECONDARY STIFFENING RING will be placed at 2*HE/4 from the (top angle) primary STIFFENING RING

    Hp2=2*HE/4 HP2= 3.751 m

    The third SECONDARY STIFFENING RING will be placed at HE

    Hp3=3*HE/4 HP3= 5.627 m

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 6 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    7/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    3. BOTTOM DESIGN ( EN 14015 Sect. 8)

    MATERIAL : CENTRAL PLATES : S355J2+NANNULAR PLATES : S355J2+N

    ACCORDING EN 14015 Sect.6.1.8 - TOLERANCE EN 10029, Tab.1:

    CENTRAL PLATES, CLASS "C"

    ANNULAR PATES, CLASS "C"

    Yield Strength Re = 355 N/mm2

    Tensile Strength Rm = 510 N/mm2

    Allowable design stress: Min.(2/3*Re; 260) S= 236.7 N/mm2

    Allowable test stress : Min.(3/4*Re; 260) St = 260 N/mm2

    3.1 BOTTOM ANNULAR PLATES

    Acc. EN 14015 Sect. 8.3.1 - Bottoms of tanks greater than 12,5 m diameter, shall have a ring of annular plates

    having a minimum nominal thickness, ea , excluding corrosion allowance either:

    a) not less than that given by the following equation;

    ea= 3+e1/3 = 5 mm

    b) not less than 6 mm; whichever is the larger.

    ea= 6 mm

    CORROSION ALLOWANCE : c = 3 mm

    EXTERNAL COATING WITH SILICA ZINC, CONTACT WITH LIQUID FOR SHORT PERIOD.

    THICK. OF COURSE 1 (CORRODED) e1 = 6 mm

    MIN. NOM. ANNULAR PLATES THICKNESS WITH CORROSION ALLAWANCE(Sect. 8.3.1) :

    NOT LESS THAN: eac= 6+c = 9.000 mm

    ADOPTED NOMINAL ANNULAR PLATE THICKNESS: ea= 9 mm

    MAX. DESIGN LIQUID LEVEL H = 10.350 m

    WIDTH OF THE ANNULAR PLATE BETWEEN THE EDGE OF THE BOTTOM PLATE

    AND THE INNER SURFACE OF THE SHELL:

    la > 240*ea/H0.5

    = 671.400 mm

    OR

    la > 500 mm

    ADOPTED NOMINAL ANNULAR PLATE WIDTH: 1500 mm

    resulted la= 1381.00 mm

    3.2 UPPER BOTTOM CENTRAL PLATES

    MIN. NOM. PLATE THICKNESS FOR LAP WELDED BOTTOM (Table 13) :

    ebmin = 6 mm

    CORROSION ALLOWANCE : c = 3 mm

    REQUIRED CENTRAL PLATE THICKNESS:

    eb= ebmin+c = 9 mm

    ADOPTED NOMINAL UPPER CENTRAL PLATES THICKNESS: eb= 9 mm

    3.3 LOWER(EXTERNAL) BOTTOM CENTRAL PLATES

    MIN. NOM. PLATE THICKNESS FOR BUT WELDED BOTTOM (Table 13) :ebmin = 5 mm

    CORROSION ALLOWANCE : c = 0 mm

    EXTERNAL COATING WITH SILICA ZINC, CONTACT WITH LIQUID FOR SHORT PERIOD.

    REQUIRED CENTRAL PLATE THICKNESS:

    eb= ebmin+c = 5 mm

    ADOPTED NOMINAL LOWER CENTRAL PLATES THICKNESS: eb= 5 mm

    BETWEEN THE TWO BOTOMS WILL BE INSTALED A WIRE MESH 100X100X4, FOR LEACK DETECTION.

    WHICH EVER IS THE LARGER

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 7 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    8/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    4. ROOF PLATES DESIGN

    ROOF MATERIAL : S355J2+N

    MINIMUM ROOF PLATE THICK.: epmin= 5 mm ACC. EN 14015 Sect. 10.3.3

    CORROSION ALLOWANCE : c = 1 mm

    DECREASE CORROSION ALLAWANCE MANDATORY - INTERNAL COATING WITH SILICA ZINC.

    ep= c + epmin

    ep= 6 mm

    4.1. CHECK STRENGTH OF THE ROOF PLATE UNDER LOAD UPWARDS:

    4.1.1 FOR DESIGN INTERNAL PRESSURE :

    DESIGN INTERNAL PRESSURE : p = 2500.0 N/m2

    pur= 762 N/m2

    UNIT WEIGHT OF THE ROOF PLATES : w r=epcorroded*plate density

    wr= 384.89 N/m2

    TOTAL LOAD UPWARDS : pd= 2877.11 N/m2

    ROOF RADIUS : R1= 42.08517552 m

    JOINT EFF. FACTOR (EN 14015-Sect.10.3.6) : J= 1

    CALCULATED STRESS : Sc=pd*R1/(2*(ep-c)*J) = 12.11 N/mm2

    Sc 3174.418859

    4.3. MAXIMUM DESIGN PRESSURE CALCULATED

    MAXIMUM DESIGN PRESSURE IS BASED ON A COMPRESSIVE STRESS,

    IN THE SHELL-ROOF JUNCTION AREA, OF 275 N/mm2(THE YIELD POINT) :

    Sc= 355 N/mm2

    R= 8.75 m

    tan = 0.212556562

    UNCORRODED

    A= 3395.80 mm2 4553.88 mm2

    pmax= A*Sc*tan / 50*R2= 66.94 mbar 89.76 mbar

    CONCLUSION: MAXIMUM DESIGN PRESSURE pmax CALCULATED IS HEIGHER

    THEN DESIGN PRESSURE 25mbar

    CORRODED

    UPPER COURSE THK.:

    CORRODED

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 9 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    10/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    5. WEIGHTS TANK (kg)

    CORROSION ALLOWANCE c= 3 mmCORROSION ALLOWANCE c= 0 mm

    CORROSION ALLOWANCE c= 1 mm

    SHELL

    COURSE: NO(UNCORRODED THICK.) UNCORODDED CORRODED

    UPPER 7(6mm) 3884 1942

    6(6mm) 3884 1942

    5(6mm) 3884 1942

    4(6mm) 3884 1942

    3(7mm) 4532 2589

    2(8mm) 5179 3237

    LOWER 1(9mm) 7768 5179

    Rroof= 8.962 m

    TOTAL SHELL : 33016 18774

    611 550 Droof= 17.924 m825 742 L100X100X10 arie acoperis

    825 742 L100X100X10 252 m2

    1639 1475 3*L100X65X8

    SHELL INSULATION SUPP. RINGS 412 412 PB40X3+GUS

    ROOF INSULATION SUPPORTS 200 200 PB40X3+GUS

    11884 9903 thk.=6mm

    620 558

    9436 8492 30xHE 200 AA var1 var2 var3

    4300 3870 30xHE 200 AA 26xh250x8 28xh262x10

    2400 2160 9436 9406 8693

    ROOF INSULATION: 2598 2598

    SHELL INSULATION: 6256 6256

    16993 11329 thk.=9mm

    11931 11931 anular thk.=9mm +central thk.5mm

    509 509 100X100X4mm460 414 70x70x8

    75021 56732

    104914 80915

    SNOW ON ROOF 32705 32705

    2660723 2660723

    2978277 2911991 kg

    UPPER BOTOM

    ROOF STR. :

    LOWEER BOTOM

    WIRE MESH

    TOTAL TANK WEIGHT

    WEIGHT OF LIQUID TEST

    SHELL+ROOF+PERM ATT

    BASE L PROFILE

    FOR ROOF

    FOR LOWER BOTTOM

    EXTERNAL TOP RING

    STIFFENING RINGS

    INTERNAL TOP RING

    ROOF

    FOR SHELL AND UPPER BOTTOM

    NOZZLE ON SHELL

    NOZZLE ON ROOF

    STAIRS, PLATFORMS ON ROOF:

    STAIRS, LADDERS, PLATF. ON SHE

    Total load

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 10 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    11/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    6. OVERTURNUNG STABILITY (EN 14015 Sect.12)

    tba= 9.00 mm

    TANK DIAMETER : Di = 17.50 m

    ROOF CENTRAL RING DIAM Dr= 2.00 mTANK HEIGHT : Hi = 11.012 m

    ROOF HEIGHT h=tg *(Di/2-Dr/2) h= 1.647 m

    DESIGN INTERNAL PRESSURE : pi= 2500.00 N/m

    2

    DESIGN WIND LOAD : =air density/2xWind speed^2 pw = 1270.00 N/m2

    pus= 889 N/m2

    pur= 762 N/m2

    DENSITY OF AIR = 1.25 kg/m3

    MAXIMUM DESIGN PRODUCT DENSITY WM= 1015.60 kg/m3 Produced water

    MAXIMUM DESIGN PRESSURE pmax= 2500.00 N/m2

    YIELD STRESS Re= 355.00 N/mm2

    ROOF RADIUS Rr= 8.962 m

    ROOF ANGLE = 12.00

    Cf= 0.70

    EFFECTIVE WEIGHT OF THE TANK G= 556318.64 N WITHOUT TANK BOTOMS

    6.1. CHECK ACC. SR EN 1993-4-2:2007 PCT. 11.5

    a) Uplift of tank in service with an amount of product less then

    Hliqiud = 0,35m

    The upthrust on the roof due to the internal pressure

    Up=PI*D^2/4*pi Up= 630788.88 N

    Minimum height of amount liquid Hliq= 0.35 m

    WEIGHT OF MINIMUM AMOUNT OF PRODUCT

    Gliq= PI*D^2*Wm*Hliq/4 Gliq= 838394.85 N

    Total weight G+Gliqminim G+Gliqminim= 1394713.50 N

    1394713.50 > 630788.88

    G+Gliq minim > Up

    CONCLUSION: TANK IS STABLE, ANCHORS ARE NOT REQUIRED IF TANK IS ALMOUST EMPTY

    (an amount of product less then Hliqiud = 0,35m)

    b) Overturning moment due to wind action while in service

    with a certain amount of product H liq

    There will always be a certain amount of product in the tank at all times whilst the tank is in service.

    The applicable weight of this product can be added to the weight of the tank to counteract the uothrust

    due to the internal pressure

    Height liquid level acc. outlet nozzle elevation Hliq= 0.000 0.0005 0.165 m

    WEIGHT OF AMOUNT OF PRODUCT

    Gliq= PI*D^2/4*Wm*Hliq Gliq= 0.000 1197.707 395243.289 N

    The upthrust on the roof due to the internal pressureUp=PI*D^2/4*p Up= 630788.876 630788.876 630788.876 N

    Uplift from wind

    Uw=Pur*PI*D^2/4 Uw 192264.45 192264.45 192264.45 N

    Load concrete=necessary to avoid the overturning, Gc= 400000.00 N

    Resultant downward load G+Gliq-Up-Uw= 748583.09 -265536.97 128508.61 N

    NA 134463.03 NA N

    The righting moment

    Mr1=(G+Gliq-Up-Uw)*D/2 Mr1= 6550102.06 -2323448.531 1124450.31 Nm

    Mr1=(G+Gliq+Gc-Up-Uw)*D/2 Mr1= NA 1176551.47 NA Nm

    Mr1>Mw Mr1>Mw Mr1>Mw

    Resultant downward load+concrete; G+Gliq+Gc-Up-Uw=

    LOAD WIND UPLIFT ON SHELL: (0.7*1.27kN/m2)

    LOAD WIND UPLIFT ON ROOF: (0.6*1.27kN/m2)

    THE FORCE COEFFICIENT FOR THE TANK ACC.

    SR EN 1991:1-4:2006 CAP. 7.9.2. FOR SOILCATEGORY III

    THICKNESS OF BOTTOM PLATE UNDER THE SHELL

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 11 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    12/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    CONCLUSION: TANK IS STABLE, ANCHORS ARE NOT REQUIRED IF THE AMOUNT OF THE PRODUCT IN THE

    TANK WILL BE ALWAYS HIGHER THAN 0,16m

    IF THE AMOUNT OF PRODUCT IN TANK IS DECREASING UNDER 0,16m, THE TANK IS UNSTABLE AND MUST

    BE ANCHORED WITH EQUIVALENT FORCE OF 380000N.

    c) Overturning moment due to wind action only (empty tank)

    The wind force normal to the shell

    Fs=Cf*pw*D*H Fs= 171319.19 N

    The wind force normal to the roof

    Fr=Cf*pw*D*h*/2 Fr= 12814.04 N

    The resulting wind moment on the tank

    Mw=(Fs*H/2)+[Fr(H+h/3)] Mw= 1091428 Nm

    The counteracting righting moment on the tank

    Mr2=(G-Pur**D^2/4)*D/2 Mr2= 3185474.20 Nm

    Mr2 > Mw

    CONCLUSION: EMPTY TANK IS STABLE, ANCHORS ARE NOT REQUIRED.

    7. SEISMIC DESIGN (EN 14015 Annex G)

    EXTERNAL TANK DIAMETER: De= 17.518 m

    INTERNAL TANK DIAMETER Di= 17.50 m

    TANK SHELL HEIGHT: HL= 11.012 m

    MAX. FILLING HEIGHT HT= 10.35 m

    SNOW LOAD : 2.5 kPa 2500 N/m2

    250 kg/m2

    pus= 889 N/m

    2

    pur= 762 N/m2

    FACTOR : D/HT= 1.693

    FACTOR FROM FIGURE G.1 : T1/TT= 0.622

    FACTOR FROM FIGURE G.1 : T2/TT= 0.378

    FACTOR FROM FIGURE G.2 : X1/HT= 0.370

    FACTOR FROM FIGURE G.2 : X2/HT= 0.640

    LOAD WIND UPLIFT ON SHELL: (0.7*1.27kN/m2)LOAD WIND UPLIFT ON ROOF: (0.6*1.27kN/m2)

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 12 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    13/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    TOTAL WEIGHT OF THE TANK CONTENTS (SP. GRAVITY MIN. 1) :

    TT= 2690016.07 kg

    TOTAL WEIGHT OF THE TANK SHELL Tt= 45983.14 kg UNCORRODEDTt= 31111.14 kg

    PERMANENT ATTACHMENTS ON ROOF Ta= 4300.00 kg UNCORRODED

    Ta= 3870.00 kg

    WEIGTH ROOF PLATES 13259 kg CORRODED

    15302 kg UNCORRODED

    PCT. OF SNOW LOAD : 67%

    WEIGTH SNOW Tsnow= 32705

    WEIGTH RAFTERS 8492 kg

    9435.954 kg UNCORRODED

    Trz= 58326 kg

    Trz= 61743 kg UNCORRODED

    Tr= 25621 kg

    Tr= 29038 kg UNCORRODED

    WEIGHT OF EFFECTIVE MASS OF TANK CONTENTS

    WHICH MOVES IN UNISON WITH TANK SHELL :

    T1=(T1/TT)*TT= 1673190 kg

    WEIGHT OF EFFECTIVE MASS OF TANK CONTENTS

    WHICH MOVE IN THE FIRST SLOSHING MODE :

    T2=(T2/TT)*TT= 1016826 kg

    HEIGHT FROM BOTTOM OF TANK SHELL TO CENTROID OF LATERAL SEISMIC FORCE APPLIED TO T1 :

    X1=(X1/HT)*HT= 3.8295 m

    HEIGHT FROM BOTTOM OF TANK SHELL TO CENTROID

    OF LATERAL SEISMIC FORCE APPLIED TO T2 :

    X2=(X2/HT)*HT= 6.624 m

    HEIGHT FROM BOTTOM OF TANK SHELL TO CENTRE OF GRAVITY OF SHELL :

    CENTRE OF GRAVITY OF SHELL XS= 5.506 m

    LATERAL FORCE COEFFICIENT : G1= 0.25

    SITE AMPLIFICATION FACTOR : j = 1.5 (TABLE G.1, SR EN 14015)

    FACTOR FROM FIGURE G.3 : Ks = 0.581

    NATURAL PERIOD OF THE FIRST SLOSHING MODE :

    TS= 1.8*Ks*(D0.5

    ) = 4.37 sec. =

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    14/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    RESISTANCE TO OVERTURNING :

    MAXIMUM FORCE OF TANK CONTENTS WHICH MAY BE UTILIZED

    TO RESIST THE SHELL OVERTURNING MOMENT :

    WL= 0.1*tbac*(Reb*Ws*HT)1/2 = 36.7 kN/m

    Max. WL= 0.2*Ws*HT*D= 36.82795126 kN/m

    THICK.OF BOT. PLATE UNDER SHELL: tbac= 6 mm

    MAXIMUM DENSITY OF LIQUID (MIN. 1) Ws = 1.0156 kg/l

    MIN. SP. YIELD STR. OF BOT. PLATE Reb = 355 N/mm2

    Minimum WIDTH OF the BOTTOM PLATE UNDER the SHELL

    Lba min=0.1744*WL/Ws*HT

    Lba min= 0.609 m

    SHELL COMPRESION :

    MAXIMUM FORCE EXERTED BY TANK SHELL AND A PORTION OF ROOF SUPPORTED BY SHELL :

    WITH SNOW: Wtz =9.81*(Tt+Trz) / 1000*PI*D

    = 15.9 kN/m

    Wtz =9.81*(Tt+Trz) / 1000*PI*D

    = 19.2 kN/m UNCORRODED

    WITHOUT SNOW Wt =9.81*(Tt+Tr) / 1000*PI*D= 10.1 kN/m

    Wt =9.81*(Tt+Tr) / 1000*PI*D= 13.4 kN/m UNCORRODED

    FACTOR : 1.53

    1.46 UNCORRODED

    FACTOR : 1.72

    1.63 UNCORRODED

    UNANCHORED TANK

    THE MAXIMUM LONGITUDINAL SHELL COMPRESION FORCE Wb :

    WHEN F0.785 (Wb+WL)/(Wt+WL)= - N.A.

    F1.5 THE TANK IS STRUCTURALLY UNSTABLE

    CONCLUSION: BECAUSE F > 1.5, TANK MUST BE ANCHORED

    ANCHORED TANK

    THE MAXIMUM LONGITUDINAL SHELL COMPRESION FORCE Wb :

    Wb = Wt+1.273*M/D2= 118.6 kN/m

    MAXIMUM LONGITUDINAL COMPRESSIVE STRESS:

    Scs = Wb/ tbs= 19.77 N/mm2

    THICKNESS OF BOTTOM SHELL COURSE (CORRODED) :

    tbs = 6.0 mm

    RATIO TO DET. WHICH FORMULA WILL BE USED FOR CALC. MAX. ALL. STRESS :

    Ratio = Ws*HT*D2/tbs

    2= 89.6 m

    3/mm

    2

    MAXIMUM ALLOWABLE LONGITUDINAL COMPRESSIVW STRESS IN THE SHELL Fa :

    When Ratio is greater than or equal to 44 :

    Fa=83* tbs/ D= NA N/mm2

    When Ratio is less than 44 :

    Fa=(33*tbs/D+7.5*(Ws*HT)1/2

    = 35.62 N/mm2

    WHEN Wb/Tbs >Fa , THE TANK IS STRUCTURALLY UNSTABLE

    Scs < Fa

    CONCLUSION: BECAUSE Scs < Fa - TANK IS STABLE

    CONCLUSION: BECAUSE ARE NOT FULFILLED THE BOTH OF STABILITY CONDITIONS,

    THE TANK MUST BE ANCHORED

    CORRODED

    CORRODED

    F = M/[D2(WL+Wt)] >1.5

    CORRODED

    CORRODED

    F = M/[D2(WL+Wtz)] = CORRODED

    F = M/[D2(WL+Wt)] =

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 14 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    15/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    8. TANK ANCHORAGE

    tb= U/N

    LOAD PER ANCHOR BOLT tb

    NET UPLIFT LOAD U

    PROPOSED SIZE OF ANCHOR BOLT M48

    SPACING BETWEEN ANCHORS BOLT =PI*D/N 2.752 m

    PROPOSED NUMBER OF ANCHOR BOLTS N=PI*D/2m= 20 pcs.

    DIAMETER OF ANCHOR BOLT (UNCORRODE d= 48 mm

    MIN. CROSS SECT. AREA OF BOLT Ab= 1377.00 mm2

    ANCHOR BOLT MATERIAL GRUPA DE MATERIAL 5.6 - REZISTENT LA TEMP MINIMA DE -20 C

    Yield strength Re= 335 N/mm2

    Tensile strength Rm= 630 N/mm2

    Allowable stress for design conditions: Min.(1/2*Re;1/3*Rm) Sd= 167.5 N/mm2

    Allowable stress for seismic loads: Max. 1,33*Sd Ss= 222.775 N/mm2

    TANK DIAMETER D= 17.518 mBOLT CIRCLE DIAMETER Dbc= 17.818 m

    WIND MOMENT Mw= 1091427.90 Nm (see CAP 6.1-c)

    SEISMIC MOMENT Ms= 24764000 Nm SEE CAP 7

    G= 556318.64 N

    Up= 630788.88 N

    Uw= 192264.45 N

    Gliq= 395243.29 N

    LOAD CASE:

    DESIGN PRESURE:

    Up= 630788.8761 N

    Net uplift load for design pressure U=Up-G= 74470 NLoad per anchor tb= U/N tb= 3724 N

    Tensile stress in the anchor bolts Sb=tb/Ab Sb= 2.7041 N/mm2

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    16/33

    Rev.:

    Sheet of

    TANK DIAMETER D= 17.5 m

    SLOPE OF ROOF 1: 4.7040 0.21258503

    ANGLE OF ROOF W!" "OR#ON!AL $= 0.21258503 r%&

    $= 12.002 '

    HEIGHT OF ROOF Hr= 1.889 m

    CENTRAL RING RADIUS Ri(= 1 )

    LENG!" OF RAF!ER *r= 7.+28 )

    UNBRACED LENGTH OF RAFTER *,= 2.64266667 m

    HORIZONTAL PROJECTION OF RFTER I= 7.75 m

    ER!/AL ROE/!ON OF RF!ER = 1.673 )

    ADOPTED NOMINAL ROOF PLATE THICKNESS r= 6 ))

    DESIGN VACUUM 5 mbar

    INSULATION THICKNESS 60mm 10.10 daN/m2

    EGN LOA

    INTERNAL DESIGN PRESSURE 1= 0 &%N)

    DESIGN VACUUM 2= 50 &%N)

    SNOW LOAD 3= 200 &%N)

    INSULATION LOAD 4= 10.10 &%N)OTHER LOADS 5= 5 &%N)

    ROOF PLATES LOADS (UNCORRODED) 6= 46.18626 &%N)

    STRUCTURAL LOADS 7= 16.7115344 &%N)

    UNIFORM LIVE LOAD *= 250 &%N)

    INS. LOAD q4 IS INCLUDED IN ql? (Y/N)

    TOTAL DESIGN LOAD = 377.++3071 &%N)2

    F9r ;< =567MA?@234

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    17/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    "E 200 AA %C

    NDMER OF RAF!ER = 30 1.8325+571 )

    AREA DOR!E ; A RAF!ER @24 A= 8.018 )

    2

    LOA ON RAF!ER =A = 3030.7 &%N

    "H=(Q/3)*(l/h) "H= 467+.8 &%N

    M)%I = 0.128*Q*l M)%I = 3006.45 &%N)

    N)%I =Q*sin $ "H(9J $ N)%I = 5213.8+ &%N

    E/F/ RAF!ER MA 34.6 K)

    E/F/ RAF!ER WEG"! )= 33.+ &%N)

    RAF!ER WEG"! G=)*r 268.75+2 &%N

    "H=0.5*G*(l/h) 622.5 &%N

    M)%I = 0.125*G*l 260.36 &%N)

    N)%I =G*sin +Hbg *cos NMA = 665.1+ &%N

    "MA = HH+ HH "MA= 5302.3 &%N

    MMA= MMA + MMA MMA= 3266.81 &%N)

    NMA= NMA + NMA NMA= 587+.08 &%N

    "AE #E "EA 200

    MA!ERAL 3552N

    MOMEN! OF NER!A = 2+44 ()4

    MN. RAD OF GRA!ON i = 4.+2 ()LENERNE RA!O K=*,/i= 54 200

    E/!ONAL AREA OF RAF!ER A= 44.1 ()2

    E/!ON MODLD W# = 316.6 ()

    AAL AN ENNG !RE

    %= NMA/ A %= 133.3 &%N()

    HI = MMA/W# HI= 1031.8 &%N()

    ALLOWALE !RE F%= 1241 &%N()2

    FHI= 1241 &%N()2

    %= 133.3 F%= 1241

    HI= 1031.8 FHI= 1241

    !AL!; /ON!ON FOR RAF!ER:

    %/ F% + fHI/FHI = 0.+4 1

    10. RAFTER CALCULATION

    10.1 SRESS CALCULATION

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 17 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    18/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    EGN ALDE OF !"E AAL LOA N &= 587+ &%N

    EGN ALDE OF !"E ENNG MOMEN! M

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    19/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    DER RNG !"/NE @/ORROE CJ= 10 ))

    LOWER RNG !"/NE @/ORROE Ci= 10 ))

    EL! !"/NE @/ORROE C(= 10 ))

    OF !"E AOE REDL! !"E FOLLOWNG ALDE:

    MOMEN! OF NER!A: = 2.+++E08 ))4

    ;MA = 287.37 ))

    ;MN = 212.62 ))

    E/!ON MODLD @MA WMA= 1410554 ))

    E/!ON MODLD @MN WMN= 1043644 ))

    RNG E/!ON AREA AC= 11800 ))

    /EN!RO /R/LE AME!ER = 1574.76 ))

    NDMER OF RAF!ER = 30

    ANGLE E!WEEN RAF!ER 2S= 12 'S= 6 'S= 0.105 r%&

    1N S = +.541

    1!AN S = +.48+

    1S= +.524MAMDM RAAL LOA "MA= 53023 N

    A//ORNG !O FORMDLA FOR !RE AN !RAN - ROAR AN ;ANG

    GEOME!R; OF /ORROE /EN!RAL RNG E/!ON - EE FG. 5 MENON ARE N )).

    /"ARA/!ER!/ OF !"E /EN!RAL RNG E/!ON RAWN A A REGON W!" MLME!ER A

    A,C9/A DN! EDLEN! )):

    11. CENTRAL RIN$ CALCULATION

    ---------------- REGON ----------------

    Ar%: 11800.0000

    ri)Cr: 2380.00009,&iL H9I: >: -212.6272 -- 287.3728

    ;: -100.0000 -- 100.0000

    /Cr9i&: >: 0.0000

    ;: 0.0000

    M9)CJ 9 irCi%: >: +51+3333.3333

    ;: 2+++118+2.6554

    r9&,(C 9 irCi%: >;: 0.0000

    R%&ii 9 Lr%Ci9: >: 8+.8178

    ;: 15+.4248

    ri(iT%* )9)CJ %& >-; &ir(Ci9J %H9,C (Cr9i&:

    : +51+3333.3333 %*9L ?1.0000 0.0000B

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 19 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    20/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    !"E !RE N E/!ON 1 @E!WEEN RAF!ER - EE FG. 4

    M1= (-HMA*R/2)*(1/SINS-1S M1= -70+737 N))N1= (-HMA/2)*(1/SINS N1= -252+46 N

    !"E !RE DE !O M1: UA

    M1= M1/WMA UA

    M1= -0.5 N))

    !"E !RE DE !O M1: UA

    N1= N1/AC U1

    N1= -21.44 N))

    !O!AL !RE /AE 1A U1A

    = -21.+4 N))2

    !"E !RE DE !O M1: U M1= M1/WMN U M1= -0.68 N))

    !"E !RE DE !O M1: U

    N1= N1/AC U1

    N1= -21.44 N))

    !O!AL !RE /AE 1 U1

    = -22.12 N))2

    !"E !RE N E/!ON 2 @RAF!ER E/!ON - EE FG. 4

    M2= (HMA*R/2)*(1/-1/TANS M2= 1461223.74 N))

    N2= (HMA/2)*(1/TANS N2= 251567.6 N

    !"E !RE DE !O M2: UA

    M2= M2/WMA U1

    M1= 1.04 N))

    !"E !RE DE !O M2: U N2= N2/AC U N1= 21.32 N))

    !O!AL !RE /AE 2A U1A

    = 22.36 N))2

    !"E !RE DE !O M2: U

    M2= M2/WMN U1

    M1= 1.4 N))

    !"E !RE DE !O M2: U

    N2= N2/AC U1

    N1= 21.32 N))

    !O!AL !RE /AE 2 U1

    = 22.72 N))2

    VUiV %= 124N))2

    !ENON LOA N ROOF-!O-"ELL ON/!ON:

    Fi=(q*R )/2*TAN= 6703+ &%N

    MA!ERAL 3352N

    ;EL !RENG!" 355 &%N))2

    EGN !RE A(( 14015 (! 10.5.4. d =2/3* fy = 237 &%N))

    N!ERNAL RAD OF !AN r= 8.75 )

    DER /ODRE /ORROE !"/NE = 3 ))

    ROOF LA!E /ORROE !"/NE r= 5 ))

    EDLEN! RAD OF /ON/AL ROOF R1=r/SIN= 41.5 )

    EFFE/!E ROOF LENG 273.3 ))

    EFFE/!E "ELL LENG +7.2 ))

    ROOF EFEF/!E AREA @/ORROE 81+.+ ))2

    "ELL EFE/!FE AREA @/OROE 486 ))2

    N!ERNALE!ERNAL DER /ORNER AREA@2L100I10010 3456 ))2

    !O!AL AREA 4761.+ ))2

    EFFE/!E !RE N DN/!ON AREA: 140.8 N)) &

    A//ORNG !O EN 1++3-4-2 /%T 11.2.5

    LR=0,6*(1000*R1*er)1 2

    =

    12. ROOF TO SHELL %UCTION CALCULATION

    L=0,6*(1000*R*e)12

    =

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 20 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    21/33

    Rev.:

    Sheet of

    FRDP VIDELE G2 BLOCK STAGE 1 - DETAIL DESIGN ENGINEERING

    CALCULATION SHEET ACC. EN 14015 44-TK-001Contractor doc. no.: Company doc. no.:

    PE-D-Vi10-422.023-ME-CAL-001-01-E

    PE-D-Vi10-422.023-ME-CAL-001-01-E_Calculation Sheet acc. EN 14015 _VAR_3.xls Sheet 21 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    22/33

    TANK DIAMETER D= 17.5 m

    SLOPE OF ROOF 1: 4.7040 0.21258503ANGLE OF ROOF W!" "OR#ON!AL $= 0.21258503 r%&

    $= 12.002 '

    HEIGHT OF ROOF Hr= 1.889 m

    CENTRAL RING RADIUS Ri(= 1 )

    LENG!" OF RAF!ER *r= 7.+28 )

    UNBRACED LENGTH OF RAFTER *,= 2.64266667 m

    HORIZONTAL PROJECTION OF RFTER I= 7.75 m

    ER!/AL ROE/!ON OF RF!ER = 1.673 )

    ADOPTED NOMINAL ROOF PLATE THICKNESS r= 6 ))

    DESIGN VACUUM 5 mbar

    INSULATION THICKNESS 60mm 10.10 daN/m2

    EGN LOA

    INTERNAL DESIGN PRESSURE 1= 0 &%N)

    DESIGN VACUUM 2= 50 &%N)

    SNOW LOAD 3= 200 &%N)

    INSULATION LOAD 4= 10.10 &%N)

    OTHER LOADS 5= 5 &%N)

    ROOF PLATES LOADS (UNCORRODED) 6= 46.18626 &%N)

    STRUCTURAL LOADS 7= 16.7115344 &%N)

    UNIFORM LIVE LOAD *= 250 &%N)

    INS. LOAD q4 IS INCLUDED IN ql? (Y/N)

    TOTAL DESIGN LOAD = 377.++3071 &%N)2

    F9r ;< =567MA>?@234?@23

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    23/33

    NDMER OF RAF!ER = 26 " 200I200I8 A! 2.11453

    AREA DOR!E ; A RAF!ER @24 A= +.251 )

    2

    LOA ON RAF!ER =A = 34+6.8 &%N

    "H=(Q/3)*(l/h) "H= 53++.5 &%N

    M)%I = 0.128*Q*l M)%I = 3468.83 &%N)N)%I =Q*sin $ "H(9J $ N)%I = 6015.73 &%N

    E/F/ RAF!ER MA 3+.8152 K)

    E/F/ RAF!ER WEG"! )= 3+ &%N)

    RAF!ER WEG"! G=)*r 30+.1+2 &%N

    "H=0.5*G*(l/h) 716.2 &%N

    M)%I = 0.125*G*l 2++.53 &%N)

    N)%I =G*sin +Hbg *cos NMA> = 765.31 &%N

    "MA> = HH+ HH "MA>= 6115.7 &%N

    MMA>= MMA> + MMA> MMA>= 3768.36 &%N)

    NMA>= NMA> + NMA> NMA>= 6781.04 &%N

    "AE #E "EA 200

    MA!ERAL 3552N

    MOMEN! OF NER!A = 5541 ()4

    MOMEN! OF NER!A P= 1067.665 ()4

    MN. RAD OF GRA!ON i = 4.5 ()

    LENERNE RA!O K=*,/i= 5+ 200

    E/!ONAL AREA OF RAF!ER A= 50.72 ()2

    E/!ON MODLD W# = 443.28 ()

    A>AL AN ENNG !RE

    %= NMA>/ A %= 133.7 &%N()

    HI = MMA>/W# HI= 850.1 &%N()

    ALLOWALE !RE F%= 1241 &%N()2

    FHI= 1241 &%N()2

    %= 133.7 F%= 1241

    HI= 850.1 FHI= 1241

    !AL!; /ON!ON FOR RAF!ER:

    %/ F% + fHI/FHI = 0.7+ 1

    10. RAFTER CALCULATION

    10.1 SRESS CALCULATION

    Page 23 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    24/33

    EGN ALDE OF !"E A>AL LOA N &= 6781 &%N

    EGN ALDE OF !"E ENNG MOMEN! M

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    25/33

    DER RNG !"/NE @/ORROE CJ= 10 ))

    LOWER RNG !"/NE @/ORROE Ci= 10 ))EL! !"/NE @/ORROE C(= 10 ))

    OF !"E AOE REDL! !"E FOLLOWNG ALDE:

    MOMEN! OF NER!A: = 2+++118+3 ))4

    ;MA> = 287.3728 ))

    ;MN = 212.6272 ))

    E/!ON MODLD @MA> WMA>= 1410506 ))

    E/!ON MODLD @MN WMN= 1043634 ))

    RNG E/!ON AREA AC= 11800 ))

    /EN!RO /R/LE AME!ER = 1574.7456 ))

    NDMER OF RAF!ER = 26

    ANGLE E!WEEN RAF!ER 2S= 13.8461538 'S= 6.+23076+2 'S= 0.121 r%&

    1N S = 8.285

    1!AN S = 8.2241S= 8.264

    MA>MDM RAAL LOA "MA>= 61157 N

    11. CENTRAL RIN$ CALCULATION

    A//ORNG !O FORMDLA FOR !RE AN !RAN - ROAR AN ;ANG

    GEOME!R; OF /ORROE /EN!RAL RNG E/!ON - EE FG. 5 MENON ARE N )).

    /"ARA/!ER!/ OF !"E /EN!RAL RNG E/!ON RAWN A A REGON W!" MLME!ER A

    A,C9/A DN! EDLEN! )):

    ---------------- REGON ----------------

    Ar%: 11800.0000

    ri)Cr: 2380.0000

    9,&iL H9I: >: -212.6272 -- 287.3728

    ;: -100.0000 -- 100.0000

    /Cr9i&: >: 0.0000

    ;: 0.0000

    M9)CJ 9 irCi%: >: +51+3333.3333

    ;: 2+++118+2.6554

    r9&,(C 9 irCi%: >;: 0.0000

    R%&ii 9 Lr%Ci9: >: 8+.8178

    ;: 15+.4248

    ri(iT%* )9)CJ %& >-; &ir(Ci9J %H9,C (Cr9i&:

    : +51+3333.3333 %*9L ?1.0000 0.0000B

    Page 25 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    26/33

    !"E !RE N E/!ON 1 @E!WEEN RAF!ER - EE FG. 4

    M1= (-HMA>*R/2)*(1/SINS-1S M1= -1011221 N))

    N1= (-HMA>/2)*(1/SINS N1= -253343 N

    !"E !RE DE !O M1: UA

    M1= M1/WMA> UA

    M1= -0.72 N))

    !"E !RE DE !O M1: UA

    N1= N1/AC U1

    N1= -21.47 N))

    !O!AL !RE /AE 1A U1A

    = -22.1+ N))2

    !"E !RE DE !O M1: U

    M1= M1/WMN U1

    M1= -0.+7 N))

    !"E !RE DE !O M1: U

    N1= N1/AC U1

    N1= -21.47 N))

    !O!AL !RE /AE 1 U1

    = -22.44 N))2

    !"E !RE N E/!ON 2 @RAF!ER E/!ON - EE FG. 4

    M2= (HMA>*R/2)*(1/-1/TANS M2= 1+26134.33 N))

    N2= (HMA>/2)*(1/TANS N2= 251477.6 N

    !"E !RE DE !O M2: UA

    M2= M2/WMA> U1

    M1= 1.37 N))

    !"E !RE DE !O M2: UA

    N2= N2/AC U1

    N1= 21.31 N))

    !O!AL !RE /AE 2A U1A

    = 22.68 N))2

    !"E !RE DE !O M2: U

    M2= M2/WMN U1

    M1= 1.85 N))

    !"E !RE DE !O M2: U

    N2= N2/AC U1

    N1= 21.31 N))

    !O!AL !RE /AE 2 U1

    = 23.16 N))2

    VUiV %= 124N))2

    !ENON LOA N ROOF-!O-"ELL ON/!ON:

    Fi=(q*R2)/2*TAN= 6703+ &%N

    MA!ERAL 3352N

    ;EL !RENG!" 355 &%N))2

    EGN !RE A(( 14015 (! 10.5.4. d =2/3* fy = 237 &%N))

    N!ERNAL RAD OF !AN r= 8.75 )

    DER /ODRE /ORROE !"/NE = 3 ))

    ROOF LA!E /ORROE !"/NE r= 5 ))

    EDLEN! RAD OF /ON/AL ROOF R1=r/SIN= 41.5 )

    EFFE/!E ROOF LENG 273.3 ))

    EFFE/!E "ELL LENG +7.2 ))ROOF EFEF/!E AREA @/ORROE 81+.+ ))

    2

    "ELL EFE/!FE AREA @/OROE 486 ))2

    N!ERNALE>!ERNAL DER /ORNER AREA@2>L100I100>10 3456 ))2

    !O!AL AREA 4761.+ ))3

    EFFE/!E !RE N DN/!ON AREA: 140.8 N)) d

    12. ROOF TO SHELL %UCTION CALCULATION

    A//ORNG !O EN 1++3-4-2 /%T 11.2.5

    LR=0,6*(1000*R1*er)12

    =

    L=0,6*(1000*R*e)12

    =

    Page 26 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    27/33

    Page 27 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    28/33

    TANK DIAMETER D= 17.5 m

    SLOPE OF ROOF 1: 4.7040 0.21258503

    ANGLE OF ROOF W!" "OR#ON!AL $= 0.21258503 r%&

    $= 12.002 '

    HEIGHT OF ROOF Hr= 1.889 m

    CENTRAL RING RADIUS Ri(= 1 )

    LENG!" OF RAF!ER *r= 7.+28 )

    UNBRACED LENGTH OF RAFTER *,= 2.64266667 m

    HORIZONTAL PROJECTION OF RFTER I= 7.75 m

    ER!/AL ROE/!ON OF RF!ER = 1.673 )

    ADOPTED NOMINAL ROOF PLATE THICKNESS r= 6 ))

    DESIGN VACUUM 5 mbar

    INSULATION THICKNESS 60mm 10.10 daN/m2

    EGN LOA

    INTERNAL DESIGN PRESSURE 1= 0 &%N)

    DESIGN VACUUM 2= 50 &%N)

    SNOW LOAD 3= 200 &%N)

    INSULATION LOAD 4= 10.10 &%N)

    OTHER LOADS 5= 5 &%N)

    ROOF PLATES LOADS (UNCORRODED) 6= 46.18626 &%N)

    STRUCTURAL LOADS 7= 16.7115344 &%N)

    UNIFORM LIVE LOAD *= 250 &%N)

    INS. LOAD q4 IS INCLUDED IN ql? (Y/N)

    TOTAL DESIGN LOAD = 377.++3071 &%N)2

    F9r ;< =567MA>?@234?@23

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    29/33

    NDMER OF RAF!ER = 28 " 262I10150I6 A! 1.+635

    AREA DOR!E ; A RAF!ER @24 A= 8.5+ )

    2

    LOA ON RAF!ER =A = 3247 &%N

    "H=(Q/3)*(l/h) "H= 5013.8 &%N

    M)%I = 0.128*Q*l M)%I = 3221.02 &%N)

    N)%I =Q*sin $ "H(9J $ N)%I = 5586.01 &%N

    E/F/ RAF!ER MA 33.755 K)

    E/F/ RAF!ER WEG"! )= 33 &%N)

    RAF!ER WEG"! G=)*r 262.4168 &%N

    "H=0.5*G*(l/h) 607.8 &%N

    M)%I = 0.125*G*l 254.22 &%N)

    N)%I =G*sin +Hbg *cos NMA> = 64+.48 &%N

    "MA> = HH+ HH "MA>= 5621.6 &%N

    MMA>= MMA> + MMA> MMA>= 3475.24 &%N)

    NMA>= NMA> + NMA> NMA>= 6235.4+ &%N

    "AE #E " 262I10150I6MA!ERAL 3552N

    MOMEN! OF NER!A = 4251 ()4

    MOMEN! OF NER!A P= 33+5 ()4

    MN. RAD OF GRA!ON i = +.+4286001 ()

    LENERNE RA!O K=*,/i= 27 200

    E/!ONAL AREA OF RAF!ER A= 43 ()2

    E/!ON MODLD W = 324.503817 ()

    A>AL AN ENNG !RE

    %= NMA>/ A %= 145 &%N()

    HI = MMA>/W HI= 1070.+ &%N()

    ALLOWALE !RE F%= 1241 &%N()2

    FHI= 1241 &%N()2

    %= 145 F%= 1241

    HI= 1070.+ FHI= 1241

    !AL!; /ON!ON FOR RAF!ER:

    %/ F% + fHI/FHI = 0.+8 1

    10. RAFTER CALCULATION

    10.1 SRESS CALCULATION

    Page 29 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    30/33

    EGN ALDE OF !"E A>AL LOA N &= 6235 &%N

    EGN ALDE OF !"E ENNG MOMEN! M

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    31/33

    DER RNG !"/NE @/ORROE CJ= 10 ))

    LOWER RNG !"/NE @/ORROE Ci= 10 ))

    EL! !"/NE @/ORROE C(= 10 ))

    OF !"E AOE REDL! !"E FOLLOWNG ALDE:

    MOMEN! OF NER!A: = 2+++118+3 ))4

    ;MA> = 287.3728 ))

    ;MN = 212.6272 ))

    E/!ON MODLD @MA> WMA>= 1410506 ))

    E/!ON MODLD @MN WMN= 1043634 ))

    RNG E/!ON AREA AC= 11800 ))

    /EN!RO /R/LE AME!ER = 1574.7456 ))

    NDMER OF RAF!ER = 28

    ANGLE E!WEEN RAF!ER 2S= 12.857142+ 'S= 6.42857143 'S= 0.112 r%&

    1N S = 8.+47

    1!AN S = 8.8+1

    1S= 8.+2+MA>MDM RAAL LOA "MA>= 56216 N

    11. CENTRAL RIN$ CALCULATION

    A//ORNG !O FORMDLA FOR !RE AN !RAN - ROAR AN ;ANG

    GEOME!R; OF /ORROE /EN!RAL RNG E/!ON - EE FG. 5 MENON ARE N )).

    /"ARA/!ER!/ OF !"E /EN!RAL RNG E/!ON RAWN A A REGON W!" MLME!ER A

    A,C9/A DN! EDLEN! )):

    ---------------- REGON ----------------

    Ar%: 11800.0000

    ri)Cr: 2380.0000

    9,&iL H9I: >: -212.6272 -- 287.3728

    ;: -100.0000 -- 100.0000

    /Cr9i&: >: 0.0000

    ;: 0.0000

    M9)CJ 9 irCi%: >: +51+3333.3333

    ;: 2+++118+2.6554

    r9&,(C 9 irCi%: >;: 0.0000

    R%&ii 9 Lr%Ci9: >: 8+.8178

    ;: 15+.4248

    ri(iT%* )9)CJ %& >-; &ir(Ci9J %H9,C (Cr9i&:

    : +51+3333.3333 %*9L ?1.0000 0.0000B

    Page 31 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    32/33

    !"E !RE N E/!ON 1 @E!WEEN RAF!ER - EE FG. 4

    M1= (-HMA>*R/2)*(1/SINS-1S M1= -7+6733 N))

    N1= (-HMA>/2)*(1/SINS N1= -251482 N

    !"E !RE DE !O M1: UA

    M1= M1/WMA> UA

    M1= -0.56 N))

    !"E !RE DE !O M1: UA

    N1= N1/AC U1

    N1= -21.31 N))

    !O!AL !RE /AE 1A U1A

    = -21.87 N))2

    !"E !RE DE !O M1: U M1= M1/WMN U M1= -0.76 N))

    !"E !RE DE !O M1: U N1= N1/AC U N1= -21.31 N))

    !O!AL !RE /AE 1 U1

    = -22.07 N))2

    !"E !RE N E/!ON 2 @RAF!ER E/!ON - EE FG. 4

    M2= (HMA>*R/2)*(1/-1/TANS M2= 1681++2.07 N))

    N2= (HMA>/2)*(1/TANS N2= 24++08.2 N

    !"E !RE DE !O M2: UA

    M2= M2/WMA> U1

    M1= 1.1+ N))

    !"E !RE DE !O M2: U N2= N2/AC U N1= 21.18 N))

    !O!AL !RE /AE 2A U1A

    = 22.37 N))2

    !"E !RE DE !O M2: U M2= M2/WMN U M1= 1.61 N))

    !"E !RE DE !O M2: U N2= N2/AC U N1= 21.18 N))

    !O!AL !RE /AE 2 U1

    = 22.7+ N))2

    VUiV %= 124N))2

    !ENON LOA N ROOF-!O-"ELL ON/!ON:

    Fi=(q*R )/2*TAN= 6703+ &%N

    MA!ERAL 3352N

    ;EL !RENG!" 355 &%N))2

    EGN !RE A(( 14015 (! 10.5.4. d =2/3* fy = 237 &%N))

    N!ERNAL RAD OF !AN r= 8.75 )

    DER /ODRE /ORROE !"/NE = 3 ))

    ROOF LA!E /ORROE !"/NE r= 5 ))

    EDLEN! RAD OF /ON/AL ROOF R1=r/SIN= 41.5 )

    EFFE/!E ROOF LENG 273.3 ))

    EFFE/!E "ELL LENG +7.2 ))

    ROOF EFEF/!E AREA @/ORROE 81+.+))

    2

    "ELL EFE/!FE AREA @/OROE 486 ))2

    N!ERNALE>!ERNAL DER /ORNER AREA@2>L100I100>10 3456 ))2

    !O!AL AREA 4761.+ ))3

    EFFE/!E !RE N DN/!ON AREA: 140.8 N)) d

    12. ROOF TO SHELL %UCTION CALCULATION

    A//ORNG !O EN 1++3-4-2 /%T 11.2.5

    LR=0,6*(1000*R1*er)12

    =

    L=0,6*(1000*R*e)12

    =

    Page 32 of 33

  • 5/21/2018 PE D Vi10 422.023 ME CAL 001 01 E_Calculation Sheet Acc. en 14015 _VAR_3

    33/33

    Page 33 of 33