41
1 Appendix E Elements of Quantum Mechanics Quantum mechanics provides a correct description of phenomena on the atomic or subatomic scale, where the ideas of classical mechanics are not generally applicable. As we describe nuclear phenomena, we will use many results and concepts from quantum mechanics. While it is our goal not to have the reader, in general, perform detailed quantum mechanical calculation, it is important that the reader understand the basis for many of the descriptive statements made in the text. Therefore, we present, in this Appendix, a brief summary of the essential features of quantum mechanics that we shall use. For more detailed discussion of these features, we refer the reader to the references at the end of this Appendix. E1 Wave Functions All the knowable information about a physical system (i.e., energy, angular momentum, etc.) is contained in the wave function of the system. We shall restrict our discussion to onebody systems for the present. (We could easily generalize to many body systems). The wave function can be expressed in terms of space coordinates and time or momenta and time. In the former notation we write, ψ (x, y, z, t) or just ψ (E1)

Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

  • Upload
    lymien

  • View
    227

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 1 −

Appendix  E  -­‐  Elements  of  Quantum  Mechanics  

 

Quantum  mechanics  provides  a  correct  description  of  phenomena  on  the  atomic  or  

sub-­‐atomic  scale,  where   the   ideas  of  classical  mechanics  are  not  generally  applicable.    As  

we   describe   nuclear   phenomena,   we  will   use  many   results   and   concepts   from   quantum  

mechanics.     While   it   is   our   goal   not   to   have   the   reader,   in   general,   perform   detailed  

quantum  mechanical   calculation,   it   is   important   that   the   reader  understand   the  basis   for  

many   of   the   descriptive   statements   made   in   the   text.     Therefore,   we   present,   in   this  

Appendix,   a  brief   summary  of   the  essential   features  of  quantum  mechanics   that  we   shall  

use.    For  more  detailed  discussion  of  these  features,  we  refer  the  reader  to  the  references  at  

the  end  of  this  Appendix.  

 

E-­‐1  Wave  Functions  

 

All   the   knowable   information   about   a   physical   system   (i.e.,   energy,   angular  

momentum,   etc.)   is   contained   in   the  wave   function   of   the   system.    We   shall   restrict   our  

discussion  to  one-­‐body  systems  for  the  present.    (We  could  easily  generalize  to  many  body  

systems).    The  wave  function  can  be  expressed  in  terms  of  space  coordinates  and  time  or  

momenta  and  time.    In  the  former  notation  we  write,  

 

  ψ  (x,  y,  z,  t)  or  just  ψ   (E-­‐1)  

 

Page 2: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 2 −

These  wave  functions,  must  be  “well-­‐behaved”,  i.e.,  they  (and  their  derivatives  with  respect  

to   the   space  coordinates),  must  be   continuous,   finite  and  single-­‐valued.    The   functions  Ψ  

are  solutions  to  a  second  order  differential  equation  called  the  Schrödinger  equation  (see  

below).  

 

The  probability  of  finding  a  particle  within  a  volume  element  dxdydz,  W  dxdydz,  is  given  by    

 

  W  dx  dy  dz  =    ψ*  ψ  dx  dy  dz   (E-­‐2)  

 

where  ψ*  is  the  complex  conjugate  of  ψ.    (To  form  the  complex  conjugate  of  any  complex  

number,  replace  all  occurrences  of   i  (where  i  = )  with  -­‐i.    Real  numbers  are  their  own  

complex  conjugates.    6-­‐5i  is  the  complex  conjugate  of  6+5i.    So  (a+ib)*(a+ib)  =  (a-­‐ib)(a+ib)  

=  a2  +  b2.)    The  probability  per  unit  volume  (the  probability  density)  is  W  =  ψ*ψ.    If  we  look  

everywhere  in  the  system,  we  must  find  the  particle  so  that  

 

  ∫ψ*  ψ  dτ  =  1   (E-­‐3)  

 

where  dτ  is  a  volume  element  dx  dy  dz.    Wave  functions  possessing  this  numerical  property  

are   said   to   be   normalized.     If   the   value   of   some   physical   quantity   P   is   a   function   of   the  

position  coordinates,  the  average  or  expectation  value  of  P  is  given  by    

 

  <  P>  =  ∫ψ*Pψdτ   (E-­‐  4)  

 

Page 3: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 3 −

This   expectation   value   represents   the   average   outcome   of   a   large   number   of  

measurements.  

E-­‐2  Operators  

 

Often  we  must   compute   values   of   quantities   that   are   not   simple   functions   of   the  

space  coordinates,   such  as   the  y  component  of   the  momentum,  py,  where  equation  E-­‐4   is  

not  applicable.    To  get  around  this,  we  say  that  corresponding  to  every  classical  variable,  

there   is   a   quantum  mechanical   operator.     An   operator   is   a   symbol   that   directs   us   to   do  

some  mathematical  operation.    For  example,  the  momentum  operators  are  

   

    (E-­‐5)  

   

 

while  the  total  energy  operator    is  given  as  

    (E-­‐6)  

 

Thus,  to  calculate  the  expectation  value  of  the  x-­‐component  of  the  momentum,  px,  we  write  

   

    (E-­‐7)  

Page 4: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 4 −

 

Similarly,  the  classical  expression  for  the  kinetic  energy  is  

 

  T=p2/2m   (E-­‐8)  

 

which,  translated  to  quantum  mechanics  terms,  means  the  kinetic  energy  operator, ,  is,  in  

Cartesian  coordinates,  

    (E-­‐9)  

 

or,  using  the  Laplacian  operator,  ∇2  

    (E-­‐10)  

where  ∇2  is  

    (E-­‐11)  

 

 

 

 

E-­‐3  The  Schrödinger  Equation  

 

In   1926,   Schrödinger   found   that   behavior   on   the   atomic   or   subatomic   scale   was  

correctly  described  by  a  differential  equation  of  the  form  

Page 5: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 5 −

    (E-­‐12)  

 

where   V   represents   the   potential   energy   and   ψ   the   wave   function   of   the   system.      

Substituting  from  equation  (E-­‐6),  we  can  write  

    (E-­‐13)  

 

This  equation  is  an  example  of  a  general  class  of  equations  called  eigenvalue  equations  of  

the   form   Ωψ  =   ωψ   where   Ω   is   an   operator   and   ω   is   the   value   of   an   observable  

corresponding   to   that   operator.     (The   mathematical   expression   ψ   is   referred   to   as   an  

eigenfunction  of  the  operator  Ω).  

To   use   the   Schrödinger   equation   to   gain   information   about   a   physical   system,  we  

must  perform  a  set  of  steps  that  are  as  follows:  

 

(a)   Specify   the   potential   energy   function   of   the   system,   i.e.,   specify   the  

forces  acting  (Section  1.6.1).    

(b)   Find  a  mathematical  function,  ψ,  which  is  a  solution  to  the  differential  

equation,  the  Schrödinger  equation.  

(c)   Of   the  many   functions   that   satisfy   the   equation,   reject   those   that   do  

not  conform  to  certain  physical  constraints  on  the  system,  known  as  

boundary  conditions.  

 

Page 6: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 6 −

Before   illustrating   this  procedure   for  several  cases  of   interest   to  nuclear  chemists,  

we  can  point  out  another  important  property  of  the  Schrödinger  equation.    If  the  potential  

energy   V   is   independent   of   time,   we   can   separate   the   space   and   time   variables   in   the  

Schrödinger  equation  by  setting  

 

  Ψ(x,y,z,t)  =  ψ(x,y,z)  τ(t)   (E-­‐13b)  

 

Substituting  this  expression  into  equation  E-­‐13,  and  simplifying,  we  have  

    (E-­‐14)  

 

 

The  only  way  this  equation  can  be  true  is  for  both  sides  to  equal  a  constant.    If  we  call  this  

“separation  constant”  E,  we  can  write  

    (E-­‐15)  

 

and  

    (E-­‐16)  

 

Equation  E-­‐15  is  the  time  independent  Schrodinger  equation.      The  solution  to  equation  E-­‐

16  is  

    (E-­‐17)  

Page 7: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 7 −

 

 

Using  the  Euler  relation  (eiθ  =  cos  θ  +  i  sin  θ),  we  can  write  

 

τ(t)  =  cos  ωt    -­‐  i  sin  ωt   (E-­‐18)  

 

where  τ(t)  is  a  periodic  function  with  angular  frequency  ω  =  E/h  .    The  separation  constant  

E  can  be  shown  to  be  the  total  energy,  i.e.  the  sum  of  the  kinetic  and  potential  energies,  T  +  

V.  

 

 

E-­‐4  The  Free  Particle  

 

To  illustrate  how  the  Schrödinger  equation  might  be  applied  to  a  familiar  situation,  

consider  the  case  of  a  “free”  particle,  i.e.,  a  particle  moving  along  at  a  constant  velocity  with  

no  force  acting  on  the  particle  (V=0).    (Figure  E-­‐1)  For  simplicity,  let  us  consider  motion  in  

one  dimension,  the  x-­‐direction.    For  the  time  independent  Schrödinger  equation,  we  have  

 

    (E-­‐19)  

or  

    (E-­‐20)  

Page 8: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 8 −

where  the  constant  k  is  given  by  

    (E-­‐21)  

 

The  allowed  values  of  the  energy,  E,  are  (Equation  E-­‐21)  

 

    (E-­‐22)  

 

where  k  can  assume  any  value  (E  is  not  quantized).    Since  V=0,  E  is  the  kinetic  energy  of  a  

particle  with  momentum  p  =  hk.    From  de  Broglie,  we  know  that  

 

    (E-­‐23)  

 

so  that  we  can  make  the  association  that  

 

   

 

 

The  solution  for  the  Schrödinger  equation,  including  the  time-­‐dependent  part  is  

 

    (E-­‐24)  

Page 9: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 9 −

 

where  k  and  ω  are  given  (E-­‐21)  as  

    (E-­‐25)  

    (E-­‐26)  

 

This  solution  is  the  equation  for  a  wave  traveling  to  the  right  (+x  direction,  the  first  term)  

and  to  the  left  (-­‐x  direction,  second  term).    We  can  impose  a  boundary  condition,  namely,  

we  can  specify  the  particle  is  traveling  in  the  +x  direction.    Then  we  have  

 

    (E-­‐27)  

 

We  can  now  calculate  the  values  of  any  observable.    For  example,  to  calculate  the  value  of  

the  momentum  p,  we  write  (see  equation  E-­‐7)  

    (E-­‐28)  

 

which  agrees,  of  course,  with  the  classical  result.  

 

 

E-­‐5  Particle  in  a  Box  (One  Dimension)  

 

Page 10: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 10 −

Continuing  our  survey  of  some  simple  applications  of  wave  mechanics  to  problems  

of   interest   to   the  nuclear  chemist,   let  us   consider   the  problem  of  a  particle   confined   to  a  

one-­‐dimensional  box  (Figure  E-­‐2).    This  potential   is   flat  across  the  bottom  of  the  box  and  

then  rises  at  the  walls.    This  can  be  expressed  as:  

  V(x)  =  0     0≤  x  ≤  L  

  (E-­‐29)  

  V(x)  =  ∞     x  <  0,  x  >  L  

 

The  particle  moves  freely  between  0  and  L  but  is  excluded  from  x  <  0  and  x>  L.    Inside  the  

box,  the  Schrödinger  equation  has  the  form  of  equation  E-­‐19  (the  free  particle).    The  time  

independent  solution  can  be  written  

 

  ψ(x)  =  A  sin  kx  +  B  cos  kx   (E-­‐30)  

 

But  we  know  that  ψ(x)  =  0  at  x  =  0  and  x  =  L.    Thus  B  must  be  0  and    

 

  A  sin  kL  =  0   (E-­‐31)  

 

To  have  sin  kL  =  0,  we  must  have  

 

  kL  =  nπ     n  =  1,  2,  3   (E-­‐32)  

 

and,  using  the  result  (E-­‐22),  we  have  

Page 11: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 11 −

    (E-­‐33)  

 

In  this  case,   the  energy   is  quantized.    Only  certain  values  of   the  energy  are  allowed.    One  

can  show  the  normalization  condition  is  satisfied  if  

    (E-­‐34)  

 

The  allowed  energy  levels,  the  probability  densities  and  the  wave  functions  are  shown  for  

the  first  few  levels  of  this  potential  in  Figure  E-­‐3.  

 

Sample  Problem:  

Suppose  a  neutron   is  confined  to  a  box  that   is   the  size  of  a  nucleus,  10-­‐14m.    

(a)   What   is   the   energy   of   the   first   excited   state?     (b)   What   is   the   probability   of  

finding  the  neutron  within  a  region  corresponding  to  20%  of  the  width  of  the  box,  

i.e.,  between  0.4  x  10-­‐14m  and  0.6  x  10-­‐14m  in  the  fourth  excited  state?  

 

Solution:  

 

(a)   Eo  (the  energy  of  the  ground  state)  =  

 

 

=  3.3  x  10-­‐13J=  2.0  MeV  

Page 12: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 12 −

 

The   energy   of   the   first   excited   state,   n=2,   will   be   4Eo   and   the   energy   spacing  

between  the  first  excited  state  and  the  ground  state  will  be  3Eo  =  6  MeV.  

 

(b)   Probability  =      

 

which  is  the  result  obtained  by  inspection  of  the  ψ2  curve  in  Figure  E-­‐3.  

 

E-­‐6  The  Linear  Harmonic  Oscillator  (One  Dimension)  

One  of   the   classic   problems  of   quantum  mechanics   that   is   very   important   for   our  

study  of  nuclei   is  the  harmonic  oscillator.    For  a  simple  harmonic  oscillator,   the  restoring  

force  is  proportional  to  the  distance  from  the  center,  i.e.,  F  =  -­‐kx,  so  that  V(x)  =  kx2/2.    The  

Schrödinger  equation  is  

 

    (E-­‐35)  

 

The  solution  of  this  equation  is  mathematically  complicated  and  leads  to  wave  functions  of  

the  form  

    (E-­‐36)  

where  

Page 13: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 13 −

   

 

    (E-­‐37)  

 

    (the  oscillator  frequency)  

 

with  a  normalization  constant  of  

 

    (E-­‐38)  

 

 

The  expression  Hn  (β)  is  the  nth  Hermite  polynomial  (which  can  be  found  in  handbooks  of  

mathematical  functions).    The  energy  eigenvalues  can  be  shown  to  be  

 

    (E-­‐39)  

 

where  m  =  0,1,2,3...      

Thus  the  energy  levels  are  equally  spaced  starting  with  the  zero  point  energy  hυ0.    (Figure  

E-­‐4).     Note   the   solutions   have   the   property   that   there   is   some   probability   of   finding   the  

particle  in  classically  forbidden  regions,  i.e.,  the  particle  penetrates  into  the  walls.  

Page 14: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 14 −

E-­‐7  Barrier  Penetration  (One  Dimension).  

Another  important  quantum  mechanical  problem  of   interest  to  nuclear  chemists  is  

the  penetration  of  a  one-­‐dimensional  potential  barrier  by  a  beam  of  particles.    The  results  

of  solving  this  problem  (and  more  complicated  variations  of  the  problem)  will  be  used  in  

our  study  of  nuclear  α-­‐decay  and  nuclear  reactions.    The  situation  is  shown  in  figure  E-­‐5.    A  

beam  of  particles  originating  at  -­‐∞  is  incident  on  a  barrier  of  thickness  L  and  height  Vo  that  

extends  from  x=0  to  x=L.    Each  particle  has  a  total  energy  E.    (Classically,  we  would  expect  if  

E  <  Vo,  the  particles  would  bounce  off  the  barrier  while  if  E  >  Vo,  the  particles  would  pass  by  

the  barrier  with  no  change  in  their  properties.    Both  conclusions  are  altered  significantly  in  

quantum  mechanics).  

It  is  conventional  to  divide  the  space  into  three  regions  I,  II,  and  III,  shown  in  Figure  

E-­‐5.    In  regions  I  and  III,  we  have  the  “free  particle”  problem  treated  in  E-­‐4.    In  region  I,  we  

have  particles  moving  to  the  left  (the  incident  particles)  and  particles  moving  to  the  right  

(reflected   particles).     So   we   expect   a   wave   function   of   the   form   E-­‐24,   whose   time  

independent  part  can  be  written  

    (E-­‐40)  

 

where       .    In  region  III,  we  have  no  particles  incident  from  +∞,  so,  at  best,  we  can  

only  have  particles  moving  in  the  +x  direction  (b=0).    Thus  

 

    (E-­‐41)  

 

Page 15: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 15 −

In  region  II,  the  time  independent  Schrödinger  equation  is  

 

    (E-­‐42)  

 

where  k2  =  [2m(Vo  -­‐  E)]½  /    ,  assuming  Vo  >  E.    The  solution  is  

 

    (E-­‐43)  

 

Notice  that  the  wave  length  λ  is  the  same  in  regions  I  and  III,  but  the  amplitude  of  the  wave  

beyond   the   barrier   is   much   less   then   in   front   of   the   barrier.     It   can   be   shown   that   the  

probability  of  transmitting  particles  through  the  barrier  is  

    (E-­‐44)  

 

where  V   is   the  particle   speed.    To  determine   the  value  of  aIII   /  aI,  we  eliminate   the  other  

constants   bI,   aII,   bII   by   applying   the   conditions   that   ψ   and   dψ/dx   must   be   continuous  

through  all  space.    After  much  algebra  (see,  for  example,  the  textbook  by  Evans),  we  have  

 

    (E-­‐45)  

 

Page 16: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 16 −

For   nuclear   applications,   the   barriers   are   quite   thick   (k2L>>1),   in   which   case,

,  thus  

 

    (E-­‐46)  

 

The  dominant   term   in   this  expression   is   the  exponential.    For  a  6  MeVα-­‐particle,  Vo  =  20  

MeV,  L  =  10-­‐14  m,  we  have  

   

 

≈    5.1  x  1015  m-­‐1  

 

Thus  

   

 

and  

  T  =  16  x  8/20  x  (1-­‐8/20)(5.1  x  10-­‐45)  =  1.9  x  10-­‐44  

 

So  we  ignore  the  pre-­‐exponential  term,  and  write  

 

  T  ≈  e-­‐2G   (E-­‐47)  

 

Page 17: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 17 −

where  2G  =  2k2L  =  2[2m(Vo  -­‐  E)]½  /  .    For  an  arbitrarily  shaped  potential   that  would  be  

more  pertinent  to  nuclear  α-­‐decay,  one  can  show  

 

    (E-­‐48)  

 

where  x1  and  x2  are  the  points  where  E  =  V(x).  

 

What  about  the  case  where  E  >  Vo.    In  regions  I  and  III,  the  situation  is  the  same.    In  

region  II,  the  wave  functions  will  be  given  as  

 

    (E-­‐49)  

 

where  

    (E-­‐50)  

 

Since   the  wave   length ,  we   can  note  by   comparing  equations   that   λ2  >   λ1,   and   the  

momentum  (p  (=  (2mk2)½))  becomes  less.    In  other  words,  the  particle  is  scattered.  

 

 

E-­‐8  The  Schrödinger  Equation  in  Spherical  Coordinates  

Page 18: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 18 −

 

Many   problems   in   nuclear   physics   and   chemistry   involve   potentials,   such   as   the  

Coulomb   potential,   that   are   spherically   symmetric.     In   these   cases,   it   is   advantageous   to  

express  the  time-­‐independent  Schrödinger  equation  in  spherical  coordinates  (Figure  E-­‐6).    

The   familiar   transformations   from   a   Cartesian   coordinate   system   (x,   y,   z)   to   spherical  

coordinates  (r,  θ,  φ)  are  (Figure  E-­‐6)  

 

x  =  r  sinθcosφ          y  =  r  sinθsinφ          z  =  r  cosθ   (E-­‐51)  

 

 

The  time  independent  Schrödinger  equation  becomes  

 

    (E-­‐52)  

 

 

When  the  potential  is  spherically  symmetric,  v=v(r),  then  the  wave  function  can  be  written  

as  

 

  ψ(r,  θ,  φ)  =  R(r)  Yℓm  (θ,  φ)  

 

where  Yℓm  are  the  spherical  harmonic  functions.  

 

Page 19: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 19 −

 

If  we   substitute   this  wave   function   in   equation   (E-­‐52)   and   collect   terms,  we   find   that   all  

function  of  r  can  be  separated  from  the  functions  of  θ  and  φ.  

 

    (E-­‐53)  

 

 

Setting  both  sides  of  the  equation  equal  to  a  separation  constant,  ℓ  (ℓ+  1),  where  ℓ=  0,  1,  

2...,  we  have  

 

    (E-­‐54)  

 

and  

    (E-­‐55)  

 

Working  on  the  equation  E-­‐54,  it  is  convenient  to  change  variables  

    (E-­‐56)  

 

    (E-­‐57)  

Page 20: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 20 −

 

 

This  is  called  the  radial  wave  equation.    Apart  from  the  term  involving  ℓ,  it  is  the  same  as  

the  one-­‐dimensional  time  independent  Schrödinger  equation,  a  fact  that  will  be  useful  in  its  

solution.    The  last  term  is  referred  to  as  the  centrifugal  potential,  i.e.,  a  potential  whose  first  

derivative  with  respect  to  r  gives  the  centrifugal  force.  

 

It   is   important   to   note   that   equation   E-­‐55   does   not   contain   the   potential   energy  

term,  and  thus  once  we  have  solved  it,  the  solutions  will  supply  to  all  cases  where  V  does  

not  depend  on  Θ  and  φ,  i.e.,  all  so-­‐called  “central  potentials”.    The  wave  functions  Yℓm  (θ,  φ)  

are  known  as  the  spherical  harmonic  functions  and  are  tabulated.    The  indices  ℓ  and  m  are  

related   to   the   orbital   angular   momentum,   L,   of   the   particle   relative   to   the   origin.     The  

magnitude  of  L  is  [ℓ  (ℓ+1)]½  h  and  its  2ℓ+1  possible  projections  on  the  z  axis  are  equal  to  

m  (m  =  0,  ±1,  ±2...±l)*.    ℓ  is  called  the  orbital  angular  momentum  quantum  number  while  

m  is  the  magnetic  quantum  number,  in  reference  to  the  different  energies  of  the  m  states  in  

a   magnetic   field   (the   Zeeman   effect).     It   follows,   therefore,   that   the   specification   of   a  

particular   spherical   harmonic   function   (as   a   solution   to   the   angular   equation)   uniquely  

specifies  the  particle’s  orbital  angular  momentum  and  its  z-­‐component.  

 

*In  more  formal  language,  〈ℓ2〉  =  

2ℓ  (ℓ  +  1)  

                 〈ℓz〉  =  m  

 

 

 

Page 21: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 21 −

E-­‐9  The  Infinite  Spherical  Well  

 

As  an  application  of  the  Schrödinger  equation,  expressed  in  spherical  coordinates,  to  

a  problem  of  interest  in  nuclear  chemistry,   let  us  consider  the  problem  of  a  particle  in  an  

infinite  spherical  well  (Figure  E-­‐7).    This  potential  can  be  defined  as  

 

  V(r)  =  0   r  <  a  

  (E-­‐58)  

  V(r)  =  ∞   r  >  a  

Following  our  discussion  in  section  E-­‐8,  we  expect  the  solution  of  the  Schrödinger  equation  

to  be    

 

    (E-­‐59)  

 

where  the  radial  wave  function  Rl(r)  is  a  solution  to  the  equation  

 

    (E-­‐60)  

 

inside  the  well.    The  solutions  of  this  equation  are  the  spherical  Bessel  functions  

 

    (E-­‐61)  

Page 22: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 22 −

 

 

where .     The   boundary   conditions   require  ψ   =   0   at   r   =   0,   and   r   =   a.     This  will  

happen   for   values   of   ka   that  make   the  Bessel   functions  have   a   value  of   0   (the   “zeros”   of  

these  functions).    (Each  ℓ  value  will  have  its  own  set  of  zeros).    These  resulting  values  of  k  

can  be  used  to  calculate  the  allowed  energy  levels  (Figure  E-­‐8).    Each  level  is  labeled  with  a  

number  (1,  2,  3...)  and  a   letter  (s,  p,  d,  e,  etc.).    The   letter   follows  the  usual  spectroscopic  

notation  of  ℓ  (ℓ  =  0,  s;  ℓ=  1,  p,  etc.)  while  the  number  designates  how  many  times  that  letter  

has  occurred  (the  first  d  level  is  1d;  the  second  2d,  etc.).  

 

E-­‐10  Angular  Momentum  

Classically   the   angular   momentum   of   a   particle   can   be   written   as     =    x   .    

(Section  1.6.2).    From  this  classical  expression,  we  can  write  down  the  classical  components  

of  the  vectorl_;  

 

ℓx  =  ypz  -­‐  zpx  

 

ℓy  =  zpx  -­‐  xpz   (E-­‐62)  

 

ℓz  =  xpy  -­‐  ypx  

 

Page 23: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 23 −

These   classical   expressions   can   be   converted   to   the   operator   language   of   quantum  

mechanics  by  substitutions  (such  as  x  →  x,  px  →i

 (∂/∂x),  etc.)  

 

   

 

    (E-­‐63)  

   

 

 

As   remarked   earlier   (Section   E-­‐9),   the   expectation   values   of   〈ℓz〉   and   〈   ℓ2〉   for   a   central  

potential  are  

 

  〈ℓz〉  =  

m

   

m=  0,  ±1,  ±2...±l   (E-­‐64)  

 

and  

 

  〈ℓ2〉  =  ℓ(ℓ+1)  

2          

  (E-­‐65)  

 

 

Page 24: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 24 −

We  can  give  these  results  a  pictorial  interpretation  that  is  worth  noting.    Consider  a  

state  of  definite  orbital  angular  momentum  ℓ.    Then  

 

   

 

The   z   component   of   ℓ  may   have   any   value   up   to   ±ℓ

.     The   possible   values   of   ℓz   can   be  

represented   as   the   projection   of   a   vector   of   length   ℓ   on   the   z   axis   (figure   E-­‐9).     This  

situation  is  referred  to  as  spatial  quantization.    Only  certain  values  of  ℓz  are  allowed.    Due  to  

the  Uncertainty  Principle,  the  values  of  ℓx  and  ℓy  are  completely  uncertain.    In  the  language  

of   Figure  E-­‐9,   the   vector   representing  ℓ   is   rotating   about   the   z   axis,   so   that   ℓ   and  ℓz   are  

fixed,  but  ℓx  and  ℓy  are  continuously  changing.  

 

In  chemistry,  we  found  that  to  describe  the  complete  quantum  state  of  an  electron  in  

an  atom,  we  had  to  introduce  another  quantum  number,  the  intrinsic  angular  momentum  

or   spin.     This   quantum   number   is   designated   as   s.     By   analogy   to   the   orbital   angular  

momentum  quantum  number  ℓ,  we  have  

 

〈s2〉  =  s(s  +  1)  

2  

〈s2〉  =  ms

    ms=  ±½   (E-­‐66)  

 

Nucleons  also  have  values  of  the  spin  quantum  number  of  s  =  ½,  like  electrons.    The  total  

angular  momentum  of  a  nucleon  j  can  be  written  as  

 

Page 25: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 25 −

   =    +     (E-­‐67)  

 

 

The  usual  quantum  mechanical  rules  apply  to  j,  i.e.,  

 

〈j〉  =  j  (j+1)  

2  

 

〈jz〉  =  mj

 =  〈ℓz  +  sz〉  

 

 

where  mj  =  -­‐j,  -­‐j  +  1...j-­‐1,  j            Thus  we  have  

 

 mj  =  

m  +  ms  =  

m  ±  ½.  

 

 

Since  mℓ  is  always  an  integer,  then  mj  must  have  a  half  integer  and  j  must  be  a  half  integer,  

either  j  =  ℓ  -­‐  ½  or  j  =  ℓ  +  ½.    Alternatively,  for  a  given  ℓ  value,  we  have  two  possible  values  

of  j,  j  =  ℓ  -­‐  ½  or  j  =  ℓ  +  ½.    For  example,  for  ℓ  =  1  (p  state),  we  have  j  =  ℓ  -­‐1/2  =  ½  or  j  =  ℓ  +  

½  =  3/2.    We  designate  these  states  as  p1/2  and  p3/2,  respectively.  

 

 

E-­‐11  Parity  

 

Page 26: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 26 −

A  wave  function  has  positive  (or  even)  parity  if  it  does  not  change  sign  by  reflection  

through  the  origin.  

 

  ψ  (-­‐x,  -­‐y,  z)  =  ψ(x,  y,  z)  positive  parity,  π  =  +   (E-­‐69)  

 

Alternatively   if   reflection   through   the   origin  produces   a   change  of   sign,   the  parity   of   the  

wave  function  is  negative  (-­‐).  

 

  ψ  (-­‐x,  -­‐y,  z)  =  -­‐  ψ(x,  y,  z)  negative  parity,  π  =  -­‐   (E-­‐70)  

 

When  ψ   is   expressed   in   spherical   coordinates   as  ψ(r,   θ,  φ),   then   “reflection   through   the  

origin”  is  accomplished  by  replacing  θ,  and  φ  by  (π-­‐θ)  and  (π  +  φ),  respectively.    (r  cannot  

change   sign   as   it   is   just   a   distance).     In   other  words,   the   parity   of   the  wave   function   is  

determined  only  by   its  angular  part.    For  spherically  symmetric  potentials,   the  value  of  ℓ  

uniquely  determines  the  parity  as  

 

  π  =  (-­‐1)ℓ   (E-­‐71)  

 

A   corollary   of   this   in   that   for   a   system   of   particles,   the   parity   is   even   if   the   sum   of   the  

individual  orbital  angular  momentum  quantum  numbers  Σℓi  is  even;  the  parity  is  odd  if  Σℓi  

is  odd.    Thus  the  parity  of  each   level  depends  on   its  wave   function.    An  excited  state  of  a  

nucleus  need  not  have  the  same  parity  as  the  ground  state.  

 

Page 27: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 27 −

Parity  will  be  valuable   to  us   in  our  discussion  of  nuclei  because   it   is   conserved   in  

beta  decay  which  will   tell  us   that  a  different   force,   the  weak   interaction,   is  acting   in  beta  

decay   compared   to   nuclear   reactions.     Also   the   rates   of   the   γ-­‐ray   transitions   between  

nuclear  excited  states  depend  on  the  changes   in  parity  and  can  be  used  to  determine  the  

parity  of  nuclear  states.  

 

Page 28: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 28 −

E-­‐12  Quantum  Statistics  

 

The  parity  of  a  system  is  related  to  the  symmetry  properties  of  the  spatial  portion  of  

the  wave  function.    Another  important  quantum  mechanical  property  of  a  system  of  two  or  

more  identical  particles  is  the  effect  on  the  wave  function  of  exchanging  the  coordinates  of  

two   particles.     If   no   change   in   the   wave   function   occurs   when   the   spatial   and   spin  

coordinates  are  exchanged,  we  say  the  wave  function  is  symmetric  and  the  particles  obey  

Bose-­‐Einstein   statistics.     If,  upon  exchange  of   the   spatial   and  spin  coordinates  of   the   two  

particles  the  wave  function  changes  sign,  the  wave  function  is  said  to  be  antisymmetric  and  

the   particles   obey   Fermi-­‐Dirac   statistics.     The   “statistics”   these   particles   followed,  

profoundly  affects  the  property  of  an  assembly  of  such  particles.    Particles  with  half-­‐integer  

spins,   such   as   neutrons,   protons,   and   electrons,   are   fermions,   and   obey   Fermi-­‐Dirac  

statistics,   have   antisymmetric   wave   functions,   and   as   a   consequence,   obey   the   Pauli  

principle.    (No  two  particles  can  have  identical  values  of  the  quantum  numbers,  m,  ℓ,  mℓ,  s,  

and  ms).    Photons,  or  other  particles  with   integer  spins,  such  as  the  π  meson,  are  bosons,  

obey   Bose-­‐Einstein   statistics,   have   symmetric  wave   functions   and   do   not   obey   the   Pauli  

principle.      

 

This  difference  between  fermions  and  bosons  is  reflected  in  how  they  occupy  a  set  

of  states,  especially  as  a  function  of  temperature.    Consider  the  system  shown  in  Figure  E-­‐

10.    At  zero  temperature  (T  =  0),  the  bosons  will  try  to  occupy  the  lowest  energy  state  (a  

Bose-­‐Einstein  coordinate)  while  for  the  fermions,  the  occupancy  will  be  one  per  quantum  

Page 29: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 29 −

state.     At   high   temperatures   the   distributions   are   similar   and   approach   the   Maxwell  

Boltzman  distribution.  

 

The  Fermi-­‐Dirac  distribution  can  be  described  by  the  equation  

 

    (E-­‐72)  

 

where  fFD  is  the  number  of  particles  per  quantum  state,  k  is  Boltzman’s  constant  and  EF  is  

the  Fermi  energy.    At  T  =  0,  all  energy  levels  up  to  EF  are  occupied  (fFD  =  1)  and  all  energy  

levels  above  EF  are  empty  (fFD  =  0).    As  T  increases,  some  levels  above  EF  become  occupied  

at  the  expense  of  levels  below  EF.  

 

 References  

 

 

K.S.  Krane,  Modern  Physics  (Wiley,  New  York,  1983)  A  well  written  introductory  

treatment  of  quantum  physics.  

M.  Scharff,  Elementary  Quantum  Mechanics  (Wiley,  London,  1969)  A  very  lucid,  

elementary  treatment  of  quantum  mechanics,  emphasizing  physical  insight  

rather  than  formal  theory.  

Page 30: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 30 −

L.I.  Schiff,  Quantum  Mechanics  (McGraw-­‐Hill,  New  York,  1955)  An  old  classic  

treatment  that  contains  several  applications  of  interest.  

E.  Merzbacher,  Quantum  Mechanics  (Wiley,  New  York,  1961)  Another  treatment  

with  several  nuclear  physics  applications.  

C.  Cohen-­‐Tannoudji,  B.  Diu,  F.  Laloe,  Quantum  Mechanics  (Wiley,  New  York,  1977)  

An  encyclopedic  treatment.  

R.M.  Eisberg,  Fundamentals  of  Modern  Physics  (Wiley,  New  York,  1961).    A  

comprehensive  treatment  of  modern  physics.  

Page 31: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 31 −

 

 

Figure  E-­‐1.    The  free  particle  problem.  

 

 

 

 

 

 

 

 

 

Figure  E-­‐2.   A  schematic  diagram  of  a  particle  in  a  one-­‐dimensional  box.    The  particle  is  

free  to  move  between  x  =  0  and  x  =  L,  but  not  allowed  to  have  x  <  0  or  x  >  L.  

 

∞ ∞ v = ∞

v = 0 x = 0 x = L

E

E

0 -x x

Page 32: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 32 −

 

 

 

 

Figure  E-­‐3.   The  allowed  energy  levels  of  a  particle  in  a  one-­‐dimensional  box.    The  wave  

function  is  shown  as  a  solid  line  for  each  level  while  the  shaded  area  gives  the  

probability  density.  

Page 33: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 33 −

 

 

 

 

 

 

Figure  E-­‐4.   The  low-­‐lying  levels  and  associated  probability  densities  for  the  harmonic  

oscillator.  

 

 

 

 

 

Page 34: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 34 −

 

 

 

 

Figure  E-­‐5.   A  schematic  diagram  of  a  particle  of  energy  E  incident  on  a  barrier  of  height  

V0  and  thickness  L.    The  wave  function  ψ  is  shown  also.  

 

 

 

 

 

 

 

V0

L

Page 35: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 35 −

 

 

Figure  E-­‐6.    Spherical  polar  coordinates.  

 

 

 

 

 

 

 

Page 36: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 36 −

 

 

Figure  E-­‐7.   Schematic  diagram  of  the  infinite  square  well  potential.  

 

 

 

 

 

 

∞ ∞

0 r = a R

v(r)

Page 37: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 37 −

 

Figure  E-­‐8a.   Energy  levels  of  an  infinitely  deep  spherical  square  well.    The  radical  

probability  density  functions    are  shown  for  different  values  of  ℓ  

 

Page 38: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 38 −

 

Figure  E-­‐8b.   The  three-­‐dimensional  probability  densities,  ∫n,  ℓ,  m  (r,θ)  for  an  infinitely  deep  

three-­‐dimensional  square  well.  

 

Page 39: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 39 −

 

 

Figure  E-­‐9.    The  spatial  orientation  and  z  components  of  a  vector  with  ℓ  =  2.  

 

Page 40: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 40 −

 

 

Figure  E-­‐10.   (a)  The  Bose-­‐Einstein  distribution  function.  

  (b)  The  Fermi-­‐Dirac  distribution  function.  

(a)

(b)

(c)

# particles/ level

# particles/ level

Page 41: Appendix(E(*ElementsofQuantumMechanics( - …oregonstate.edu/instruct/ch374/ch418518/Appendix E.pdfAppendix(E(*ElementsofQuantumMechanics(! Quantummechanics!provides!a!correct!description!of!phenomena!on!the!atomic!or!

− 41 −

  (c)  The  filling  of  levels  by  fermions  at  T=0  and  T=T1  >  0.    The  dashed  

line  indicates  the  Fermi  energies  EF