PCIRF_6_5_VCO

Embed Size (px)

Citation preview

  • 7/29/2019 PCIRF_6_5_VCO

    1/39

    Sam Palermo

    Analog & Mixed-Signal Center

    Texas A&M University

    ECEN620: Network Theory

    Broadband Circuit DesignFall 2012

    Lecture 16: VCO Phase Noise

  • 7/29/2019 PCIRF_6_5_VCO

    2/39

    Agenda

    Phase Noise Definition and Impact

    Ideal Oscillator Phase Noise

    Leeson Model

    Hajimiri Model

    2

  • 7/29/2019 PCIRF_6_5_VCO

    3/39

    Phase Noise Definition

    An ideal oscillator has an impulse shape in the frequency domain

    A real oscillator has phase noise skirts centered at the carrier frequency

    Phase noise is quantified as the normalized noise power in a 1Hzbandwidth at a frequency offset from the carrier

    3

    ( )( )

    ( )dBc/HzP

    1Hz,Plog10

    carrier

    sideband

    +=

    oL

  • 7/29/2019 PCIRF_6_5_VCO

    4/39

    Phase Noise Impact in RF Communication

    At the RX, a large interferer can degrade theSNR of the wanted signal due to reciprocalmixing caused by the LO phase noise

    Having large phase noise at the TX can degrade

    the performance of a nearby RX 4

    RX Reciprocal Mixing Strong Noisy TX Interfering with RX

  • 7/29/2019 PCIRF_6_5_VCO

    5/39

    Jitter Impact in HS Links

    5

    RX sample clock jitter reduces the timing marginof the system for a given bit-error-rate

    TX jitter also reduces timing margin, and can be

    amplified by low-pass channels

  • 7/29/2019 PCIRF_6_5_VCO

    6/39

    Ideal Oscillator Phase Noise

    6

    2

    tank

    22

    2

    isvoltagenoisesquared-meantheofdensityspectralThe

    4

    noisethermalintroducewillresistancetankThe

    Zf

    i

    f

    v

    R

    kT

    f

    i

    nn

    n

    =

    =

  • 7/29/2019 PCIRF_6_5_VCO

    7/39

    Tank Impedance Near Resonance

    7

    ( )

    ( )( )

    ( )

    ( )2

    2

    tank

    tank

    22tank

    2tank

    2

    2

    1Tank

    1

    2221

    resonancetoclosesfrequencieConsider

    1:FrequencyResonance

    11

    =

    ==

    =

    +=

    +=

    =

    ==

    Q

    RZ

    Q

    RjZ

    Q

    R

    CCRQ

    C

    j

    LC

    Lj

    LCLCLC

    LjZ

    LC

    LCLjLj

    CjZ

    o

    o

    o

    o

    o

    oo

    o

    oo

    o

    o

    o

  • 7/29/2019 PCIRF_6_5_VCO

    8/39

    Ideal Oscillator Phase Noise

    8

    { } ( )

    carrierthefromawayslope20dB/dec-adisplaywillnoisethermaltoduenoisePhase

    dBc/Hz2

    2log10

    phase.andamplitudebetween2

    1evenly

    splitispowernoisethisTherefore,equal.arepowernoise-phaseandamplitude

    m,equilibriuinthat,states2000]JSSC[LeeTheoremionEquipartitThe

    242

    4

    2

    22

    2

    tank

    22

    =

    =

    ==

    QP

    kTL

    QkTRQ

    R

    R

    kT

    Zf

    i

    f

    v

    o

    sig

    oonn

  • 7/29/2019 PCIRF_6_5_VCO

    9/39

    Other Phase Noise Sources

    Tank thermal noise is only one piece of thephase noise puzzle

    Oscillator transistors introduce their own thermal

    noise and also flicker (1/f) noise 9

    [Perrott]

  • 7/29/2019 PCIRF_6_5_VCO

    10/39

    Leeson Phase Noise Model

    10

    Leesons model modifies thepreviously derived expression toaccount for the high frequencynoise floor and 1/f noiseupconversion

    A empirical fitting parameter F isintroduced to account forincreased thermal noise

    Model predicts that the (1/)3region boundary is equal to the1/f corner of device noise andthe oscillator noise flattens athalf the resonator bandwidth

    { } ( )dBc/Hz1212log10

    3

    1

    2

    +

    +=

    fo

    sigQP

    FkTL

  • 7/29/2019 PCIRF_6_5_VCO

    11/39

    11 ELEN620-IC Design of Broadband Communication circuit

    A 3.5GHz LC tank VCO PhaseNoise

    MeasurePhase

    noise

    -30dB/decade -20dB/decade

    -105dBc

  • 7/29/2019 PCIRF_6_5_VCO

    12/39

    12 ELEN620-IC Design of Broadband Communication circuit

    VCO Output Spectrum Example

    -85dBm

    -20dBm

    RBW=10K

    PN=-85dBm-(-20dBm)-10log10(10e3)

    =-105dBc

    dBc---in dBwith respect to

    carrier

  • 7/29/2019 PCIRF_6_5_VCO

    13/39

    Leeson Model Issues

    13

    The empirical fittingparameter F is not knownin advance and can varywith different processtechnologies and

    oscillator topologies

    The actual transitionfrequencies predicted bythe Leeson model doesnot always matchmeasured data

  • 7/29/2019 PCIRF_6_5_VCO

    14/39

    YCLO

    AMSC-TAMU 14

    Harjimiris Model (T. H. Lee) Injection at Peak (amplitude noise only)

    Injection at Zero Crossing (maximum phase noise)

  • 7/29/2019 PCIRF_6_5_VCO

    15/39

    15 ELEN620-IC Design of Broadband Communication circuit

    A time-Varying Phase Noise model: Hajimiri-Lee model

    Impulse applied to the tank to measure its sensitivity

    function

    The impulse response for the phase variation can be represented as

    f

    in

    2

    is the impulse sensitivity function ISFqmax, the maximum charge displacement across the capacitor, is a normalizing factor

  • 7/29/2019 PCIRF_6_5_VCO

    16/39

    YCLO

    AMSC-TAMU 16

    ISF Model

    The phase variation due to injecting noise can be

    modeled as:

    The function, (x), is the time-varying proportionalityfactor and called the impulse sensitivity function.

    The phase shift is assumed linear to injection charge.

    ISF has the same oscillation period T of the oscillatoritself.

    The unity phase impulse response can be written as:

  • 7/29/2019 PCIRF_6_5_VCO

    17/39

    17 ELEN620-IC Design of Broadband Communication circuit

    How to obtain the Impulse sensitivi ty function

    for a LC oscillator

    () can be obtained using CadenceConsider the effect on phase noise of each noise source

  • 7/29/2019 PCIRF_6_5_VCO

    18/39

    YCLO

    AMSC-TAMU 18

    Typical ISF Example

    The ISF can be estimated analytically or calculated

    from simulation. The ISF reaches peak during zero crossing and zeroat peak.

  • 7/29/2019 PCIRF_6_5_VCO

    19/39

    Phase Noise Computation

    19

    ( )( )

    ( )

    ( ) ( ) ( ) ( ) ( )

    diq

    dith

    tuq

    th

    t

    o

    o

    ==

    =

    max

    max

    1,t

    functionimpulsenoisephaseth thecurrent winoisearbitraryany

    theofintegralon)(convolutiionsuperpositby thecomputedbecan thennoisephaseThe

    ,

    functionimpulsenoisephaseobtain thetousedisfunctionysensitivitimpulseThe

  • 7/29/2019 PCIRF_6_5_VCO

    20/39

    ISF Decomposition w/ Fourier Series

    20

    ( ) ( )

    ( ) ( ) ( ) ( )

    ts.coefficienISFthetoaccordingscaledand

    bandsfrequencydifferentfromdownmixedisnoisecurrentthey,Essentialld.detereminearetscoefficien

    FourierISFtheoncecomputedbetosourcenoisearbitraryanfromphaseexcesstheallowsThis

    cos2

    1t

    bycomputedbecan thennoisephaseThe

    harmonic.ISFththeofphasetheisandrealaretscoefficienthewhere

    cos2

    seriesFourieraasexpressedbemayitperiodic,isISFthebecauseandinsight,furthergainorder toIn

    1

    0

    max

    1

    0

    +=

    ++=

    =

    =

    n

    o

    t

    n

    t

    nn

    n

    nono

    dnicdicq

    nc

    ncc

  • 7/29/2019 PCIRF_6_5_VCO

    21/39

    Phase Noise Frequency Conversion

    21

    ( ) ( )[ ]

    ( )( )

    ( ) ( )[ ]

    ( )

    .1

    toalproportionispowerthat thisNote

    4log10

    powerthcarrier wiabout thesymmetricsidebandsightedequally wetwobewillthere,cos

    waveformsinusoidalaAssuming.atsidebandsequaltwoshowwillspectrumfrequencyresultingThe

    2

    sin

    other than

    termsallfromoncontributinegligibleabewillthereintegral,ncomputationoisephasetheperformingWhen

    cos

    frequencynoscillatiotheofmultipleinteger

    annearisfrequencyosecurrent whnoisesinusoidalahavewewherecasesimpleaconsiderFirst

    2

    2

    max

    max

    +=

    =

    +=

    q

    cIP

    tttv

    q

    tcIt

    mn

    tmIti

    m

    mmSBC

    oout

    mm

    om

  • 7/29/2019 PCIRF_6_5_VCO

    22/39

    Phase Noise Due to White & 1/f Sources

    22

    ( )

    .1byweightedand

    teddownconvergetscarriertheofmultiplesintegerhighernearnoiseWhitethere.stayscarriernear theNoise

    carrier.near thenoise1becomesnoise1so,tcoefficienbyweightedd,upconvertegetsdcnearNoise

    .1

    byweightedareanditself

    carriernear thefoldallfrequencycarriertheofmultiplesintegernearcomponentsnoiseHere

    4log10

    inresultssourcenoisewhiteaofcasegeneralthetoanalysisprevioustheExtending

    2

    3

    0

    2

    22

    max

    0

    22

    f

    ffc

    q

    cf

    i

    P mm

    n

    SBC

    =

  • 7/29/2019 PCIRF_6_5_VCO

    23/39

    How to Minimize Phase Noise?

    23

    ( )

    ( )

    s.frequencieallatnoisephasethereducewillreducingThus,

    2log10

    asexpressedbecanregion1in thespectrumThe

    21

    theoremsParseval'Usingminimized.beshouldtscoefficienISFthenoise,phaseminimizeorder toIn

    22

    max

    2

    2

    2

    2

    0

    22

    0

    2

    rms

    rmsn

    rms

    m

    m

    n

    q

    fi

    L

    f

    dxxc

    c

    =

    ==

    =

  • 7/29/2019 PCIRF_6_5_VCO

    24/39

    1/f Corner Frequency

    24

    ( )

    noise.1inreductionsdramaticforpotentialtheisethen thersymmetry,time-falland-risethrough

    minimizedisIfcorner.noisecuitdevice/cir1thelower thangenerallyisThis

    4

    isfrequencycorner1theThus,

    8log10

    slideprevioustheFrom

    frequencycorner1theiswhere

    content1includeswhichnoisecurrentConsider

    2

    12

    2

    011

    3

    1

    22

    max

    2

    0

    2

    1

    122

    1,

    3

    f

    f

    c

    f

    q

    cf

    i

    L

    f

    ii

    f

    dc

    rms

    dcf

    rms

    ff

    f

    n

    f

    f

    nfn

    =

    =

    =

    =

  • 7/29/2019 PCIRF_6_5_VCO

    25/39

    Cyclostationary Noise Treatment

    25

    ( ) ( ) ( )

    ( )

    ( ) ( ) ( )xxx

    x

    i

    ttiti

    n

    nn

    =

    =

    eff

    0

    00

    ISFeffectiveanformulate

    canwethis,Usingunity.ofpeak valueaithfunction wunitlessperiodicaisandsource,noise

    onarycyclostatitheofthattoequalispeak valuewhosesourcenoisewhitestationaryaisHere

    function.periodicaand

    noisewhitestationaryofproducttheasitgby treatinthishandleeasilycanmodelLTVThe

    cycle.oscillatoranoverlydramaticalchangecannoise,thusandcurrent,drainTransistor

  • 7/29/2019 PCIRF_6_5_VCO

    26/39

    Key Oscillator Design Points

    26

    As the LTI model predicts, oscillator signal powerand Q should be maximized

    Ideally, the energy returned to the tank should bedelivered all at once when the ISF is minimum

    Oscillators with symmetry properties that have smalldc will provide minimum 1/f noise upconversion

  • 7/29/2019 PCIRF_6_5_VCO

    27/39

    Phasor-Based Phase Noise Analysis

    27

    Models noise at 2 sideband frequencieswith modulation terms

    The 1 and 2 terms sum co-linear with

    the carrier phasor and produceamplitude modulation (AM)

    The 1 and 2 terms sum orthogonalwith the carrier phasor and producephase modulation (PM)

  • 7/29/2019 PCIRF_6_5_VCO

    28/39

    Phasor-Based LC Oscillator Analysis

    28

    This phasor-based approachcan be used to find closed-form expressions for LCoscillator phase noise that

    provide design insight

    In particular, an accurate

    expression for the Leesonmodel F parameter is obtained

    { } ( )dBc/Hz2

    2log10

    2

    =

    QP

    FkTL o

    sig

  • 7/29/2019 PCIRF_6_5_VCO

    29/39

    LC Oscillator F Parameter

    29

    1st Term = Tank Resistance Noise

    2nd Term = Cross-Coupled Pair Noise

    3rd Term = Tail Current Source Noise

    { } ( )dBc/Hz22log10

    2

    = QP

    FkTL osig

    The above expression gives us insight on how to optimizethe oscillator to reduce phase noise

    The tail current source is often a significant contributor to

    total noise

  • 7/29/2019 PCIRF_6_5_VCO

    30/39

    Tail Current Noise

    The switching differential pair can be modeled as a

    mixer for noise in the current sourceOnly the noise located at even harmonics willproduce phase noise.

    YCLO

    AMSC-TAMU 30

  • 7/29/2019 PCIRF_6_5_VCO

    31/39

    Loading in Current-Biased Oscillator

    YCLO

    AMSC-TAMU 31

    The current sourceplays 2 roles It sets the oscillator bias

    current Provides a high impedance

    in series with theswitching transistors toprevent resonator loading

  • 7/29/2019 PCIRF_6_5_VCO

    32/39

    Noise Filtering in Oscillator

    Only thermal noise in the current source transistor around 2ndharmonic of the oscillation causes phase noise.

    In balanced circuits, odd harmonics circulate in a differentialpath, while even harmonics flow in a common-mode path

    A high impedance at the tail is only required at the 2nd harmonicto stop the differential pair FETs in triode from loading the

    resonator.

    YCLO

    AMSC-TAMU 32

  • 7/29/2019 PCIRF_6_5_VCO

    33/39

    Noise Filtering in Oscillator

    Tail-biased VCO with noise filtering.

    YCLO

    AMSC-TAMU 33

  • 7/29/2019 PCIRF_6_5_VCO

    34/39

    Phase Noise w/ Tail Current Filtering

    34

    Tail current noise filtering provides near 7dB improvement

  • 7/29/2019 PCIRF_6_5_VCO

    35/39

    Noise Filtering in Oscillator

    A top-biased VCO often provides improved substrate

    noise rejection and reduced flicker noise

    YCLO

    AMSC-TAMU 35

  • 7/29/2019 PCIRF_6_5_VCO

    36/39

    Next Time

    Divider Circuits

    36

  • 7/29/2019 PCIRF_6_5_VCO

    37/39

    37 ELEN620-IC Design of Broadband Communication circuit

    The input sensitivity function can be characterized as a Fourier Series:

    An the phase noise is then

    Therefore:

    In general the impulse sensitivity function is periodic with a

    fundamental frequency equal to the oscillating frequency

  • 7/29/2019 PCIRF_6_5_VCO

    38/39

    38 ELEN620-IC Design of Broadband Communication circuit

    Due to the periodicity of the terms, the series converge to (n=m term only):

    Phase noise

    If the input noise is represented as

    m0(m-1)0

    m0

    Noise

  • 7/29/2019 PCIRF_6_5_VCO

    39/39

    39 ELEN620 IC D i f B db dC i ti i it

    If the input noise is represented by its power distribution function

    For small noise level

    ( )( )

    ( ) ( ) ( )( )

    ( ) ( )( ) ( )ttsinVtcosVV

    tsintsinVtcosVV

    ttcosVV

    o0o0out

    o0o0out

    o0out

    +=