35
Biology Patterns of Inheritance s

Patterns of Inheritance · Mendel used the pea plant for 3 reasons: 1. The structure of the pea flowers allowed: self fertilization (which means the plant can breed with itself, a

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Biology Patterns of Inheritance

    s

  • Key Terms & Scientists

    Genetics

    Traits

    Blending hypothesis

    Mendel

    Self-fertilization (true breeding)

    Hybrid

    Cross pollination

    Monohybrid/Dihybrid

    Parental generation

    First/second filial (generation)

    Genes/alleles

    Dominant/recessive

    Homozygous & heterozygous

    Law of Segregation & Law of Independent Assortment

    Probability

    Punnett Square

    Testcross

    Complete & incomplete dominance

    Codominance

    Intermediate inheritance

    Polygenic traits

    Multiple alleles

    Pleiotropy

    Chromosomal Theory of Inheritance

    Linked & sex-linked genes

    Sex Chromosomes

    Autosomes

  • Inheritance Genetics is the scientific study of

    heredity.

    A trait is a characteristic that is passed from parent to offspring (ex. Eye color).

    The blending hypothesis was once believed to be the way traits were inherited from generation to generation. Think mixing paints. This is the idea that each generation is a mix (or blend) of both parents genes (traits). This does not account for the appearance of unexpected traits.

    Traits are passed to offspring through chromosomes.

    http://www.google.com/imgres

    Genes

    DON’T

    Mix!

    http://www.google.com/imgres

  • Gregor Mendel, an

    Austrian Monk, (1860’s)

    studied the pea plant.

    He knew nothing of

    molecular biology (or

    chromosomes).

    He did NOT support the

    blending hypothesis, and

    in fact, disproved it

    through his studies.

    He is the father of

    genetics.

    http://mendel.imp.ac.at/mendeljsp/images/mendel3.jpg

  • Mendel used the pea plant for 3 reasons: 1. The structure of the pea flowers allowed:

    self fertilization (which means the plant can breed with itself, a process called pure breeding)

    OR he could cross pollinate the flowers and produce a hybrid (this is an organism that receives different forms of a genetic trait from each parent, or 2 sets of DNA: 1 from each parent).

    2. The rapid reproduction cycle: the pea plant reproduces about every 90 days.

    http://www.google.com/imgres

    http://www.google.com/imgres

  • 3. The presence of distinctive traits allowed Mendel to observe his results easily. He studied 7 traits (we will look at 5). Traits in the pea plant have only 2 forms (there is NO intermediate or in between form; it is either/or):

    Purple (P) vs. white (p)= flower color Yellow (Y) vs. green (y)= pea color Round (R ) vs. wrinkled (r )= pea shape Green (G) vs. yellow (g)= pod color Tall (T) vs. short (t)= height

    http://www.google.com/imgres

    http://www.google.com/imgres

  • Mendel’s Observations:

    When Mendel worked with the pea plants he used 2 different groups of purebred plants, looking at 1 trait at a time.

    For example, he used 1 group of purebred purple flower pea plants & 1 group of purebred white flower pea plants.

    http://www.google.com/imgres

    http://www.google.com/imgres

  • He crossed these 2 groups with each other (cross pollinated them) and called them the parental generation, or P.

    ◦ This is a monohybrid cross (crossing 1 trait).

    All of the offspring had purple flowers. ◦ This generation did not

    show up as a blend of parents (no mix b/c they are not less purple). But, where did the white flower trait go?

    http://www.google.com/imgres

    http://www.google.com/imgres

  • He called this generation of offspring the First Filial or F1 generation (filial refers to offspring).

    The offspring is a hybrid of the parents.

    He allowed the F1 generation to self-fertilize. He called this generation the second filial, or F2 generation.

    The F2 offspring revealed 3 out of 4 had purple flowers and 1 out of 4 had white flowers. Again, no blending resulted. Also, the white flower trait had NOT disappeared.

  • Mendel performed this experiment with all 7 traits and received the same results: the offspring is not a mixture of the parents; the original traits do not disappear.

    In his work, all F1 revealed 1 characteristic: this characteristic is dominant. All F2 generations were in a 3:1 ratio (3 dominant: 1 recessive).

    MONOHYBRID CROSS, etc. https://www.youtube.com/watch?v=i-

    0rSv6oxSY

    https://www.youtube.com/watch?v=i-0rSv6oxSYhttps://www.youtube.com/watch?v=i-0rSv6oxSYhttps://www.youtube.com/watch?v=i-0rSv6oxSYhttps://www.youtube.com/watch?v=i-0rSv6oxSYhttps://www.youtube.com/watch?v=i-0rSv6oxSYhttps://www.youtube.com/watch?v=i-0rSv6oxSY

  • F1 generation

    F2

    generation

    http://wps.prenhall.com/wps/media/objects/487/498795/CDA10_1.jpg

  • Genes are sections of a chromosome that code for a trait.

    ◦ Most organisms have 2 copies for every gene and chromosome (1 from each parent).

    An allele is a distinct form of a gene.

    ◦ If an organism has 2 different alleles for 1 trait, only 1 allele is expressed or visible (usually).

    http://www.google.com/imgres

    http://www.google.com/imgres

  • The dominant allele is a form of a gene that is fully expressed when 2 different alleles are present.

    ◦ This is represented with a capital letter (and is written 1st).

    ◦ Ex. Purple= P

    The recessive allele is a form of a gene that is not expressed when paired with a dominant allele (it takes 2 recessives to be expressed).

    ◦ This is represented by a lower case letter & is written 2nd.

    ◦ Ex. White= p

  • The Chromosome Theory of Heredity (developed by Walter Sutton) states that the material of inheritance is carried by the genes in the chromosomes.

    A genotype is the genetic makeup of an organism. Ex: GG, Gg, gg or BB, Bb, or bb

    A phenotype is the physical expression of the genotype or the outward expression of that trait. Ex: yellow peas.

    http://www.google.com/imgres

    http://www.google.com/imgres

  • Homozygous is having 2 of the same alleles (2 identical alleles). Ex: GG or gg

    Heterozygous is having 2 different alleles. Ex: Gg

  • Mendel’s Laws: These are the Rules of inheritance:

    1. The Law of Segregation:

    Gene pairs separate when gametes form. This means: genes (alleles) are on chromosomes; chromosomes separate during meiosis; gametes form during meiosis; therefore, genes separate when gametes form.

    2. The Law of Independent Assortment:

    When looking at 2 traits at the same time, it is seen that traits are inherited independently from each other. Gene pairs segregate into gametes randomly and independently of each other.

  • Genetics & Predictions: In genetics we use mathematical

    probability (P). If you flipped a coin what are the chances of it landing on heads? ◦ P= ½ or 50%

    If you flipped a coin 10X what would you

    expect the chances of it landing on heads? ◦ About 5 times or 50% or ½ or 1:1 (ratio)

    In science, we generally use the ratio.

  • A punnett square is used to organize & predict genetic information.

    Let’s use Mendel’s purebred purple flowers & purebred white flowers:

    PP X pp Always show the cross Set up square

    Genotype= 4Pp Always use ratios!

    Phenotype= All Purple Use WHOLE #s (no fractions)!

  • Let’s cross the F1 generation.

    Pp X Pp

    Genotype= 1PP: 2Pp: 1pp

    Phenotype= 3 purple: 1 white

    Now you have some practice problems!

  • What happens if we have a purple flower but we don’t know if it is heterozygous or homozygous? How would we figure out what it is?

    We would perform a testcross. This is a cross between a recessive organism (in this case a white flower because we know the genotype) with an organism that has an unknown genotype (the organism that is showing the dominant phenotype) in an attempt to discover the genotype of the unknown.

    If the offspring result in a recessive organism then the unknown parent must be heterozygous.

  • Variations in Inheritance:

    Complete dominance is what Mendel saw. One trait is completely dominant (expressed) over another. Either/or; dominant or recessive. Purple flowers or white flowers.

    Intermediate Inheritance:

    Not all genes are cut and dry; one allele is not always clearly dominant over another & there are not always just 2 distinct forms in nature.

    Intermediate inheritance is when the heterozygous offspring has its own trait (different than either parent). This is not seen in pea plants. This includes codominance & incomplete dominance.

  • Incomplete dominance, etc.

    https://www.youtube.com/watch?v=YJHGfb

    W55l0

    https://www.youtube.com/watch?v=YJHGfbW55l0https://www.youtube.com/watch?v=YJHGfbW55l0https://www.youtube.com/watch?v=YJHGfbW55l0https://www.youtube.com/watch?v=YJHGfbW55l0https://www.youtube.com/watch?v=YJHGfbW55l0

  • Incomplete dominance is when there is a heterozygote BUT neither the dominant or recessive allele is completely expressed. Look at snapdragons.

    A red snapdragon (RR) is crossed with a white snapdragon (rr).

    ◦ As you would expect, the F1 generation is Rr BUT they are not Red, they are PINK!

    This almost looks like the blending hypothesis, right? But it is not. Why??

    http://www.nkellogg.com/codominance.gif

  • Allow the F1 generation to self-fertilize.

    Rr X Rr

    The genotypic results are 1RR: 2Rr: 1rr

    The phenotypic results are

    1 red: 2 pink: 1 white

    The original traits are NOT lost; therefore this is NOT the blending hypothesis.

    An example of incomplete dominance in humans is hypercholesterolemia (having too much cholesterol in the blood).

    http://fig.cox.miami.edu/~cmallery/150/mendel/c14x9incomplete-dominance2.jpg

  • Codominance is seen when there are more than 2 alleles for 1 trait and 2 different dominant alleles are together but neither dominant alleles overpower the other.

    ◦ This is seen in human blood types.

    There are 4 blood types in humans: type A, type B, type AB, and type O. These are phenotypes!

    Alleles for blood types in humans are represented with the letter I.

    ◦ IA represents A, IB represents B, and i represents O.

    Codominance is human blood types is phenotypically represented by type AB and genotypically represented by IAIB.

  • http://www.biologycorner.com/resources/bloodtype_chart.gif

    http://science.uniserve.edu.au/mirror/biolproject/mende

    lian_genetics/problem_sets/monohybrid_Cross/graphic

    s/12T.gif

  • Polygenic traits are when traits are affected by more than 1 gene.

    ◦ Eye color, hair color & skin color are examples of polygenic traits.

    Multiple alleles are when there are more than 2 alleles per trait.

    ◦ Again human blood types are examples.

  • Pleiotropy is when 1 gene affects more than 1 trait. An example of this is sickle cell anemia or sickle cell disease. This affects the shape of red blood cells (RBCs).

    RBCs are normally round. ◦ In sickle cell anemia, they are

    crescent-moon shaped (sickle shaped).

    ◦ This blocks normal blood flow through blood vessels causing circulatory system damage, weakness, anemia, brain damage & other organ damage.

  • Chromosomal Theory of Inheritance

    Specific genes are located on specific

    chromosomes, or have loci

    http://www.anselm.edu/homepage/jpitocch/genbio/locus.JPG

  • Genetic Linkage Genetic linkage (or linked genes)

    genes that are located on the same chromosome.

    ◦ Generally, these genes will be inherited together.

    The closer these genes are on a chromosome, the higher the chances are that they will be inherited together.

    Thomas Morgan worked with fruit flies (Drosophila melanogaster) and discovered linked genes.

  • Sex-Linked Traits Sex chromosomes determine the sex of the organism. In

    humans, XX is female; XY is male.

    Autosomes are non-sex chromosomes.

    Sex-linked traits are genes that are located on the X or Y chromosomes. There are more genes on the X than the Y.

  • Sex-linked Traits in Humans:

    Colorblindness is recessive and found on the X chromosome.

    ◦ This is when someone cannot see red or green.

    ◦ More males suffer from this than females.

    Hemophilia is recessive and X-linked also.

    ◦ This causes excessive bleeding and no normal blood clotting.

    ◦ More males suffer from this than females.

    http://healthresources.caremark.com/Imagebank/Articles_images/Hemophilia_02.gif

  • FYI: Environmental Effects: External & internal environmental conditions

    can affect genetic expression.

    Some examples:

    Environmental temperature affects the Himalayan rabbit’s fur coat & the western white butterfly’s wing coloration for flight.

    Soil acidity affects the color of hydrangeas (acidic=blue; neutral=pink)

    Japanese Goby fish changes sex in response to social environment

  • Nature vs Nuture:

    Study of identical twins that were separated at

    birth & brought up differently revealed that

    there are genetic links between individuals.

    The results of the studies revealed that these

    twins had similar likes, dislikes, opinions, etc.