16
Partitioning Multimedia Objects for Optimal Allocation in Distributed Cornputing Systems Abstract 1 Introduction - 827 -

Partitioning multimedia objects for optimal allocation in distributed ...horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/... · oe 5 ! For a composite o1)ject with

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Partitioning Multimedia Objects for Optimal Allocation in Distributed

    Cornputing Systems

    Abstract

    1 Introduction

    - 827 -

  • - 828 -

  • 2 The Object Data Models

    - 829 -

  • - 830 -

  • 0 rleternline the allocation unit for each site within a, network cluster?

    0 determinc the ot)ject characteristics and properties thai are ~~ecessary a.nd sufficient for. cleveloping the criteria for gwera.ting t hc allocation unit,s'?

    0 determine the cffccts of local or rem0t.e accessihilities?

    0 develop the efficient algorithms and processes to a.chieve onr ohjec- tives?

    0 demonst.ra.te the rcalization of O u r clusterimtion technir~ncs?

    4 Object Creation and Allocation Requirements The objects of the models are dynamically created a.1~1 stored i l 1 t.lle systern. At. the creation of a, LIE, complex object, or a.ttrihut.e, the user or applica.tion tnust specify whether the object is limited to local access (class-L ob.icet), r ~ ~ u o t . e access (c2as.q-R abject), or hoth accesses. Otlly loca,l or remote access is legal; therefore, wl1en a.n object l m bot11 a.ccessihilities, rcmote a.ccess takes precedence.

    4.1 Creation and Allocation Requirements of MOAM Ob- jects

    t figllre

    - 831 -

  • oe 5

    !

    For a composite o1)ject with considera.ble mn1ber of DES relative t~ the nlunbcr of ta.rget. sites, the IDDA ma.y not be possible.

    - 832 -

  • A6 -. - A7 As

    A 1.4

    A1S

    Alfi

    * 1 7

    Fignre 4: A composite ollject t.0 he creat,ed.

    In the case of sllarcd ohjects, we precede ea.ch sl1a.red attrilmte with a st.ring formed from the synthol "#" a.ad the sIIa,ring ohjects.

    5 Problem Analysis

    5.1 The MOAM Objects -1s ive sta.ted previously, we must specify the degrce of allocation for cla,ss-R. o1)jwts of a. conlposil,e object for efficient a.lloca.t.ion. Since eau11 Dl; in cla.ss- K is snsceptible to concurrent multiple a,ccesses frorn any nunrher of' users, a.pplica.tions. or sites. the overwhelming motivation will he t.o u t ilizc IDDA for ew11 cla,ss-R ollject of a. composite object. The clunulativc ~l l l~nher of targpt nodes is t.he most important limiting factor for the 11t.iliza.t.ion of the 11)1).2.

    5.1.1 Inter DE and Complex Object Degrees of Allocation

    Tllcre axe certain conditions that must be sa.tisfictl for an effective utilization of eit.llcr the IDDA or IC'DA. If the number of class-H. objects il1 a. composite object is greater tllan t1he number of ta.rget, nodcs. then ~ v e cnnuol. store the composite object with IDDA. If the 1111uher of romples ol).jects in a co~nposite object exceeds the numher of nodcs, then we ca.nnot store the class-R 0bject.s of i.hc composite object with TCDA.

    - 833 -

  • - 834 -

  • 5.2.1 Utilizing Sub-graphs and Multigraphs

    - 835 -

  • - 836 -

  • 6.1.1 Partitioning for Other Degrees of Allocation I"1.om the discussions i n Section .5.1.2, we kao\r tha i in or t lc~ t.o huiltl the storage units for t11es~ tlegrees of allocation. WC mnst genemte and condine a numher of sets of J ) T k Precisely, we need to the followiag:

    1. huild the DES of ea.ch of the applicable comples object,

    2. generate conlhillations of DES of different complex o1)ject.s Imed on the degrce of aIloca.tion specifed,

    3 . selcct a, nu~ul)er of sets fronl step 2 such t.11a.t. the resultallt sets form a. valid cover for al1 the a,pplica.ble DES,

    -1. if st-ep 3 fadltd, t.11en rquest for coakscing a.nd go hack 1.0 stcp 2 until coalescing becornes impossible.

    The a.na.lysis of t h process sllo~vs tlmt the t. i lnc3 of execution is I)oanded by the nmximurn nnn1l)cr of sets generated. In otller words. if is the degrcle of alloca.tion, O#""" the number of DES i n a. given composite ohject, a,nd T ( O ) the time of pa.rtitioning O, therefore,

    - 837 -

  • - 838 -

  • Figure 7: A salnple bipa.rt.ite gra.ph a.ud optimal allocations.

  • 7.1 The ABBM Bbjects We necd to analyze t . 1 ~ axera.ge binding strengtlls within each clllster or site. l'hc esperiments consist of a, numher of composite object,s wrl~osc~ constituent nnulher of romples olj-ject.s a,nd at.trihutes are ra.ndo1nly generatcd. In t.he first case, we wa.nt to observe the distribution of abjects with respect ta ca.ch network cluster a.nd then, with respect to each site. We 11se the a.vera.ge cnnlulative binding sitrength of al1 the objects a.lloca.t,ed i n a. cluster to deter- lnine the degree of distribution. In the second case, we want. to compare Our ya.rt.itioning st.ra.tegy wit.11 commonly used met.hods, i.e., either sequent.ia.lly allocaiing ol>jects or size-bahncing allocations.

    l'igtlre 8: Object distribution (left.) and Comparative ollject distribution ( richi ).

    - 840 -

  • 8 Conclusions

    - 841 -