8
Particle physics Condensed-matter physics K. Shizuya "Graphene"

Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

Particle physics Condensed-matter physics

K. Shizuya

"Graphene"

Page 2: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

"Graphene" : monolayer of C atoms"relativistic" condensed-matter system

Electrons and holes ~ massless Dirac fermions

half-integer QHE

fermion # fractionalization , chiral anomalyzero-energy Landau levels

Exotic phemonena

How Dirac fermions appear in a cond-mat. system●

Test ●

Novoselov et al, Nature ('05)

Zhang, et al, Nature ('05)

Page 3: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

Honeycomb LatticeThe Bravais lattice is triangular andthe unit cell contains two sitesBasis vectors area1 = (

!3

2 , 12)a

a2 = ( 0 , 1 )a

The sublattices are connected byb1 = ( 1

2!

3, 1

2 )a

b2 = ( 12!

3,!1

2)a

b3 = (! 1!3, 0 )a

In the tight-binding approximation where only nearest neighbor interactions are retained,the Hamiltonian is

H = !!

A,i

"U †(A) V (A + bi) + V †(A) U(A + bi)

#

+"!

A

"U †(A) U(A)! V †(A + b1) V (A + b1)

#

where A = n1a1 + n2a2.

U : annihilation operator for electrons localized on site A; V for electrons on site B.! : hopping A" B": di!erence of energy of electrons localized on A and B.

Fourier transform

U(A) =$

!B

d2k

(2#)2eik·A U(k), V (B) =

$

!B

d2k

(2#)2eik·B V (k),

H =!

k

(U †(k), V †(k) )

%

&'" ! $(k)

! $"(k) !"

(

)*

%

&'U(k)

V (k)

(

)*

$(k) = eik·b1 + eik·b2 + eik·b3

energy: E(k) = ±+

"2 + !2|$(k)|2

one electron per unit cll per spin deg. freedom

The negative-energy states (valence band) are filled andthe positive-energy states (conduction band) are empty.

** The separation of the conduction and valence bands minimized at zeros of

1

Honeycomb LatticeThe Bravais lattice is triangular andthe unit cell contains two sitesBasis vectors area1 = (

!3

2 , 12)a

a2 = ( 0 , 1 )a

The sublattices are connected byb1 = ( 1

2!

3, 1

2 )a

b2 = ( 12!

3,!1

2)a

b3 = (! 1!3, 0 )a

In the tight-binding approximation where only nearest neighbor interactions are retained,the Hamiltonian is

H = !!

A,i

"U †(A) V (A + bi) + V †(A) U(A + bi)

#

+"!

A

"U †(A) U(A)! V †(A + b1) V (A + b1)

#

where A = n1a1 + n2a2.

U : annihilation operator for electrons localized on site A; V for electrons on site B.! : hopping A" B": di!erence of energy of electrons localized on A and B.

Fourier transform

U(A) =$

!B

d2k

(2#)2eik·A U(k), V (B) =

$

!B

d2k

(2#)2eik·B V (k),

H =!

k

(U †(k), V †(k) )

%

&'" ! $(k)

! $"(k) !"

(

)*

%

&'U(k)

V (k)

(

)*

$(k) = eik·b1 + eik·b2 + eik·b3

energy: E(k) = ±+

"2 + !2|$(k)|2

one electron per unit cll per spin deg. freedom

The negative-energy states (valence band) are filled andthe positive-energy states (conduction band) are empty.

** The separation of the conduction and valence bands minimized at zeros of

1

Tight-binding Hamiltonian

Page 4: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

!(k) = ei k·b1 + ei k·b2 + eik·b3

These occur at

q1 =4!

3a(!

32

,12) and q2 = "q1

(and all other equivalent points on the corners of the Brillouin zone).

The separation of the conduction and valence bandsminimized at zeros of

Page 5: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

In the continuum (low energy) limit (a! 0),only electron state near q1 and q2 participate in the dynamics.

(1) Near k = !q1,

H = vF

!

k

(U †, V † )"

ie!i!/3(kx!iky)!iei!/3(kx+iky)

# "U(k!q1)V (k!q1)

#

= vF

!

k

(U †e!i!/6, V †ei!/6 )"

i(kx!iky)!i(kx+iky)

# "ei!/6U(k!q1)e!i!/6V (k!q1)

#

vF =!

3!/2Dirac Hamiltonian

with !µ = ("3, i"1, i"2), and ki = (kx, ky).

!i(kx!iky)

!i(kx+iky)

"=!kx!2 + ky!1 = "0(!k1"

1 ! k2"2)

! H1 = "!0/k for "1 # ei !6 !3(U(k"q1), V (k"q1))t.

Page 6: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

Similarly, (2) Near k = q1,

Similarly, (2) Near k = q1,

H = vF

!

k

(U †, V † )"

iei!/3(kx+iky)!ie!i!/3(kx!iky)

# "U(k+q1)V (k+q1)

#

One has!

i(kx+iky)!i(kx!iky)

"= !kx!2 ! ky!1 = !2(!kx!2 + ky!1)!2

= !2!3(!k1"1 ! k2"2)!2

Let !2 = "2e!i !6 !3(U(k+q1), V (k+q1))t..

! H2 = "#0/k

Page 7: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

!i = !i!i + eAi

H =!

d2x"!†#vF "k!k + m"3 ! eA0

$!

+ #†#vF "k!k !m"3 ! eA0

$#%

!! = (!1, !2)t ! (Uk!q, Vk!q)t

!! = (!1, !2)t ! ("Vk+q, Uk+q)t

vF ! 106m/s ! c/300

field near K

field near K !

Spinor structure <ーー sublattices

band gap m! 0

Page 8: Particle physics Condensed-matter physicslunch.seminar/files/071205_shizuya.pdf · "relativistic" condensed-matter system Electrons and holes ~ massless Dirac fermions half-integer

Bilayer graphene

chiral Schroedinger eq. positive- and negative-energy states w. quadratic dispersion gapless

bilayer graphite

BABA

BA BAB B

BA

B B

B

BA

BA

A

A

AAA

A