41
PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS – 635 – 3.8 Pile-type Breakwaters Public Notice Performance Criteria of Pile-type Breakwaters Article 36 The performance criteria of the pile-type breakwaters under the variable action situations, in which the dominant actions are variable waves and Level 1 earthquake ground motions, shall be as specified in the subsequent items: (1) The risk that the axial force acting on the piles may exceed the resistance based on failure of the ground shall be equal to or less than the threshold level. (2) The risk that the stress generated in the piles may exceed the yield stress shall be equal to or less than the threshold level. [Commentary] (3) Performance Criteria of Pile-type Breakwaters Pile-type breakwaters Settings of the performance criteria and the design situations excluding accidental situations of pile- type breakwaters shall be as shown in Attached Table 19 . The performance criteria of the superstructure and curtain wall of pile-type breakwaters shall be equivalent to the settings in Article 23 through Article 27 , corresponding to the type of members comprising the objective pile-type breakwater. Attached Table 19 Settings for Performance Criteria and Design Situations (excluding accidental situations) of Pile-type Breakwaters Ministerial Ordinance Public Notice Performance requirements Design situation Verification item Index of standard limit value Article Paragraph Item Article Paragraph Item Situation Dominating actions Non- dominating actions 14 1 2 36 1 1 Serviceability Variable Variable waves Self weight, water pressure Axial force acting on piles Resistance based on failure of ground (pushing and pulling) 2 Level 1 earthquake ground motion Self weight, water pressure Yielding of piles Variable waves Self weight, water pressure Axial force acting on piles Design yield stress Level 1 earthquake ground motion Self weight, water pressure Yielding of piles [Technical Note] 3.8.1 Fundamentals of Performance Verification (1) The pile-type breakwaters can be broadly divided into curtain wall breakwaters and steel pipe pile breakwaters. The curtain wall breakwater is a permeable breakwater and was developed for use in waters with a comparatively low wave height, such as enclosed bays, or locations with soft sea bottom ground. Steel pipe pile breakwater is breakwater in which the curtain section is eliminated and waves are stopped only by the piles. (2) For curtain wall breakwaters, it is preferable to select an appropriate structure considering the coefficient of wave reflection and transmission, and when necessary, to conduct the performance verification by performing hydraulic model tests. (3) An example of the performance verification procedure for curtain wall breakwaters is shown in Fig. 3.8.1.

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–635–

3.8 Pile-type Breakwaters Public NoticePerformance Criteria of Pile-type Breakwaters

Article 36 Theperformancecriteriaof thepile-typebreakwatersunder thevariableaction situations, inwhich thedominantactionsarevariablewavesandLevel1earthquakegroundmotions,shallbeasspecifiedinthesubsequentitems:(1)Theriskthattheaxialforceactingonthepilesmayexceedtheresistancebasedonfailureoftheground

shallbeequaltoorlessthanthethresholdlevel.(2)Theriskthatthestressgeneratedinthepilesmayexceedtheyieldstressshallbeequaltoorlessthan

thethresholdlevel.

[Commentary]

(3)PerformanceCriteriaofPile-typeBreakwaters①Pile-typebreakwaters

Settingsoftheperformancecriteriaandthedesignsituationsexcludingaccidentalsituationsofpile-typebreakwatersshallbeasshowninAttached Table 19. Theperformancecriteriaofthesuperstructureandcurtainwallofpile-typebreakwatersshallbeequivalenttothesettingsinArticle 23throughArticle 27,correspondingtothetypeofmemberscomprisingtheobjectivepile-typebreakwater.

Attached Table 19 Settings for Performance Criteria and Design Situations (excluding accidental situations) of Pile-type Breakwaters

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionsNon-

dominatingactions

14 1 2 36 1 1 Serviceability Variable Variablewaves Selfweight,waterpressure

Axialforceactingonpiles

Resistancebasedonfailureofground(pushingandpulling)

2 Level1earthquakegroundmotion

Selfweight,waterpressure

Yieldingofpiles

Variablewaves Selfweight,waterpressure

Axialforceactingonpiles

Designyieldstress

Level1earthquakegroundmotion

Selfweight,waterpressure

Yieldingofpiles

[Technical Note]

3.8.1 Fundamentals of Performance Verification

(1)Thepile-typebreakwaterscanbebroadlydividedintocurtainwallbreakwatersandsteelpipepilebreakwaters.Thecurtainwallbreakwaterisapermeablebreakwaterandwasdevelopedforuseinwaterswithacomparativelylowwaveheight,suchasenclosedbays,orlocationswithsoftseabottomground.Steelpipepilebreakwaterisbreakwaterinwhichthecurtainsectioniseliminatedandwavesarestoppedonlybythepiles.

(2)Forcurtainwallbreakwaters,itispreferabletoselectanappropriatestructureconsideringthecoefficientofwavereflectionandtransmission,andwhennecessary,toconducttheperformanceverificationbyperforminghydraulicmodeltests.

(3)AnexampleoftheperformanceverificationprocedureforcurtainwallbreakwatersisshowninFig. 3.8.1.

Page 2: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–636–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Verification of cross-sectional forces in superstructure

Variable situation in respect of wavesand Level 1 earthquake ground motion

Accidental situation in respect of Level 2earthquake ground motion,

tsunamis, and waves

Verification of joints between curtain wall and piles

Verification of stress and axial force in piles

Verification of cross-sectional forces in superstructure

Verification of stress and axial force in piles

Determination of layout

Determination of design conditions

Assumption of cross-sectional dimensions

Evaluation of actions

Determination of cross-sectional dimensions

Verification of structural members

*2

Performance verification Performance verification

*1

*1:Becauseassessmentoftheeffectsofliquefactionisnotshown,separateconsiderationisnecessary.*2:Forfacilitieswheredamage to thefacilitiescanbeassumedtohaveaserious impacton life,property,andsocialactivity, it is

preferabletoconductverificationforaccidentalsituationswhennecessary.Verificationforaccidentalsituationsinrespectofwavesshallbeconductedincaseswherefacilitieshandlinghazardouscargoesarelocateddirectlybehindthebreakwateranddamagetotheobjectivefacilitieswouldhaveacatastrophicimpact.

Fig. 3.8.1 Example of Performance Verification Procedure for Pile-type Breakwaters

(4)Thecurtainwallbreakwaterscanbebroadlydividedintothesingle-curtain-walledtypeandthedouble-curtain-walledtype,dependinghowtheso-calledcurtainwallsuchasconcreteplatesisarrangedrelativetothedirectionofwavepropagation.Furthermore,avarietyoftypesareconceivable,dependingontheshapeofthepilestructuresupportingthecurtainwallortheshapeofslitsprovidedinthecurtainwall.Examplesofthecrosssectionsofpile-typebreakwatersareshowninFig. 3.8.2.

Page 3: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–637–

Curtain Pile

(a) Single-curtain-walled breakwater (vertical pile-type)

(b) Single-curtain-walled breakwater (coupled pile-type)

(c) Double-curtain-walled breakwater (rigid frame type)

(d) Double-curtain-walled breakwater (coupled pile-type)

Fig. 3.8.2 Examples of Cross Sections of Pile-type Breakwaters

(5)Curtainwallbreakwatersgenerallyhavethefollowingfeatures.

① The reflectioncoefficient canbe reduced soas to the same level as in thebreakwaters coveredwithwave-dissipatingblocksorless.

② Exchangeofseawatercanbeexpectedbytidesandwavespassingthroughslitsprovidedinthecurtainwallorthegapbetweentheloweredgeofthecurtainwallandtheseabed.

③Comparingthesingle-curtain-walledandthedouble-curtain-walledbreakwaters,becauseanenergydissipatingeffect can be expected between the front and the back curtain walls with the double-curtain-walled typebreakwater,reflectedwavesandtransmittedwavescanbereducedincomparisonwiththesingle-curtain-walledbreakwaters.

④ Becausethevelocityofflowspassingunderthecurtainwallisquitehigh,itisnecessarytotakeappropriatecountermeasurestopreventorsuppresswashing-outofsand.

3.8.2 Actions

Itisnecessarytosetthewaveforceactingonthecurtainwallbreakwatersbasedontheresultsofhydraulicmodeltests,numericalanalysis,orappropriatecalculationformulas.Whenusingthesingle-curtain-walledbreakwater,theresultobtainedbysubtractingthewavepressuredistributionactingdeeperthantheloweredgeofthecurtainwallfromthewavepressuredistributionshowninPart II, Chapter 2, 4.7 Wave Pressure and Wave Forcecanbeusedasthewaveforceactingonthecurtainwall.

3.8.3 Setting of Basic Cross Section

(1)Thestructuraltypeandtheshapeofcurtainwallbreakwatersshallbedeterminedconsideringtheconditionofseastatesinthearea,thetargetreflectioncoefficient,thetargettransmissioncoefficientandconstructability.

(2)Insettingthecrosssectionofthecurtainwallbreakwaters,includingthecrownheight,thedepthofthelowerendofthecurtainandthesizeoftheslitsprovidedinthecurtain,andinthecaseofthedouble-curtain-walledbreakwaters,andthespacingbetweenthecurtainwalls,itispreferabletosetthecrosssectionbasedonmodeltestsadapted to theconditions. It ispreferable that thedimensionsofmemberssuchas thecurtainwall,andpilesbedeterminedappropriatelyconsideringthespacingbetweenthepilesinthedirectionofthebreakwaterextension.

(3)Examplesofmodeltestsforthesingle-curtain-walledbreakwatersinclude,forexample,modeltestsbyMorihiraetal.57)ThedepthofthelowerendofthecurtainwallcanbeobtainedfromFig. 3.8.3ifthewavetransmissioncoefficientisdetermined,andthecrownheightofthecurtainwallcanbeobtainedfromFig. 3.8.4.Provided,

Page 4: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–638–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

however,thatthecrownheightofthecurtainin Fig. 3.8.4wascorrectedsothatR/H=1.25atd/h=1.0,anddoesnotshowacrestcapableofcompletelypreventingwaveovertopping.Inthefigure,disthedepthofthelowerendofthecurtain,histhewaterdepth,Listhewavelength,Risthecrownheightofthecurtain,andHisthewaveheight.TherelationshipwiththewavereflectioncoefficientofwavesbyasinglecurtainwallisshowninFig. 3.8.5.

(4)In steel pipe pile breakwaters, if the steel pipes are drivenwith a space between the piles, the structure canfunctionasapermeabletypebreakwater.AccordingtotheresearchbyHayashietal.,53)therelationshipbetweenthepilespacing/pilediameterratiob/DandthecoefficientofwavetransmissionγTisasshowninFig. 3.8.6. Themomentduetowaveforcedecreasesasthespacingbetweenthepilesisincreased,butthiseffectreachestothelimitataroundb/D=0.1.Withthistypeofbreakwater,cautionshouldalsobepaidregardingscouringofthegroundbetweenthepiles.

1.0

0.680

0.6 0.8 1.0d/h

0.4

0.8

0.6

0.4

0.2

0 0

0.340

0.235

0.170

0.1410.097

h/L=0.078

0.2

=Tr

ansm

itted

wav

e he

ight

(HT)

In

cide

nt w

ave

heig

ht (H

I)W

ave

heig

httra

nsm

issi

on c

oeff

icie

nt

Fig. 3.8.3 Relationship between d/h and Coefficient of Wave Transmission (Single Curtain Wall)

Fig. 3.8.4 Calculated Curve of Crown height (Single Curtain Wall)

Page 5: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–639–

0.6 0.8 1.0d/h

0.40 0.20

20

40

60

80

100

:h/L=0.235: =0.097

Ref

lect

ion

Coe

ffic

ient

Kr (

%)

Fig. 3.8.5 Relationship between d/h and Wave Reflection Coefficient (Single Curtain Wall)

Test Values

Hayashi, etc.Theoretical valueby Wiegel

WiegelHayashi, etc.

b/D h:water depth

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0h/H1=5

h/H1=4

γ T( =HT/H

I)

Fig. 3.8.6 Relationship between Ratio of Pile Spacing/Pile Diameter and Coefficient of Wave Transmission 53)

Page 6: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–640–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

3.9 Breakwaters with Wide Footing on Soft Ground[Commentary]

(1)BreakwaterswithWideFootingonSoftGround(pilefoundation)Becausebreakwaterswithawidefootingonsoftgroundwithapilefoundationareastructuraltypewhichhastherespectivestructuralfeaturesofthegravity-typebreakwaterandthepile-typebreakwater,theperformancecriteriaforbreakwaterswithwidefootingonsoftgroundareequivalenttotherespectivesettingsinthePublicNotice,Article35PerformanceCriteriaforGravity-typeBreakwatersandArticle36PerformanceCriteriaforPile-typeBreakwaters.

[Technical Note]

3.9.1 Fundamentals of Performance Verification

(1)Breakwaterswithwidefootingonsoftground(hereafter,softlandingbreakwaters)resistagainstthehorizontalwaveforceby thepilesandthecohesionbetweenthebottomof thebreakwaterbodyandthesurface layerofthecohesivesoil. Ontheotherhand,thebottomslabandfootingresistagainsttheverticalforce.Ingeneral,becausethistypeofstructureisdevelopedforconstructionofbreakwatersonsoftcohesivesoil,therearecaseswherethistypeiseconomicallyadvantageousbecausetheweightofthebreakwaterbodycanbereducedandsoilimprovementisnotrequired.

(2)ExamplesofthecrosssectionsofsoftlandingbreakwatersareshowninFig. 3.9.1.Althoughstructuraltypescanbebroadlydividedintothe“flatbasetype”andthe“flatbasetypewithpiles,”theflatbasetypewithpilesisgenerallyused.

Soft groundSoft ground

Steel pilesSteel piles

Soft groundSoft ground

(a) Flat base type/inverted T type

(b) Flat base type with piles/inverted π type

Fig. 3.9.1 Examples of Cross Sections of Soft Landing Breakwaters

(3)Becausethesoftlandingbreakwaterisconstructeddirectlyonsoftground,itisaffectedbyscouringbywavesandwatercurrentsintheareaaroundthebreakwaterbody.Therefore,appropriatecountermeasuresshallbetakenasnecessary.

Page 7: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–641–

3.10 Floating Breakwaters Public NoticePerformance Criteria of Floating Breakwaters

Article 37 Theperformancecriteriaoffloatingbreakwatersunderthevariableactionsituation,inwhichthedominantactionisvariablewaves,shallbeasspecifiedinthesubsequentitems:(1)Theriskofcapsizingofthefloatingbodyshallbeequaltoorlessthanthethresholdlevel.(2)Theriskofimpairingtheintegrityofthemembersofthefloatingbodyshallbeequaltoorlessthanthe

thresholdlevel.(3)Theriskthatthestressgeneratedinmooringlinesmayexceedtheyieldstressshallbeequaltoorless

thanthethresholdlevel.(4)Theriskoflosingthestabilityduetotractiveforceactingonthemooringanchorshallbeequaltoor

lessthanthethresholdlevel.

[Commentary]

(1)PerformanceCriteriaofFloatingBreakwaters①Settings in connectionwith theperformance criteria and thedesign situation excluding accidental

situationsoffloatingbreakwatersshallbeasshowninAttached Table 20.

Attached Table 20 Settings in Connection with Performance Criteria and Design Situations (excluding accidental situations) of Floating Breakwaters

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionsNon-

dominatingactions

14 1 2 37 1 1 Serviceability Variable Variablewaves Selfweight,wind,waterpressure,watercurrents

Capsizingoffloatingbody

Limitvalueforcapsizing

2 Integrityofmembers

-

3 Yieldingofmooringlines

Designyieldstress

4 Stabilityofmooringanchor,etc.

Resistance (horizontal andvertical)ofmooringanchor

②Stabilityofmooringanchor(serviceability)Mooringanchorisacollectivetermforequipmentplacedonthesurfaceoftheseabottomtofixthefloatingbody.Concretely,inadditiontothemooringanchors,sinkersarealsoincluded.

[Technical Note]

3.10.1 Fundamentals of Performance Verification

(1)Floatingbreakwatersarebreakwatersinwhichtransmittedwavesarereducedbymooredfloatingbody.Althoughtheshapesofthefloatingbodyincludemanytypes,thepontoontypeiswidelyused.

(2)AnexampleoftheperformanceverificationprocedureforfloatingbreakwatersisshowninFig. 3.10.1.

(3)Thefloatingbreakwatershavevariousadvantages,includingthefactthattheydonotpreventmovementofseawaterandlittoraldrift,theyarenotaffectedbytidallevelschangesorgroundconditions,andtheyaremoveable.However, they also have numerous problems, in that they allow large transmittedwaves, their effects differremarkablydependingonthecharacteristicsofwaves,theycanonlybeusedinlocationswithsmallwavesduetotheirlimitedwaveresistance,andthemechanismofresistanceoftheanchorsystemagainstrepeatedimpulsiveactionsisnotadequatelyunderstood.Furthermore,becausethereisadangerofsecondarydamageduetodriftingofthefloatingbodyifthemooringlinesbreak,appropriatemeasuresshouldbetaken.

Page 8: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–642–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Performance verification of mooring lines, anchor, etc.

Performance verification of body section(floor slab, bottom slab, side walls and bulkheads)

Verification of capsizing and transmission coefficient

Performance verification of anchorand mooring line attachment parts

Variable situation in respect of waves

Performance verification of mooring lines and anchor

Performance verification of body section(floor slab, bottom slab, side walls and bulkheads)

Accidental situation in respect oftsunamis and waves

Determination of layout

Determination of design conditions

Assumption of cross-sectional dimensionsincluding draft and freeboard

Evaluation of actions

Determination of cross-sectional dimensions

Verification of joints and attachment parts

*1

Performance verificationPerformance verification

*1:For facilitieswheredamage to the facilitiescanbeassumed tohavea serious impacton life,property,andsocialactivity, it ispreferabletoconductverificationforaccidentalsituationswhennecessary.Verificationforaccidentalsituationsinrespectofwavesshallbeconductedincaseswherefacilitieshandlinghazardouscargoesarelocateddirectlybehindthebreakwateranddamagetotheobjectivefacilitieswouldhaveacatastrophicimpact.

Fig. 3.10.1 Example of Performance Verification Procedure for Floating Breakwaters

3.10.2 Setting of Basic Cross Section

Thelayoutandtheshapeofthefloatingbreakwatersshouldbesetsothattherequiredharborcalmnesscanbeobtained.Indeterminingthesesettings,itispreferabletomeasurethewavetransmissioncoefficientbyconductinghydraulicmodel tests. As theoretical analysismethods, Ito et al.59) proposedanapproximationmethod for themotionof a2-dimensionalrectangularfloatingbody,andIijima60)proposedatheoryinconnectionwithfreefloatingbodies.

3.10.3 Performance Verification

(1)TheperformanceverificationofmooringsystemcanbeconductedreferringtoPart II, Chapter 2, 4.9 Actions on Floating Body and its Motions.

(2)Mooring-relateddesigncanbedividedintotwostages:

① Firststageinwhichthetensionsthatwillbeexertedonmooringlinesandsinkersaredeterminedthroughstaticanddynamicanalysesbyassumingvariousconditionsconcerningmooring-relatedmatterssuchasthemooringmethodandlinelength.

Page 9: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–643–

② Secondstageinwhichdetaileddesignoftheactualmooringlinesandsinkersiscarriedoutandthestabilityisconfirmed,basedonthetensionsandotherfindingsinthefirststageabove.

(3)Dynamicanalysisofthemooringlinesconsistsofdeterminingthefluctuatingtensionanddisplacementthatarisefromthemotionsoffloatingbody.Thisanalysiscanbeclassifiedintothefollowingtwoprocedures:

①Methodstoanalyzethesefactorsbasedonthestaticmooringcharacteristics.

②Methodstoanalyzethesefactorsbasedonthedynamicresponsecharacteristicsofmooringlines.

(4)Theperformanceverificationforthemooringanchorisequivalenttothatforfloatingpiers.Inadditiontoreferringto Chapter 5, 6.4 Performance Verification,Reference62)canalsobeusedasareference.

(5)Thestructureofthefloatingbodyofafloatingbreakwatershallpossessadequatesafetyasawhole,andshallalsopossessadequatelocalstrength.Withstructureshavingarelativelylonglengthrelativetotheirwidthanddepth,suchasfloatingbreakwaters,itisgenerallypreferabletoexaminethefollowingpoints.Longitudinal strength: The cross-sectional forces such as longitudinal flexural moment, shearing force andtorsionalmomentinthepermanentsituationandunderactionofwavesshallbeobtainedforthefloatingbodyasawhole.Lateral strength: The cross-sectional forces such as flexural moment and shearing force in the directionperpendiculartothelongitudinalaxisunderactionofwavesshallbeobtainedforthefloatingbodyasawhole.Localstrength:Thecross-sectionalforcessuchasflexuralmomentandshearingforcegeneratedinindividualwallpanelsandgirdersshallbeobtained.

(6)Longitudinalstrengthcalculationmethodsaredividedintotwocategories,oneofwhichconsidersfloatingbodymotions,whileotherthatdoesnot.Amongcalculationmethodsthatdonotconsiderfloatingbodymotions,theMullerequation, thePrestressedConcreteBargeStandards,andtheVeritusRulearefrequentlyused. Ontheotherhand,theUeda'sformulae63)isusedasacalculationmethodthatdoestakeintoaccountthefloatingbodymotions.AcomparisonofthemethodsofbothcategoriesiscitedintheReferences63),whichcanbereferredtowhenapplyingthecalculations.

(7)Theperformanceverificationforthestabilityofthefloatingbodyisequivalenttothatforfloatingpier.Chapter 5, 6.4 Performance Verification canbeusedasareference.Forotherconceptsinconnectionwiththeverificationofstabilitywheninundated,Reference64)canbeusedasareference.

References

1) Yoshioka,T.andT.Nagao:Level-1reliability-baseddesignmethodforgravitytypebreakwaters,ResearchReportofNationalInstituteforLandandInfrastructureManagementNo.20,p.28,2005

2) Nagao,t.:Reliabilitybaseddesignwayforcaissontypebreakwaters,Jour.JSCENo.689/I-57,pp.173-183,20013) Yoshioka,T.andT.Nagao:Codecalibrationofpartialcoefficientofexternalstabilityofgravitytypebreakwater,Proceedings

ofOffshoreDevelopment,JSCE,Vol.21,pp.779-784,20054) KOBAYASHI,M.,MasaakiTERASHI,KunioTAKAHASHI,KenjirouNAKASHIMAandH.Kotani:ANewMethodfor

CalculatingtheBearingCapacityofRubbleMounds,Rept.ofPHRIVol.26No.2,pp.371-411,19875) Honda,N.,T.Nagao,T.Yoshioka,T.Okiya,K.YasudaandH.Nakase:Analysisofbearingcapacityfailureofrubblemound

bydistinctelementmethod,ProceedingsofOffshoreDevelopment,JSCE,Vol.21,pp.981-986,20056) Nagao,T.,R.ShibazakiandR.Ozaki:OrdinaryLevel-onereliabilitydesignmethodofwharvesforminimizingexpected

totalcostconsideringeconomiclosses,ProceedingsofStructuralEngineering,JSCE,Vol.51A,pp.389-400,20057) SHIMOSAKO,K.andShigeoTAKAHASHI:ReliabilityDesignMethodofCompositeBreakwaterusingExpectedSliding

Distance,Rept.ofPHRIVol,37,No.3,pp.3-30,19988) Tanimoto,K.,K.FurukawaandH.Nakamura:slidingfluidresistanceforceofuprightpartofcompositetypebreakwaters

andmodelofsliderateestimation,ProceedingsofCoastalEng.,JSCE,Vol.43,pp.846-850,19969) Kim,T-M.andT.Takayama:ComputationalImprovementforExpectedSlidingDistanceofaCaisson-TypeBreakwaterby

IntroductionofaDoubly-TruncatedNormalDistribution,CoastalEngineeringJournal,Vol.45,No.3,pp.387-419,200310) Kim,T-M.andT.Takayama:EffectofCaissonTiltingonSlidingDistanceofaCaisson,AnnualJournalofCivilEngineering

intheOcean,Vol.20,pp.89.94,200411) Takahashi,S.,K.Shimosako,M.HanzawaandJ.Sugiura:Stabilityverificationofbreakwatersandperformancedesign-new

designmethodwave-resistantstructureincoastalseaareas,ProceedingsofOffshoreDevelopment,JSCE,Vol.16,pp.415-420,2000

12) StudyStatusReviewsubcommittee,CoastalEngineeringCommittee,JSCE:Newestimationofwavesandfuturedesignmethodforcoastalfacilities,pp.222-223,2001

13) Gouda, Y. : Selection of distribution of extremes in reliability design of breakwaters and its influence, Proceedings ofOffshoreDevelopment,JSCE,Vol.17,pp.1-6,2001

14) GodaY.:Performance-baseddesignofcaissonbreakwaterswithnewapproachtoextremewavestatistics,CoastalEngineering

Page 10: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–644–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Journal,JSCE,Vol.43No.4,PP.289-316,200115) Gouda,Y. : Foot expansion rangeparameter of distribution functions of extremewaves related to designwaves and its

meaning,ProceedingsofCoastalEngineering,JSCE,Vol.49,pp.171-175,200216) Shimosako,K.andK.Tada:Examinationonthedeterminationofallowablesliderateforperformance-basedverification

typedesignmethodforcompositebreakwaters,ProceedingsofCoastalEngineering,JSCE,Vol.50,pp.766-770,200317) Yoshioka,T.,T.NagaoandY.Moriya:Studyondeterminationmethodofpartialcoefficientofcaissontypeofbreakwaters

consideringslidingrate,ProceedingsofCoastalEngineering,JSCE,200518) Moriya,Y.,A.Washio andT.Nagao:Level-one reliability designmethodbasedon sliding rate of caissonbreakwaters,

ProceedingsofCoastalEngineering,JSCE,Vol.50,pp.901-905,200319) Yoshioka,T.,T.Sanuki,T.NagaoandY.Moriya:StudyonLevel-one reliabilitydesignmethodbasedonsliding rateof

caissonbreakwatersconsideringextremewavedistribution,ProceedingsofCoastalEngineering,JSCE,Vol.51,pp.851-855,2004

20) Takeda, H., T. Hirano and K. Sasaki: Effect of reinforcement of caisson breakwaters by concrete cubes and rubbles,ProceedingsofAnnualConferenceofJSCE,Part3,JSCE,pp.11O-111,1976

21) Kikuchi,Y.,H.SinsyaandS.Eguchi:Effectsoftheback-fillingtothestabilityofacaisson,Rept.ofPHRIVol.37No.2,pp.29-58,1998

22) KouichiYamada,ShinyaEguchi,HiroshiShinsha,YoshiakiKikuchi:Effectsoftheback-fillingtothestabilityofacaisson,Proc.ofISYokohama,pp.393-406,2000

23) Nagao,T.andR.Ozaki:Earthquake-resistantdesignofcaissonbreakwaters,ProceedingsofStructuralEngineering,JSCE,Vol.50A,pp.217-228,2004

24) Ozaki,R.andT.Nagao:Studyonearthquake-resistantperformanceofcaissonbreakwaterswithfrictionenlargementmats,ProceedingsofOffshoreDevelopment,JSCE,Vol.20,pp.155-160,2004

25) NagoyaPort andAirportTechnicalSurveyOffice,Chu-buRegionalDevelopmentBureau:Simpleestimationmethodofsettlementofstructures,ReportofNagoyaPortandAirportTechnicalSurveyOffice2004,2005

26) Kagawa,M.andT.Kubo:Experimentalstudyonstabilityofrublespouredsandmastic,Proceedingsof12thConferenceonCoastalEng,.JSCE,1965

27) Tanimoto,K.,T.Yagyu,T.Muranaga,K.ShibataandY.Goda:StabilityofArmorUnitsforFoundationMoundsofCompositeBreakwatersDeterminedbyIrregularWaveTests,Rept.ofPHRIVo1.21,No.3,pp.3-42,1982

28) Kimura,K.,Y.Mizuno,K.Sudo,S.Kuwahara andM.Hayashi:Damage characteristics of rubblemoundof compositebreakwatersattheendofbreakwateralignmentandestimationmethodofstableweight,ProceedingsofCoastalEngineering,JSCE,Vol.43,pp.806-810,1996

29) Ozaki,N.,Y.Kougami,K.Matsuzaki,K.TazakiandT.Nishikawa:Modelingofdeflectiondeformationofasphaltmatandscoringexperiment,Proceedingsof32ndConferenceonCoastalEngineering,JSCE,pp.450-454,1985

30) Kihara,T.,M.Kai,M.Torii,N.Mochizuki:Countermeasureforscoringinfrontfootofbreakwaters,Proceedingsof35thConferenceonCoastalEngineering,JSCE,pp.402-406,1988

31) Suzuki,K.andS.Takahashi:Anexperimentonsettlementofblokesofwaveabsorbingblockarmouredbreakwater-scoringofunderlayerofmoundandblocks,ProceedingsofCoastalEngineering,Vol.45,pp.821-825,1998

32) MORIHIRA,M., ShusakuKAKIZAKI andToruKIKUYA:Experimental study onwave force damping effects due todeformedartificialblocks,Rept.ofPHRIVol.6,No.4,pp.1-31,1967

33) Kougami,Y.andK.Tokikawa:ExperimentalStudyonwavepressuredissipatingeffectofwaveabsorbingworksduringconstructionstage,ReportofPublicWorksResearchInstitute(PWRI),HokkaidoRegionalDevelopmentBureau(HRDB),Vol.53,pp,81-95,1970

34) Ozaki,R.T.NagaoandR.Shibazaki:OrdinaryLevel-onereliabilitydesignmethodofportfacilitiesbasedonminimumexpected total cost considering economic losses, Proceedings of Structural Engineering, JSCE,Vol. 51A, pp. 389-400,2005

35) Yoshioka,T.,T.NagaoandY.Moriya:Level-one reliabilitydesignmethodbasedon slide rateofwaveabsorbingblockarmouredbreakwaters,ProceedingsofOffshoreDevelopment,JSCE,Vol.20,pp.191-196,2004

36) Yoshioka,T.,T.SanukiandY.Moriya:Level-onereliabilitydesignmethodbasedontheslidingrateofwaveabsorbingblockarmouredbreakwaterconsideringextremewavedistribution,ProceedingsofOffshoreDevelopment,JSCE,Vol.21,pp.761-766,2005

37) Yoshioka,T.andT.Nagao:StudyonthestabilityofwaveabsorbingblocksduringconstructionstageutilizingLCCevaluationmethod,ProceedingsofOffshoreDevelopment,JSCE,Vol.22,pp,703-708,2006

38) Miyawaki, S. and T. Nagao: A study on determination of partial coefficient of gravity type breakwater having pluralstructuralcharacteristics-anexampleofsloping topcaissonbreakwatercoveredwithwaveabsorbingblocks,-TechnicalNoteofNationalInstituteofLandandInfrastructureManagement(NILIM),No.350,2006

39) Suzuki,K.andS.Takahashi:Anexperimentonsettlementofblocksofwaveabsorbingblockarmouredbreakwater-scoringofunderlayerofmoundandblocks,ProceedingsofCoastalEngineering,Vol.45,pp.821-825,1998

40) Gomyo,M.,K.Sakai,T.Takayama,K.TerauchiandS.Takahashi:Surveyofpresentsituationofthestabilityofblocksofwave-absorbing-blockarmouredbreakwater,ProceedingsofCoastalEngineering,JSCE,Vol.42,pp.901-905,1995

41) Gomyou,M.,S.Takahashi,K.SuzukiandY.Kang:Surveyofpresentsituationofthestabilityofblocksofwave-absorbing-blockarmouredbreakwater(SecondReport),ProceedingsofCoastalEngineering,JSCE,Vol.44,pp.,961-965,1997

Page 11: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–645–

42) Takeda, H., Y. Akatsuka and T. Kawaguchi: Hydraulic characteristics of block type upright wave absorbing structure,Proceedingsof23rdConferenceonCoastalEngineering,JSCE,pp.120-123,1976

43) YAGYU,T.andMiyukiYUZA:Acompilationoftheexistingdataofup-rightbreakwaterwithwavedissipatingCapacity,TechnicalNoteofPHRINo.358,p.314,1980

44) Yoshioka,T.,T.Nagao,A.WashioandY.Moriya:Reliabilityanalysisonexternalstabilityofspecialtypegravitybreakwaters,ProceedingsofCoastalEngineering,JSCE,Vol.51,pp.751-755,2004

45) Jarlan,G.E.:Aperforatedverticalwallbreakwater,TheDockandHarbourAuthority,Vol.41No.488,PP.394-398,196146) Hosokawa,T.,E.Miyoshi andO.Kikuchi:Experiments onHydraulicCharacteristics andAerationCapacity of theSlit

CaissonTypeSeawall,TechnicalNoteofPHRINo.312,p.23,197947) Morihira,M.,H.SasajimaandS.Kubo:Fish reef effectofperforatedwall,Proceedingsof26thConferenceonCoastal

Engineering,JSCE,pp.348-352,197948) CoastalDevelopmentInstituteofTechnology:TechnicalManualforNew-typebreakwaters,199449) TANIMOTO,K., andYasutoshiYOSHIMOTO:Theoretical andExperimentalStudyofReflectionCoefficient forWave

DissipatingCaissonwithaPermeableFrontWall50) Hosoyamada,T.,S.TakahashiandK.Tanimoto:Applicabilityofsloping-topbreakwaterinisolatedislands,Proceedingsof

CoastalEngineering,JSCE,Vol.41,PP.706-710,199451) Sato,T.N.Yamagata,M.Furukawa,S.TakahashiandT.Hosoyamada:Hydrauliccharacteristicsofsloping-topbreakwaters

armouredwithwave-absorbingblocks-DevelopmentofanewstructuraltypeofbreakwatersindeepwaterareainNahaPort-,ProceedingsofCoastalEng.JSCEVol.39,pp.556-560,1992

52) Nakata,K.,T. Ikeda,M.Iwasaki,Y.KitanoandT.Fujita:Hydraulicmodelexperimentofsloping-topbreakwater in thecourseoffieldconstructionwork,,Proceedingsof30thConferenceonCoastalEngineering,JSCE,pp.313-316,1983

53) Hayashi,T.,T.Kano,M.SiraiandS.Hattori:Hydrauliccharacteristicsofcylindricalpermeablebreakwater,Proceedingsof12thConferenceonCoastalEngineering,JSCE,pp.193-197,1965

54) Nagai,S.,T.KuboandK.Okinawa:Fundamentalstudyonsteelpipebreakwater‘IseReport),Proceedingsof12thConferenceonCoastalEngineering,JSCE,pp.209-218,1965

55) Nakamura,T,H.Kamikawa,T.KounoandK.Kimoto:Structuraltypeofcurtainwallbreakwaterthatmakesthereductionoftransmitandreflectedwavespossible,ProceedingsofCoastalEngineering,JSCE,Vol.46,pp.786-790,1999

56) Okiya,T.,T.Sakakiyama,M.Shibata,O.NakanoandY.Okuma:Characteristicsofwaveforceoncurtainwallstructurehavingpermeablelowerportion,ProceedingsofOffshoreDevelopment,Vol.46,pp.791-795,1999

57) Morihira.M.,S.KakizakiandY.Goda:Experimentalinvestigationofcurtain-wallbreakwater,Rept.ofPHRIVol.3No.1,1964

58) ShimonosekiportandAirportTechnicalSurveyOffice,Kyu-shuRegionalDevelopmentBureauHomePage:DesignManualforbreakwaterswithwidefootingonsoftground(Draft),http:〃www.gityo.gojp/,2005

59) Itou,Y.andS.Chiba:AnApproximateTheoryofFloatingBreakwaters,Rept.ofPHRIVol11No.2,pp.43-77,197260) Ijima, T.,M. Tabuchi and Y. Yumura:Motions of Rectangular-cross-section floating body due to wave action and the

transformationofwaves,ProceedingsofJSCE,No.202,pp.33-48,197261) JapanInternationalMarineScienceandTechnologyFederation:FloatingBreakwaters-Presentstatusandproblems-.198762) JSCER:Guidelineandcommentaryfordesignofoffshorestructures(Draft),197363) UEDA, S., Satoru SHIRAISHI andKazuoKAI: CalculationMethod of Shear Force andBendingMoment Induced on

PontoonTypeFloatingStructuresinRandomSea,TechnicalNoteofPHRINo.505,p.27,198464) Oogushi,M:.Theoreticalnavalarchitect,Kaibun-doPublishing,1991

Page 12: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–646–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

4 Amenity-oriented BreakwatersItisnecessarytoexaminethecrownheightoftheamenity-orientedbreakwaterswhichwillbevisitedbythegeneralpublicfromtheviewpointofpublicuseandsafety,includingspray,andthewaveovertopping.

References

1) CoastalDevelopmentInstituteofTechnology:TechnicalManualfortheImprovementofPortenvironment,19912) TAKAHASHI,S.,KimihikoENDOHandZen-ichirouMURO:ExperimentalStudyonPeople’sSafetyagainstOvertopping

WavesonBreakwaters-AstudyonAmenity-orientedPortStructures(2ndRept.)-,Rept.ofPHRIVol.31No.4,1992

Page 13: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–647–

5 Storm Surge Protection Breakwaters Theperformanceverificationforstormsurgeprotectionbreakwaterscanbeconsideredequivalentto3 Ordinary Breakwaters.Inadditiontothis,thefollowingpointsneedtobeconsideredcorrespondingtothestructuraltype.

5.1 Fundamentals of Performance Verifi cation

(1) In the storm surge protection breakwaters, it is necessary to set the layout, and crown height appropriately,consideringtheeffectofthebreakwaterinreducingtheeffectsofstormsurge.

(2)Inthestormsurgeprotectionbreakwaters,inadditiontothestabilityofthefacilitiesagainsttheactionofwaves,itisalsonecessarytosecurethestabilityofthefacilitiesconsideringthecharacteristicsofattackbystormsurgessuchastheriseinthewaterlevelinsidethebreakwater.

5.2 Actions Intheexaminationofthestabilityoftheuprightsection,theriseinthewaterlevelinsidethebreakwaterduetotheinflowofthestormsurgeshallbeconsidered.Inthiscase,Part II, Chapter 2, 4 WavesandPart II, Chapter 2, 3 Tidal Levelcanbeusedasareferenceforwavesandtidallevels,respectively.

5.3 Setting of Basic Cross Section The crownheight of the storm surgeprotectionbreakwaters shall be the required height basedon appropriateconsiderationofthewavesandtidallevelsattheconstructionsite.Forwavesandtidallevels,Part II, Chapter 2, 4 WavesandPart II, Chapter 2, 3 Tidal Levelcanbeusedasareference,respectively.

References

1) JSCE:Handbookofcoastalfacilities(2009Edition),pp465-468,2000

Page 14: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–648–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

6 Tsunami Protection Breakwaters The performance verification for tsunami protection breakwaters can be considered equivalent to3 Ordinary Breakwaters.Inadditiontothis,thefollowingpointsneedtobeconsidered,correspondingtothestructuraltype.

6.1 Fundamentals of Performance Verification

(1) Itisnecessarytosetthelayoutand,crownheightofthetsunamiprotectionbreakwaters,appropriately,consideringtheeffectofthebreakwaterinreducingtheeffectsoftsunamis.

(2)Inadditiontothestabilityagainsttheactionofwaves,itisalsonecessarytosecurethestabilityofthetsunamiprotectionbreakwatersconsideringthecharacteristicsduringtsunamiattack.

6.2 Actions

(1)Fortsunamis,Part II, Chapter 2, 5 Tsunamiscanbeusedasareference.

(2)In the performance verification for tsunamis, it is preferable that the difference in thewater level inside andoutside thebreakwaterduringactionof tsunamisbeevaluatedappropriatelybasedonanumericalsimulation.Attentionshouldbepaidtothefactthatthewaterlevelbehindthebreakwaterwillnotnecessarilybethesameasthestillwaterlevel,dependingoninflowandoutflowoftsunamis.

(3)Inthecalculationoftsunamiforce,Part II, Chapter 2, 5(7) Tsunami Wave Forcecanbeusedasareference.However,becausemanypointsstillrequireclarification,itispreferabletoconfirmthewaveforcebyanappropriatemethodsuchashydraulicmodeltestsorthelike.

6.3 Setting of Basic Cross Section Itisnecessarytosetthecrownheightofthetsunamiprotectionbreakwaterstothecrownheightrequiredagainstwaveovertoppinginbothcasesofactionofwavesandtsunamisatappropriatelysettidallevels.

6.4 Performance Verification

(1) In theperformanceverificationof the tsunamiprotectionbreakwaters in theaccidental situation in respectoftsunamis,ingeneral,anexaminationshallbeperformedforthestabilityagainstslidingandoverturningoftheuprightsectionandthefailureduetoinsufficientbearingcapacityofthefoundationground.

(2)Intheexaminationofthestabilityagainstslidingandoverturningoftheuprightsectionfortsunamis,equation(6.4.1) andequation (6.4.2) canbeused. In the followingequations, thesymbolγ is thepartial factor for itssubscript,andthesubscriptsddenotethecharacteristicvalue.

① Sliding

(6.4.1)where

f :frictioncoefficientbetweenbottomofwallbodyandfoundation W :weightofbody(kN/m) PB :buoyancy(kN/m) PU :upliftforceoftsunami(kN/m) PH :horizontalwaveforceoftsunami(kN/m) γa :structuralanalysisfactor

② Overturningofbreakwaterbody

(6.4.2)where

W :weightofbody(kN/m) PB :buoyancy(kN/m) PU :upliftoftsunami(kN/m) PH :horizontalwaveforceoftsunami(kN/m) a1–a4:arm lengths of actions (see Fig. 3.1.4 of 3.1 Gravity-type Breakwaters (Composite

Breakwaters)) γa :structuralanalysisfactor

Page 15: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–649–

ThedesignvaluesofwaveforcePHdandPUdinequation (6.4.1)andequation (6.4.2)canbecalculatedusingequations(5.4)and(5.5)inPart II, Chapter 2, Section2, 5 Tsunamis.ThedesignvalueoftheweightofthebreakwaterbodyWdcanbecalculatedusingequation(3.1.4) in3.1 Gravity-type Breakwaters (Composite Breakwaters). When caissons do not have a footing, equation (3.1.5) in 3.1 Gravity-type Breakwaters (Composite Breakwaters)canbeusedincalculatingthedesignvalueofbuoyancyPBd.

(3)The examination for the failuredue to insufficientbearingcapacityof the foundationground for tsunamis isequivalent to that for variable situations in respect of waves in composite breakwaters. 3.1.4 Performance Verificationcanbeusedasareference.Provided,however,thatthepartialfactorsusedinverificationshallbeinaccordancewiththefollowing(4) Partial factors.

(4)PartialfactorsForthepartialfactorsusedintheexaminationofthestabilityagainstslidingandoverturningoftheuprightsectionandthefailureduetoinsufficientbearingcapacityofthefoundationgroundfortsunamiprotectionbreakwatersintheaccidentalsituationinrespectoftsunamis,thevaluesinTable 6.4.1canbeusedasareference.Provided,however,thatthevaluesshowninTable 6.4.1arethestandardvalueswhensettingthetsunamiforceofthelargestclassastheaccidentalactionexpectedatthelocationwherethefacilitiesaretobeconstructed.Here,incaseswhereuncertaintyisexpectedincalculationofthecharacteristicvalueofthetsunamiforce,thereareexamplesinwhich1.2issetasastructuralanalysisfactor.

Table 6.4.1 Partial Factors for use in Performance Verification of Tsunami Protection Breakwaters

γ α μ/Xk V

Sliding

γf Frictioncoefficient 1.00 – – –γPH,γPU Tsunamiforce 1.00 – – –γwl rwl=1.5 1.00 – – –

rwl=2.0,2.5 1.00 – –H.H.W.L. 1.00 – –

γWRC UnitweightofRC 1.00 – – –γWNC UnitweightofNC 1.00 – – –γWSAND Unitweightoffillingsand 1.00 – – –γa Structuralanalysisfactor 1.00orover – – –

Overturning

γPH,γPU Tsunamiforce 1.00 – – –γwl rwl=1.5 1.00 – – –

rwl=2.0,2.5 1.00 – –H.H.W.L. 1.00 – –

γWRC UnitweightofRC 1.00 – – –γWNC UnitweightofNC 1.00 – – –γWSAND Unitweightoffillingsand 1.00 – – –γa Structuralanalysisfactor 1.00orover – – –

Bearingcapacityof

foundationground

γPH Tsunamiforce 1.00 – – –γq Surchargeonslicesegment 1.00γw ’ Weightofslicesegment 1.00γtanφ ’ Groundstrength:Tangentofangleofshear

resistance1.00

γc ’ Groundstrength:Cohesion 1.00γa Structuralanalysisfactor 1.00orover

*1:α:sensitivityfactor,μ/Xk:biasofaveragevalue(averagevalue/characteristicvalue),V:coefficientofvariation.*2:RC:reinforcedconcrete,NC:non-reinforcedconcrete.*3:Changeofwaterdepthmild/steep:Gradientofseabottom<1/30/Longerthan 1/30.*4:rwldenotestheratioofthehighesthighwaterlevel(H.H.W.L.)andmeanmonthly-highwaterlevel(H.W.L.).

(5)The tsunamiprotection breakwaters are frequently constructed in locationswhere thewater is deep. In thiscase,theheightofthebreakwaterbodyisalsolarge,andthestabilityduringactionofgroundmotionbecomes

Page 16: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–650–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

aparticularproblem.Therefore,itispreferabletoexamineseismicresistancebyperformingseismicresponseanalysesconsideringthenonlinearityofthemoundmaterials.Inaddition,itisalsopreferabletoexaminethestability of themound during action of groundmotion. The performance verification of themound for thestabilityduringactionofgroundmotionisequivalenttothatforthecompositebreakwaters;3.1.4 Performance Verificationcanbeusedasareference.

6.5 Structural Details

(1)AnexperimentalstudybyTanimotoetal.1)hasconfirmedthatinthesituationwhereatsunamiflowsinthrougha narrowharbor entrance, the flowvelocitywill increase and there are produced strong vortices that exert asubstantial influence on the stability of the armor material of the submerged mound section of breakwater.Tsunamialsoexercisesstrongtractiveforcesonthebed,whicharesaidtobeevengreaterthanthosebystormsurges.Attention,therefore,mustbepaidinparticulartothereinforcementforthestabilityofthebreakwatersectionataharborentranceandtoscourpreventionworksforthefoundationground.

(2)Becausetherubblemoundbecomesthickerasthewaterbecomesdeeper,itisnecessarytopaycarefulattentiontothestabilityoftherubblemoundagainstwaveforcesandwavetransformationontheslopesurfaceoftherubblemound. Itwillalsobenecessary tomakeextra-bankingfor therubblemoundagainst largesettlementof therubblemoundbyitsownweight.

6.6 Tsunami Reduction Effect of Tsunami Protection BreakwatersRegarding theeffectof tsunamiprotectionbreakwaters,oscillationanalysisofOfunatoBay, IwatePrefecture, forboth states before and after the construction of the tsunami protection breakwaterwhenTokachi-okiEarthquakeTsunamiofMay1968occurred,wascarriedoutbasedonrecordsofthetidallevelsmeasuredinthebay2)Accordingtotheresults,thewaveheightamplificationratioM, amplitudeatbackofbay/amplitudeofincidentwaves,aftertheconstructionisreducedintheloworderoscillationfrequencywithalongperiodTwasreducedincomparisonwiththatbeforetheconstruction,asshowninFig. 6.4.1,confirmingthattsunamiprotectionbreakwatersdemonstrateatsunamireductioneffect.2)ThishasalsobeenverifiedbynumericalcalculationsbyItohetal.3)

0 10 20 30 40 50 60

1

2

3

4

5

6

Without breakwater

After constructionof breakwater

Nagasaki

Tide level observation stationTide level observation station

Tsunami protection breakwaterHosoura

Ofunato

Tide level observation station

N

Oscillation period T [min]

Wav

e he

ight

am

plifi

catio

n ra

tio M

Fig. 6.4.1 Effect of Tsunami Protection Breakwater (Case of Ofunato Bay)

References

1) TANIMOTO,K.,KatsutoshiKIMURAandKeijiMIYAZAKI:StudyonStabilityofSubmergedDikeattheOpeningSectionofTsunamiProtectionBreakwaters,Rept.ofPHRIVol.27No.4,pp.93-121,1988

2) Horikawa, K. and H. Nishimura: Performance of Tsunami breakwaters Proceedings of 16th Conference on CoastalEngineering,JSCE,pp.365-369,1969

3) ITO,Y.,katsutoshiTANIMOTOandTsutomuKIHARA:DigitalComputationontheEffectofBreakwatersagainstLong-periodWaves(4thReport)-OntheEffectofOfunatoTsunamiBreakwateragainsttheTsunamicausedbytheEarthquakeonMay16,1968.-,Rept.ofPHRIVol.7No.4,pp.55-83,1968

Page 17: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–651–

7 Sediment Control GroinsMinisterial OrdinancePerformance Requirements for Sediment Control Groins

Article 15 1TheperformancerequirementsforsedimentcontrolgroinsshallsatisfytherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismforthemitigationofsiltationinwaterwaysandbasinscausedbylittoraldriftthrougheffectivecontrolofsedimentmovement.

2Theprovisionsoftheitem(2)oftheparagraph1oftheprecedingarticleshallbeappliedcorrespondinglytotheperformancerequirementsforsedimentcontrolgroins.

Public NoticePerformance Criteria of Sediment Control Groins

Article 38 1TheprovisionsofArticle35or36shallbeappliedtotheperformancecriteriaofsedimentcontrolgroinswithmodificationsasnecessaryinconsiderationofthestructuraltype.

2 Inaddition to theprovisionsof theprecedingparagraph, theperformancecriteriaof sedimentcontrolgroinsshallbesuchthatthesefacilitiesarearrangedappropriatelysoastoenablecontroloflittoraldrift,inconsiderationoftheenvironmentalconditionsandotherstowhichthefacilitiesconcernedaresubjectedandhavethedimensionsnecessaryfortheirfunction.

[Commentary]

(1)PerformanceCriteriaforSedimentControlGroinsIntheperformanceverificationforsedimentcontrolgroins,appropriateconsiderationshallbegiventotheincreaseinearthpressureduetothesedimentationbylittoraldriftandeffectsduetorivercurrents.

[Technical Note]

7.1 General

(1)LayoutofSedimentControlGroins

① Sedimentcontrolgroinsshallbeappropriatelylocatedbyconsideringthecharacteristicsofsedimenttransport,soastoexercisetheexpectedfunctionoflongshoretransportcontrol.

② Ingeneral, thesedimentcontrolgroinson theupdriftsideof longshoresediment transport,shallbe locatedperpendicular to theshoreline in thesurfzoneandshallower,andindeeperwaters,shallbe locatedso thatlittoraldriftisdispersedtothesideoppositetheharborentrance.

③ Incaseswheresedimentcontrolgroinsareconstructedonthedowndriftsideoflongshoresedimenttransportinordertoprevententrainmentoflittoraldriftintotheharborfromtheshoreonthedowndriftsideoflongshoresedimenttransport,ingeneral,thegroinshallbeconstructedperpendiculartothecoastlineandshallalsohaveanappropriatelengthconsideringwavedirectionandwavetransformation.Provided,however,thatincaseswhereasedimentcontrolgroinalsofunctionsasabreakwater,anappropriatelayoutconsideringitsrequiredfunctionsasabreakwaterisnecessary.

④ Ifasedimentcontrolgroininrequiredinplacessuchasthevicinityofwaterwaysinsideaharbor,itshallbeconstructedinanappropriatelocationinconsiderationofthenaturalconditions.

(2)LayoutofUpdriftSideBreakwatersItispreferablethattheupdriftsidebreakwaterisextendedbeyondthesurfzoneinthedirectionperpendiculartotheshorelineinordertocausedepositionoflittoraldriftattheupdriftsideofthebreakwater(refertoFig. 7.1.1).When this extension part is short or slanted towards the downdrift side from the shoreline, the efficiency ofsedimentcatchmentattheupdriftsideisreducedandsedimentcaneasilymovealongthebreakwatertowardstheharborentrance.Whenthissectionisextendedwithaslantangletowardsthedowndriftsidefromtheshoreline,itcaneasilybecomethecauseoflocalscouringattheupdriftside.1)Intheareadeeperthanthebreakerline,thebreakwatershallbeslantedsothatitsimultaneouslystopswavesanddisperseslittoraldrifttowardtheupdriftsideoftheharborentrancewiththeaidofreflectedwavesorMach-stemwaves(refertoFig. 7.1.1).

Page 18: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–652–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Longshore sediment transport

Breaker line

Deposition

Contour lines

Reflected wavesReflected waves

Waves

Kd=1.0

Kd: Diffraction coefficient

Updrift side break water

Breakwater(Sediment control groin)

Downdrift side sediment control groin

Fig. 7.1.1 Conceptual Layout of Breakwater (Sediment Control Groin)

(3)PositionoftheDowndriftSideBreakwaterandConstructionTimeWhen the updrift side breakwater is extended beyond the extension line of the downdrift side breakwater,depositionwillstartatthedowndriftsideofthelatterbreakwater.Sandbarwillthenbeformedfromtheshoretowardtheharborentrance,anditwillcausebeacherosionat thefardowndriftshore.2) If thedowndriftsidebreakwater isextendedduringconstructionof theupdriftbreakwaterand theslant sectionof the latter isnotextended enough, remarkable local erosionmaybe caused at theharbor sideof thedowndrift breakwater, asshownFig. 7.1.2(a).Conversely,iftheextensionofthedowndriftbreakwaterisdelayed,itmaycausedepositionintheharboranderosionatthedowndriftshoreasshowninFig. 7.1.2(b).Verycarefulattentionshouldthereforebepaid to theextensionspeedofboth theupdriftanddowndrift sidebreakwaters,andcaremustbe taken tomaintaintheappropriatebalanceofextensions.

Kd=1.0

ErosionErosion

DepositionDepositionDepositionDeposition

ErosionErosion

(a) Case with rapid extension of thedowndrift-side breakwater

(b) Case with slow extension of the downdrift-side breakwater

Fig. 7.1.2 Construction Time of Downdrift Side Breakwater

(4)LengthofBreakwaterandWaterDepthatTipBecauselongshoresedimenttransportoccursmainlyinthesurfzone,itisnecessarytoextendthebreakwateroffshorebeyondthesurfzone.Insmallportswherethewaterdepthatthetipofthebreakwaterremainsinthesurfzoneduringstormyweather,itisdifficulttocompletelypreventlittoraldriftfromenteringtheport.AtmajorportsinJapan,therearemanycasesinwhichthewaterdepthatthetipofupdriftsidebreakwaterisapproximatelyequaltothemaximumdepthofthenavigationchannelsintheportconcerned.

(5)StructuralFormsofSedimentControlGroinBecause the required functionof a sediment controlgroin is to stop sediment transportfirmly, inprincipal asedimentcontrolgroinshouldhaveanimpermeablestructure.Whererubblestonesorconcreteblocksareusedtobuildasedimentcontrolgroinaroundtheshoreline,thecoreistobefilledwithquarryrunorsmallstonesofupto100to200kg;therearealsocaseswheretheharborsideofthesedimentcontrolgroiniscoveredwithimpermeablematerials such as sandmastic asphalt. In the following situations, it is preferable to adopt thestructureofwave-dissipatingtypes.

①Whenthereisalargeconcernaboutscouringbycurrents.

②Whenthereareconcernsofshoalingcausedbyreflectedwavesorofcausingobstructiontothenavigationofships.

Page 19: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–653–

7.2 Performance Verification

(1)CrownHeightofSedimentControlGroinAlthoughitispreferableforsedimentcontrolgroinsnottoallowovertoppingofwavestopreventtheinflowofsuspendedsediment,therearealsocaseswhereovertoppingispermittedduetostructuralconstrainsorbyreasonsofconstructioncosts.Thecrownheightshouldbedeterminedbytakingthefollowingintoconsiderations:

① SectionaroundshorelineItispreferablethatthecrownheightofthesectionaroundtheshorelineofsedimentcontrolgroinsbesufficientlyhighastopreventovertoppingbyrunning-upwaves.Becausesandcarriedbyrunupwavesmayovertopthecrestofthesectionaroundshorelineofthesedimentcontrolgroin,thecrestshouldbesufficientlyhigh.Itispreferabletoraisethecrownheightorextendthegroinitselftothelandwarddirection,inviewofconditionsafterconstruction.

② SectionslocatedshallowerthanthebreakerlinedepthThecrownelevationofthesedimentcontrolgroininthesectionslocatedshallowerthanthebreakerlinedepthmaybe0.6H1/3abovethemeanmonthly-highestwaterlevel(HWL),whereH1/3shouldbethesignificantwaveheightaroundthetipofsedimentcontrolgroin.

③ SectionslocateddeeperthanthebreakerlinedepthThecrownelevationofthesedimentcontrolgroininthesectionslocateddeeperthanthebreakerlinedepthshouldbeaheightthatisobtainedbyaddingacertainmargintothemeanmonthly-highestwaterlevel.Inthewaterdeeperthanthebreakerzone,thesuspendedsedimentisconcentratedneartheseabedandovertoppingwatercontainsalmostnosediment,andthereforeovertoppingmaybepermitted.

References

1) Tanaka, N: Transformation of sea bottom and beach near port constructed within the beach, Proceedings of AnnualConference,pp.1-46,1974

2) SATO,S.,NorioTANAKAandKatsuhiroSASAKI:TheCaseHistoryonVariationofSeaBottomTopographyCausedbytheConstructionWorksofKashimaHarbour,Rept.ofPHRIVol.13No.4,pp.3-78,1974

3) Nakase,A.,T.OkumuraandM.Sawaguchi:Easy-to-understandFoundationworks,KajimaPublishing,p.376、1981

Page 20: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–654–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

8 SeawallsMinisterial OrdinancePerformance Requirements for Seawalls

Article 16 1Theperformancerequirementsforseawallsshallbeasspecifiedinthesubsequentitemsforthepurposeofprotectingthelandareabehindtheseawallinconsiderationofitsstructuretype.(1)SeawallsshallsatisfytherequirementsspecifiedbytheMinisterofLand,Infrastructure,Transportand

Tourismsoastoenableprotectionofthelandareabehindtheseawallconcernedfromwavesandstormsurges.

(2)Damageduetoselfweight,earthpressure,variablewaves,andLevel1earthquakegroundmotions,and/orotheractionsshallnotimpair thefunctionsoftheseawallconcernedandshallnotadverselyaffectitscontinueduse.

2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancerequirementsforseawallsintheplacewherethereisariskofseriousimpactonhumanlives,property,and/orsocioeconomicactivitybythedamagetotheseawallconcernedshallincludethesubsequentitems,inconsiderationofthetypeofseawall.(1)Theperformancerequirementsforaseawallwhichisrequiredtoprotectthelandareabehindtheseawall

concernedfromtsunamisoraccidentalwavesshallbesuchthattheseawallsatisfytherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismsoastoenableprotectionofthelandareabehindtheseawallconcernedfromtsunamisoraccidentalwaves.

(2)Damageduetotsunamis,accidentalwaves,Level2earthquakegroundmotions,and/orotheractionsshallnothaveaseriousimpactonthestructuralstabilityoftheseawallconcerned,evenincaseswherethe functions of the seawall concerned are impaired. Provided, however, that for the performancerequirementsforaseawallwhichrequiresfurtherimprovementofitsperformanceduetoenvironmental,socialand/orotherconditions towhich theseawallconcerned is subjected, thedamagedue tosaidactions shallnot adverselyaffect the restoration throughminor repairworkof the functionsof theseawallconcerned.

Public NoticePerformance Criteria of Seawalls

Article 39 1TheprovisionsconcerningthestructuralstabilityinArticle49throughArticle52excludingtheprovisionsconcerningshipberthingandtractionbyshipsshallbeappliedwithmodificationsasnecessary to theperformancecriteriaofseawallsinconsiderationofthetypeofstructure.

2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancecriteriaofseawallsshallbeasspecifiedinthesubsequentitems:(1)Theseawallshallbearrangedappropriatelysoastoenablecontrolofwaveovertoppinginconsideration

oftheenvironmentalconditionsandotherstowhichtheseawallsconcernedaresubjectedandshallhavethedimensionsnecessaryfortheirfunction.

(2)Underthevariableactionsituationinwhichthedominantactioniswaterpressure,theriskoflosingthestabilityduetoseepagefailureofthegroundshallbeequaltoorlessthanthethresholdlevel.

(3)Inthecaseofthestructurehavingaparapet,theriskofslidingandoverturningoftheparapetunderthevariableactionsituationinwhichthedominantactionsarevariablewavesandLevel1earthquakegroundmotionsshallbeequaltoorlessthanthethresholdlevel.

3Inadditiontotheprovisionsoftheprecedingtwoparagraphs,theperformancecriteriaoftheseawallsintheplacewherethereisariskofseriousimpactonhumanlives,property,orsocioeconomicactivitybythedamagetothefacilitiesconcernedshallbeasspecifiedinthesubsequentitems:(1)Seawallswhicharerequiredtoprotectthehinterlandfromtsunamisoraccidentalwavesshallhavethe

dimensionsasnecessaryforprotectionofthehinterlandfromtsunamisoraccidentalwaves.(2)Undertheaccidentalactionsituationinwhichthedominantactionsaretsunamis,accidentalwaves,or

Level2earthquakegroundmotions,thedegreeofdamageowingtothedominantactionsshallbeequaltoorlessthanthethresholdlevelcorrespondingtotheperformancerequirements.

Page 21: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–655–

[Commentary]

(1)PerformanceCriteriaforSeawalls①Commonperformancecriteriaforseawalls

ThesettingsinconnectionwiththeperformancecriteriaanddesignsituationsexcludingaccidentalsituationsforthestabilityofthefacilitiesofseawallsshallbeasshownintheAttached Table 21.Intheperformancecriteriaforseawalls,inadditiontotheseprovisions,thesettingsinconnectionwiththePublic Notice, Article 22, Item 3 (ScouringandSandWashingOut)andArticle 28 Performance Criteria of Armor Stones and Blocksshallapply,asnecessary,anddependingonthetypeofmemberscomprisingtheobjectiveseawall,thesettinginconnectionwithArticle 23through Article 27 shallalsoapply.

Attached Table 21 Settings for Performance Criteria and Design Situations (excluding accidental situations) of Stability of Facilities Common to Seawalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

16 1 2 39 2 2 Usability Variable Waterpressure Selfweight Seepagefailureofground

Limitvalueforseepagefailure

3 Variablewaves Selfweight,earthpressure,waterpressure

Slidingoroverturningofparapet*1)

LimitvalueforslidingLimitvalueforoverturning

Level1earthquakegroundmotion

Selfweight,earthpressure,waterpressure

LimitvalueforslidingLimitvalueforoverturning

*1):Limitedtostructureshavingparapets.

②Seawallsasfacilitiesagainstaccidentalincidents(a)Stabilityoffacilities(safety,restorability)1) Thesettingsinconnectionwiththeperformancecriteriaanddesignsituationslimitedtoaccidental

situationsof seawallsdesignedas facilities against accidental incidents shallbe as shown in theAttached Table 22.Inperformanceverificationofseawallsasfacilitiesagainstaccidentalincidents,amongthesettingsinconnectionwiththeperformancecriteriaanddesignsituationsfortheaccidentalsituationsofLevel2earthquakegroundmotion,tsunamis,andaccidentalwaves,valuesshallbesetappropriately corresponding to the structural type of the objective seawall and the performancerequirementsoftheobjectiveseawall. TheitemssafetyandrestorabilityarespecifiedintheperformancerequirementsintheAttached Table 22becausetheperformancerequirementswilldifferdependingonthefunctionsrequiredintheobjectiveseawalldesignedasfacilitiesagainstaccidentalincidents. Asperformancecriteriainconnectionwithaccidentalsituationsforseawallsdesignedasfacilitiesagainstaccidentalincidents,inadditiontotheseprovisions,thesettingsinconnectionwiththePublic Notice Article 22 Performance Criteria Common to Structural Members shallalsoapplyasnecessary.

Attached Table 22 Settings for Performance Criteria and Design Situations limited to Accidental Situations for Seawalls as Facilities against Accidental Incidents

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

16 1 2 39 3 2 Safety,restorability

Accidental Level2earthquakegroundmotion(Tsunami)(Accidentalwave)

Selfweight,earthpressure,waterpressure

Damage –

*1):Limitedtostructureshavingparapets.

Page 22: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–656–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2) DegreeofdamageInsettingthelimitvalueofthedegreeofdamageforaccidentalsituationsinwhichthedominatingactionsareLevel2earthquakegroundmotion,tsunamis,andaccidentalwavesintheperformanceverificationsofseawallsasfacilitiesagainstaccidentalincidents,considerationshallnotbelimitedtothefunctionsoftheobjectiveseawall,butshallalsoincludecomprehensiveconsiderationsoftheconditionofimplementationofthesurroundingprotectivefacilitiesfortheharborandotherfacilitiesforprotectionofthehinterland,andsoftcountermeasuresrelatedtodisasterreductionanddisasterpreventionintheobjectiveregion.Inseawallsusedasfacilitiesagainstaccidentalincidentsinwhichrestorabilityisaperformancerequirement,appropriateconsiderationshallbegiventotheallowablerestorationperiodwhensettingthelimitvalueofthedegreeofdamage.

3) AccidentalsituationinwhichdominatingactionistsunamiIntheperformanceverificationsinconnectionwithtsunamis,incaseswheretheexpectedtsunamioccursasaresultofanearthquakewithahypocenterlocatedneartheobjectivefacilities,appropriateconsiderationshallbegiventothefactthatthefacilitieswillbeaffectedbytheactionofthegroundmotioncausedbytheobjectiveearthquakebefore theyareaffectedbytheactionof the tsunami.In otherwords, in caseswhere the dominating action is the accidental situation associatedwithtsunamis,itisnecessarytoconducttheperformanceverificationfortsunamisbasedonconsiderationoftheeffectscausedbytheactionofthegroundmotionwhichprecedesatsunami.ItshouldbenotedthatthegroundmotionwhichprecedesthetsunamiwhichisexpectedinthiscaseisnotnecessarilyidenticalwiththeLevel2earthquakegroundmotion.

References

1) ShoreprotectionfacilityTechnicalCommittee:Technicalstandardsandcommentaryforshoreprotectionfacilities,JapanPortAssociation,2004

Page 23: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–657–

9 Training JettiesMinisterial OrdinancePerformance Requirements for Training Jetties

Article 17 1Theperformance requirements for training jetties shallbe such that the requirements specifiedby theMinisterofLand,Infrastructure,TransportandTourismaresatisfiedforthepreventionofclosureofarivermouthbylittoraldriftthrougheffectivecontrolofsedimenttransport.

2Theprovisionsoftheitem(2)oftheparagraph(1)ofArticle14shallbeappliedcorrespondinglytotheperformancerequirementsfortrainingjetties.

Public NoticePerformance Criteria of Training Jetties

Article 40 TheprovisionsofArticle38shallbeappliedtotheperformancecriteriaoftrainingjettieswithmodificationsasnecessary.

[Commentary]

(1)PerformanceCriteriaofTrainingJettiesThe settings in connectionwith thePublic Notice, Article 38 Performance Criteria of Sediment Control Groins shallbeappliedwiththenecessarymodificationstotheperformancecriteriaoftrainingjetties.Intheperformance verifications of training jetties, appropriate consideration shall be given to the increase of earthpressureduetosedimentationoflittoraldriftandtowavesandrivercurrents.

[Technical Note]

9.1 General

(1)LayoutofTrainingJettiesExamplesofthelayoutoftrainingjettiesinrelationtothedirectionoflongshoresedimenttransportareshowninFig. 9.1.1.1)Themostpreferableoneformaintainingthewaterdepthofrivermouthistoextendtwoparalleltraining jetties, because a single training jetty alone is not effective. Where two training jetties of differentlengthsareputinplace,usuallyitiseffectivetomakethetrainingjettyonthedowndriftsidelonger.Bendingtheupdrifttrainingjettytowardsthedowndriftsidewillpreventsedimentmovingintotheareabetweentwotrainingjettiesandmakethesedimenttransportedalongshorepasssmoothlytothedowndriftside.Foractualexamplesofrivermouthimprovement,refertothereference2).

(2)WaterDepthatTipofTrainingJetties

① Thewaterdepthatthetipofatrainingjettyshouldbeequaltoorgreaterthanthewaterdepthofthewaterwayinthevicinityofthetrainingjetty.

② Thetipofthetrainingjettyshouldbelocatedatequaltoorgreaterwaterdepththanthelimitingwavebreakerdepth.

Page 24: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–658–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

A narrow but deepgut is preserved

A narrow but deepgut is preserved

Longshoresediment transport

Longshoresediment transport

Longshoresediment transport

Longshoresediment transport

Longshoresediment transport

Grows shallow

Grows shallow

River mouth will movetowards the downdrift side

Fig. 9.1.1 Varieties of Training Jetty Layout 1)

9.2 Performance Verification Becausethetrainingjettyisgenerallylongerthangroinsandisexposedtointensivewaveactions,itisnecessarytoconsiderscouringatthetipandsidesofajetty.Inaddition,itshouldbeconsideredthattheriversideofthetrainingjettywillbesubjecttoscouringactionbytherivercurrent.

References

1) JSCE:HandbookofCivilEngineering,(Vol.2),pp.2268-2270,1974

Page 25: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–659–

10 FloodgatesMinisterial OrdinancePerformance Requirements for Floodgates

Article 18 1Theperformancerequirementsforfloodgatesshallbeasspecifiedinthesubsequentitemsforthepurposeofprotectingthehinterlandofthefloodgatefrominundationandofdrainingunnecessaryinlandwater.(1)FloodgatesshallsatisfytherequirementsspecifiedbytheMinisterofLand,Infrastructure,Transport

andTourismforpreventionofoverflowduetostormsurges.(2)FloodgatesshallsatisfytherequirementsspecifiedbytheMinisterofLand,Infrastructure,Transport

andTourismforprotectionofthehinterlandfrominundationandfordrainageofunnecessaryinlandwater.

(3)Damagedue toselfweight,waterpressure,variablewaves,Level1earthquakegroundmotions,orotheractionsshallnotimpairthefunctionsofthefloodgateconcernedandnotaffectitscontinueduse.

2 Inaddition to theprovisionsof theprecedingparagraph, theperformance requirements forfloodgateswhichhaveariskofhavingaseriousimpactonhumanlives,property,and/orsocioeconomicactivitybythedamagetothefloodgateconcernedshallincludethesubsequentitemsinconsiderationofthetypeoffloodgate.(1)In the performance requirements for a floodgatewhich is required to protect the hinterland of the

floodgateconcernedfromtsunamisoraccidentalwaves,thefloodgateshallsatisfytherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismsoastoenableprotectionofthehinterlandofthefloodgateconcernedfromoverflowsbytsunamisoraccidentalwaves.

(2)Thedamageduetotsunamis,accidentalwaves,Level2earthquakegroundmotions,orotheractionsshallnothaveaserious impacton thestructuralstabilityof thefloodgateconcerned,evenincaseswhere the functions of the floodgate concerned are impaired. Provided, however, that as for theperformancerequirementsforfloodgateswhichrequirefurtherimprovementintheperformanceduetoenvironmental,social,orotherconditionstowhichthefloodgatesconcernedaresubjected,thedamageduetosaidactionsshallnotaffecttherestorationthroughminorrepairworksofthefunctionsofthefloodgateconcerned.

Public NoticePerformance Criteria of Floodgates

Article 41 1Theperformancecriteriaoffloodgatesshallbeasspecifiedinthesubsequentitems:(1)Floodgatesshallbelocatedappropriatelysoastoenableprotectionofthelandbehindthefacilitiesfrom

inundationanddrainageofunnecessarywateraccumulatedthereinconsiderationoftheenvironmentalconditionsandothers towhichthefacilitiesconcernedaresubjectedandshallhavethedimensionsnecessaryfortheirfunction.

(2)Floodgatesshallhavethedimensionsnecessaryinconsiderationofstormsurges,waves,andtsunamis.(3)Underthepermanentactionsituationinwhichthedominantactionisselfweight,theriskofimpairing

theintegrityofthemembersandlosingthestructuralstabilityshallbeequaltoorlessthanthethresholdlevel.

(4)Floodgates shall satisfy the following standards under the variable action situation in which thedominantactioniswaterpressure:(a) The riskof impairing the integrityof the structuralmembers shallbeequal toor less than the threshold

level.

(b)Theriskoflosingthestructuralstabilityduetoseepagefailureofthegroundshallbeequaltoorlessthanthethresholdlevel.

(5)Floodgates shall satisfy the following standards under the variable action situation in which thedominantactionsarevariablewavesandLevel1earthquakegroundmotions:

Page 26: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–660–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

a) Theriskofimpairingtheintegrityofthestructuralmembersshallbeequaltoorlessthanthethresholdlevel.

b) Theriskoflosingthestabilityoffloodgatesystemshallbeequaltoorlessthanthethresholdlevel.2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancecriteriaoffloodgatesinwhichthereisariskofseriousimpactonhumanlives,property,orsocioeconomicactivitybythedamagetothefacilitiesconcernedshallbeasspecifiedinthesubsequentitems:(1)Floodgateswhicharerequiredtoprotectthehinterlandfromtsunamisoraccidentalwavesshallhave

thedimensionnecessarytocontroloverflows.(2)Undertheaccidentalactionsituationinwhichthedominantactionsaretsunamis,accidentalwaves,or

Level2earthquakegroundmotions,thedegreeofdamageowingtothedominantactionsshallbeequaltoorlessthanthethresholdlevelcorrespondingtotheperformancerequirements.

[Technical Note]

(1)LayoutandDimensionsofFloodgates

① LayoutIn setting the layout in the performance verifications of floodgates, it is necessary to give appropriateconsiderationtoinstallationinapositionwherethewatergatecandemonstrateitsfullwatercollectingcapacity,andtoavoidinginstallationinpositionswheresedimentswilltendtoaccumulateduetotheeffectsofwind,waves,andwatercurrents.

② StructureIn setting the structure of the transitional part of gate in the performance verifications of floodgates, it isnecessary to give appropriate consideration to the quality, shape, anddimensions of thematerials and to awatertightstructuresoastosecuretherequiredwater-tightness.

③ Cross-sectionaldimensionsInsettingtheheightandotherdimensionsintheperformanceverificationsoffloodgates,itisnecessarytogiveappropriateconsiderationtothedewateringcapacityoftheobjectivefloodgate,theeffectsoflittoraldriftandsettlementoftheground,thewaterlevelsinsideandoutsidetheobjectivewatergateandinthesurroundingground.Infloodgateswhichallowpassageofships,whensettingtheheight,appropriateconsiderationshallbegiventosettingaheightwhichwillnotimpedethepassageofships.

④ AncillaryequipmentIntheperformanceverificationsoffloodgates,itisnecessarytoexaminetheinstallationofancillaryequipmentforuseinmaintenancecontrol,suchascontrolbridges,stairs,handrails,asnecessary,soastoenablesafeandsmoothoperationandmaintenancecontrolofthegate.

References

1) ShoreProtectionFacilityTechnicalCommittee:Technicalstandardsandcommentaryforshoreprotectionfacilities,JapanPortAssociation,2004

Page 27: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–661–

11 Locks Ministerial OrdinancePerformance Requirements for Locks

Article 19 1Theperformance requirements for locks shallbeas specifiedby theMinisterofLand, Infrastructure,TransportandTourismforthepurposeofenablingthesafeandsmoothnavigationofshipsbetweenthewaterareashavingdifferentwaterlevels.

2Theprovisionsoftheitems(1)and(3)oftheparagraph(1)andtheparagraph(2)oftheprecedingarticleshallbeappliedcorrespondinglytotheperformancerequirementsforlocks.

Public NoticePerformance Criteria of Locks

Article 42 1Theprovisionsoftheprecedingarticleshallbeappliedtolockswithmodificationsasnecessary.2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancecriteriaoflocksshallbesuchthatthelocksarelocatedappropriatelysoastoenableshipstonavigatesafelyandsmoothlyinconsiderationoftheenvironmentalconditionstowhichthefacilitiesconcernedaresubjected,theutilizationconditions,andothers,andthelockshavethedimensionsnecessaryfortheirfunction.

[Commentary]

(1)PerformanceCriteriaforLocks① Safeandsmoothnavigationofships(usability)(a) Thespecificationsoflocksshallcomprisethestructureandcross-sectionaldimensionsofthelockandthe

ancillary equipment. In setting the layout and dimensions in the performance verifications of locks, thesettings in connectionwith thePublic Notice, Article 41 Performance Criteria of Floodgates shall beapplied;inaddition,appropriateconsiderationshallbegiventothenecessaryconditionsforsafeandsmoothnavigationofships.

(b)Cross-sectionaldimensionsIntheperformanceverificationsoflocks,waterdepth,width,andlengthshallbesetappropriatelyconsidering the respective clearances, based on appropriate consideration of the effects of thedimensionsandmotionofthedesignshipandtheexpectedtrafficvolume.

(c)AncillaryequipmentIn theperformanceverificationsof locks, the layoutof the ancillary equipment formaintenancecontrol,includingemergencyequipment,lightingequipment,power-relatedequipment,monitoringand instrumentation equipment, and maintenance and control equipment shall be examined, asnecessary,inordertosecuresafeandsmoothoperationoftheobjectivelock.

[Technical Note]

(1)General

① ThenamesoftherespectivepartsoflocksshallbeasshowninFig. 11.1.

Page 28: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–662–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Gate recess Effective widthof gate chamberEffective widthof gate chamber

Effective lengthof lock chamberEffective lengthof lock chamber

Effective widthof lock chamberEffective widthof lock chamber

Front gate chamber Rear gate chamber

Lock chamber

Plane view

Side viewSill height

Lock gate

Fig. 11.1 Names of Respective Parts of Lock

② Installationpositionoflocks

(a) Therearecasesinwhichlocksimposeconstraintsonthefunctionsofthesurroundingharbor,forexample,bylimitingtheareaofbasins,landdesignatedforextensionofmooringfacilities,andhinderothernavigatingshipsdependingonwhethertheinstallationpositionofthelockisappropriateornot.Thenaturalconditionsattheinstallationpositionalsohavealargeeffectonconstructioncosts.Accordingly,itispreferabletouseduecareinselectingthepositionsoflocks.

(b)Itispreferablethatinstallationoflocksonsoftgroundbeavoidedwheneverpossible.However,incaseswhereinstallationonsoftgroundisunavoidable,adequatecountermeasuresshouldbetakenforunevensettlement.Becausethefunctionsofthelockwilldeclinebysettlementofthegateatlocationswheregroundsettlementoccurs,itispreferabletoraisethecrownheightinadvanceinsuchcases.

(c) Because ship’s ingress and egressmaybecomedifficult owing to the factors such aswinds,waves, tidalcurrents,andlittoraldrift,itisoptimaltochooseacalmwaterareaforthelocklocation.Incaseswherethewaterisnotcalm,breakwatersshouldbeconstructed,ortrainingjettiesorguidingjettiesshouldbeextendedtomakethewaterzonecalminthevicinityofthelock.

(d)Thesizeandnumberofshipsthatwillpassthroughthelockarealsofactorsintheselectionofthelocation.Thatis,thelockmustbelocatedatthesitewhereasufficientlywideareaofwatercanbesecuredforanchorageandturningbasinforusebywaitingships.

(e) In addition to the above, the lock’s location must be selected with adequate consideration given to theconditionsoflandusageortrafficconditionsoftheinlandarea.

③ Sizeandshapeoflocks

(a) Thescaleofthelockchambercangenerallybesetbasedonequation (11.1).Inthiscase,appropriatevaluesshallbesetconsideringthekeelclearance,beamclearance,andlengthclearancementionedinthefollowingitems,consideringthemotionoftrafficships.

Effectivewaterdepth=Draftofshippassingthroughlock+KeelclearanceEffectivewidth=BeamofshipspassingthroughlockxNumberofshipsinparallelxBeamclearance (11.1)Effectivelength=LengthofshipspassingthroughlockxNumberofshipsinonelinexLengthclearance

(b)Generally,theclearancesforthevariousdimensionsforlocksdependupontheshipsize.Fukuda,however,hasproposedthefollowingvaluesforlocksusedbysmallships:

Clearanceforeffectivewaterdepth:0.2–1.0mClearanceforeffectivewidth: 0.2–1.2mClearanceforeffectivelength: 3–10m

Page 29: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–663–

(2)PerformanceVerification

① LockdoorsThedoorsoflocksshouldhaveastructurewhichmakesitpossibletosecuretheassumeddifferenceinwaterlevelsandtherequiredstabilityagainstactionsduetowaves,andshouldalsohaveastructurewhichsatisfiesthefollowingrequirements.

1) Itshallconsiderthescaleofthelock,timerequiredforopeningandclosing.2) Itshallbeeasytoinspectthemachinerysectionandothermovingparts.3) Itshallconsiderwearandpreventionofcorrosionofmembers.

② LockchamberThelockchambershallhaveastructureappropriatetomeettheconditionssuchasthefoundationcondition,waterleveldifferencebetweeninsideandoutsidethelockchamber,thedimensionsandnumberofshipstobeaccommodated,andthequantityofwaterchanginganddischargingofthelockchamber.

References

1) Nishihata,I.:DesignofWaterGateandLockGate,OhomPublishing,20042) Fukuda,H.:Lock,Jyo-ritsuPublishing,19553) Planning Division, The third Port Construction Bureau, Ministry of Transport: Storm surge countermeasure works (

ImprovementofLockgate)atthecoastofAmagasaki,NishinomiyaandAshiya,DisasterPreventioninPortsandHarbours,AssociationofdisasterPreventioninPortsandcoast,pp.41-45,1990

Page 30: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–664–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

12 RevetmentsMinisterial OrdinancePerformance Requirements for Revetments

Article 20 1The provisions of Article 16 shall be applied correspondingly to the performance requirements forrevetments.

2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancerequirementsforrevetmentstobeutilizedbyanunspecified largenumberofpeopleshallsatisfy therequirementsspecifiedby theMinisterofLand, Infrastructure,TransportandTourismsoas to secure the safetyof theusersof therevetmentconcerned.

12.1 Common Items for RevetmentsPublic NoticePerformance Criteria of Revetments

Article 43 1TheprovisionsofArticle39shallbeappliedtotheperformancecriteriaforrevetmentswithmodificationsasnecessary.

2 In addition to the provisions of the preceding paragraph, the performance criteria for the revetmentswhichareutilizedbyanunspecifiedlargenumberofpeopleshallbesuchthattherevetmentshavethedimensionsnecessarytosecure thesafetyofusers inconsiderationof theenvironmentalconditions towhichthefacilitiesconcernedaresubjected,andtheutilizationconditions,andothers.

[Commentary]

(1)PerformanceCriteriaofRevetments①Amenity-orientedrevetments(usability)(a)In setting the structure and dimensions in the performance verifications of amenity-oriented

revetments,considerationshallbegiventotheeffectsofwaveovertoppingandspray,preventionof slippingand fallingand falling into thewaterofusers, and smooth implementationof rescueactivitiesforuserswhohavefallenintothewater.Ancillaryequipmentsuchasfencestopreventfallingshallbeinstalledappropriately.

[Technical Note]

12.1.1 Fundamentals of Performance Verification

(1) Incaseswhereareclamationrevetmentisbuiltadjoiningtotheexistinglandarea,constructionoftherevetmentmaycausethegroundwaterleveltoriseormayresultindeteriorationofgroundwaterquality.Adequateattentionshouldbepaidtotheseaspectswhenstudyingthereclamationlayoutplanandrevetmentstructure.Itispreferabletoinvestigatetheconditionsofthegroundwaterinthelandareainadvance.Inaddition,incaseswhereitisthoughtthat reclamation revetment constructionwill causedeteriorationof thegroundwater quality, countermeasuressuchasconstructionofawatertightwallmustbeconsideredinordertoinsulatethegroundwaterofthelandfromthereclaimedarea.

(2)Inthecaseofreclamationwherealargewaterareaisenclosedbyrevetments,theopeningbecomessmallerwiththeprogressofrevetmentconstruction,andaconsiderablerapidflowoccursatclosingsectionsduetothedifferenceofwater levelsbetween the insideandoutsideof revetments. Therefore,carefulconsideration is required forstructureofrevetmentsatthefinalclosingsection,whichshouldhaveenoughstabilityagainsttheexpectedflowspeed. Theflowvelocityatclosingsectionsiscontrolledbythewaterareabeingclosed,thecross-sectionalareaoftheclosingsection,theaveragewaterdepthandthedifferenceintidallevels.Inclosingsections,itispreferablethatgroundhardeningworkbeconductedatalocationwithgoodgroundbeforetheflowvelocityincreasesasworkprogresses.Dependingontheflowvelocityattheclosingsection,therearealsocasesinwhichasubmergedweirorbroad-crestedweirisused.

Page 31: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–665–

12.1.2 Actions

(1)For the ground conditions of landfill soil, Part II, Chapter 3 Geotechnical Conditions can be used as areference.

(2)Foractionsduetogroundmotion,Part II, Chapter 4 Earthquakescanbeusedasareference.

(3)Fordynamicwaterpressure,Part II, Chapter 5, 2.2 Dynamic Water Pressure canbeusedasareference.

(4)As thewater level in reclaimed areas, twowater levels are generally set, these being thewater level in thereclaimedareaandtheresidualwaterlevel.Thewaterlevelinthereclaimedareaisusedinseepagecalculationsandtheperformanceverificationofwastewatertreatmentfacilities.Theresidualwaterlevelisthewaterlevelimmediatelybehindtherevetmentandisusedinexaminationofthestabilityoftherevetment.Provided,however,thatincaseswherethewaterlevelatpositionsneartherevetmentishigherthantheresidualwaterlevel,thedangerofcircularslipfailuremaybeunderestimatediftheresidualwaterlevelisusedintheexaminationofcircularslipfailure.Insuchcases,itisnecessarytoconducttheexaminationofthestabilityoftherevetmentforthewaterlevelinthereclaimedarea.

①WaterlevelinsidereclamationThewater level inside the reclamation area should be established by considering the stability of revetmentbothduringtheconstructionandaftercompletion,andtheinfluenceonthesurroundingwater.Regardingtheinfluenceonthesurroundingwaters,particularcautionshouldbepaidinconnectionwithovertoppingflowsduetowavesgeneratedinsiderevetmentsduringconstruction.Ifthewaterlevelinsidethereclamationareaisexcessivelyhighincomparisonwiththewaterlevelatthefrontoftherevetment,thewaterdischargeofpollutedwaterfromtherevetmentandfoundationgroundmayincrease;therefore,cautionisnecessary.Furthermore,attentionshallalsobepaidtothefactthatthewaterlevelinsidethereclaimedareawillinfluencethecostofconstructionof the revetment and the construction andmaintenancecontrol costsofwastewater treatmentfacilities.

② Residualwaterlevel

(a) Forreclamationrevetments,thestructureswithlowpermeabilityareoftenusedtoreducetotheseepageofcontaminatedwaterthroughrevetments.Forthisreason,theresidualwaterlevelbehindthemisgenerallyhigherthanthatbehindquaywallsorordinaryrevetments.

(b)Reviewingexamplesofthepastconstruction,inreclamationrevetmentswithgravity-typestructures,therearemore cases inwhich permeability is reduced by increasing the layer thickness of the levee-wideningearthorthebackfillingsandthanbyreducingthepermeabilityoftherevetmentbodyitself.Accordingly,inrevetmentsofthistype,theresidualwaterlevelusedintheperformanceverificationoftherevetmentbodyshouldbethesameasinordinarygravity-typerevetments,asthewaterleveljustbehindtherevetmentbodyshowsbehaviorsimilartothatinordinarygravity-typerevetments.

(c) For reclamationrevetmentsusingasheetpile, thereareexampleswheregroutmaterial ispoured into thesheetpilejointoradoublesheetpilestructureisusedtoincreasethewatertightness.Forthesecases,theresidualwaterlevelbehindthereclamationrevetmenttendstobehigherthanthatbehindtheordinarysheetpilequaywalls.

(5)Incaseofreclamationusingsuctiondredgers,therearecasesinwhichsuspendedsoftsoilconcentratesbehindtherevetmentandgreater-than-expectedearthpressureactsontherevetmentbody,andcasesinwhichtheactionofthewaterpressureatthebacksideofthestructureextendsasfarasthecrestoftherevetment.Therefore,itisnecessarytogiveadequateconsiderationtothesephenomenaintheperformanceverifications.

12.1.3 Performance Verification

(1) Intheperformanceverificationsofrevetments,thefollowingitemsshallgenerallybeexamined.

① Thecrownheightshallbetheheighttoenablepreservationanduseofthereclaimedlandunaffectedbywavesandstormsurges.

② Stabilityagainsttheactionsofwaves,earthpressure,etc.shallbesecured.

③Thestructureshallpreventleakageofthelandfillsoil.

④ Considerationshallbegiventotheeffectonsurroundingwaterareas,includingpreventionofoutflowofturbidwaterduringreclamationwork.

⑤ Inamenity-orientedrevetments,safeandpleasantuseofthestructurebyusersshallbepossible.

Page 32: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–666–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2)SettingofCrownHeight

① Forrevetments,anappropriatecrownheightshallbesetconsideringthewaveovertoppingquantity,tidallevelathightidesoastoenablepreservationofthelandfillbehindtherevetmentandnothinderuseoftherevetmentorthelandbehindit.

② Insettingthecrownheightofrevetments,thefollowingmethod1)canbeused.

(a) Therequiredcrownheighthdabovethedesignhighwaterleveloftherevetmentcanbesetasfollows,usingtherequiredcrownheighthcabovethewaterlevelcorrespondingtotheimportanceofthehinterland,ortherequiredcrownheighthc'consideringgroundmotionandthecrestsettlementdsduetoconsolidationobtainedfromthegroundconditions.

(12.1.1)

(b)Therequiredcrownheighthcabovethewaterlevelinequation (12.1.2)shallbeavalueobtainedbyaddingaheightallowancetothecalculatedcrownheightforthedesignwaveatthedesignhighwaterleveloftherevetment.TherequiredcrownheighthcabovethewaterlevelcanbecalculatedbysettingtheexceedenceprobabilityPforthepermissiblewaveovertoppingrate.TheexceedenceprobabilityPforthepermissiblewaveovertoppingratecanbecalculatedusingequation (12.1.2).Forthemeanvalueandthestandarddeviationofhc/hcd,1.00and0.15canbeused,respectively.

(12.1.2)

Provided,however,that

where P :exceedenceprobabilityofpermissiblewaveovertoppingrate hc :requiredcrownheightabovewaterlevel(m) hcd :calculatedcrownheightfordesignwaveatdesignhighwaterlevelofrevetment(m)

ζ : standarddeviationofln(hc/hcd);givenby

λ : meanvalueofln(hc/hcd);givenby

μ :meanvalueofhc/hcd(=1.00canbeassumed) σ :standarddeviationofhc/hcd(=0.15canbeassumed)

Equation(12.1.2)isshowngraphicallyinFig. 12.1.1.Forexample,assumingtheexceedenceprobabilityofthepermissiblewaveovertoppingrateis0.01,therequiredcrownheighthcabovethewaterlevel,whichisobtainedbyaddingaheightallowancetothecalculatedcrownheighthcd,isgivenas1.40timesthecalculatedcrownheighthcd.

Page 33: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–667–

0.0001

0.001

0.01

0.1

1

hc / hcd

Exce

eden

ce p

roba

bilit

y

1.00 1.15 1.45 1.601.30 1.75 1.90

Fig. 12.1.1 Relationship of Exceedence Probability of Permissible Wave Overtopping Rate to hc/hcd

(Required Crown height above Water Level / Calculated Crown height)

(3)Inorder to estimate thequantity of seepageof pollutedwater into the sea from reclamation revetments, it isnecessarytoperformananalysisofseepageflows.Ingeneral,Darcy’slawcanbeappliedtoseepageflowanalysis.However,aswillbediscussedbelow,thecrosssectionofarevetmentconsistsofdifferentmaterials,includingsheetpilesandconcretemembers,andbackfillingsand.Furthermore,permeabilityofsheetpileswilldifferatthejointsandinthesheetpilesthemselves.Forthisreason,therearecasesinwhichDarcy’slawcannotbeapplied. Inanalysisofseepageflowsinthiscase,itisrealistictotreatthecrosssectionoftherevetmentasastructurecomprisingmaterialstowhichDarcy’slawcanbeapplied.Therefore,itisnecessarytoconvertthecoefficientofpermeabilityandthewallwidth,applyingingenuityinordertoapplyDarcy’slawinanapproximatemanner. Inseepageflowanalysis,thescopeofanalysisextendstothepointwherethewaterlevelwithinthereclaimedareacanbeconsidereduniform.However,analysiscanbeperformedbysettingthescopecorrespondingtotherequiredaccuracy,consideringthestructureoftherevetmentbody,andconditionofbackfillingsand.Provided,however,thatcautionisnecessarywhenthepermeabilityofthelandfillsoildepositedinthereclaimedareaisitselflow,asthewaterlevelwithinthereclaimedareawillhaveasteepgradientinthelandfillsoil.

① Permeabilityofsteelsheetpilestructures

(a) The permeability of steel sheet pile structures cannot be derived fromDarcy’s law. However, it can beappliedbyusinganappropriateequivalentwidthandtheequivalentcoefficientofpermeabilityforthatwidth.Inaddition,becauseitcannotbeassuredthata laboratorytestcouldreproducethejointconditionsof theprotorypestructureinproperscale,itispreferabletousethevaluesmeasuredin-situ.

(b)Reference11) isavailableconcerningthepermeabilityofsteelsheetpile-typestructures. Itdescribes theresultofanalysestakingintoaccountthein-situmeasurementsonresidualwaterlevelsatfiveprojectsites.Intheanalyses,itwasassumedthatthesheetpilewallbelowtheseabedareimpermeableandthepartofwallabovetheseabedisequivalenttothepermeablelayerof1mthicktowhichDarcy’slawcanbeapplied.Theresultsobtainedfor thecoefficientofpermeability,equivalentcoefficientofpermeability,were in therangeof1x10-5–3x10-5cm/s.Theresultsofthesimilaranalysiscarriedoutfortwoexamplesofsteelpipepile-typequaywallwithdiameterofapproximately80cmyieldedavalueof6x10-5cm/s.Thecoefficientofpermeabilityforbackfillingmaterialoftheforegoingsurveyswasintherangeof10-2–10-3cm/s.

(c) Thepermeabilityofsheetpilejointhasthefollowingcharacteristics:Incaseswithoutbackfillingmaterial, thesheetpile joint issimilar innature toanarroworificeofabruptsectionalreduction,andcanbeexpressedinequation(12.1.3)withtheconstantn =0.512),13)

(12.1.3)where

q :flowrateperunitjointlength(cm3/s/cm) h :differenceinthewaterlevelbetweenthefrontandtherearofthesheetpile(cm) K,n :constant

Incaseswithbackfillingmaterial,thepropertyofthebackfillingmaterialgreatlyaffectsthequantityofseepagethroughthejoint.Inthevicinityofthebackfillingmaterialbehindthesheetpilejoint,thereareareasatwhichDarcy’slawcannotbeapplied.Therehasbeenanefforttoevaluatethepermeabilityasacompositejoint that includes a certain thickness of backfill and sheet pile joint. This idea is effective for seepage

Page 34: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–668–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

analysis.Shojietal.14)proposedanempiricalequationbasedonthecomprehensivetestsconsideringboththedifferenceinthedegreeoftensileforceinthejointandconditionswithorwithoutsandfilling.Fromtheresultsofthetests,forthecasethatthereisbackfillingandjointsarefilledwithsand,itwasfoundthattheconstantn couldbegivenanapproximatevalueof1.0andtheK valuerepresentingtheresultsofthetestswasderived.

② Permeabilityoffoundationground

(a) PermeabilityofnaturalgroundThepermeabilityofthenaturalgroundasawholecanbeevaluatedusingthecoefficientsofpermeabilityforeachsoillayercomprisingthenaturalground.Incalculatingthecoefficientsofpermeabilityforeachsoillayer,Part II, Chapter 3, 2.2.3 Hydraulic Conductivity of Soil canbeusedasareference.Ingroundwhichwas formedbynatural sedimentation, thecoefficientofpermeabilitydisplaysdirectionality, and inmanycases,thecoefficientofpermeabilityislargerinthehorizontaldirectionthanintheverticaldirection.

(b)PermeabilityofsoilimprovementsectionsIncaseswheresoilimprovementistobecarriedoutaspartofconstructionofareclamationrevetment,inadditiontoevaluationofthepermeabilityofthenaturalground,itisalsonecessarytoexaminethechangesinpermeabilityduetothesoilimprovement.

(c) Incasethatthefoundationismadeofrocks,carefulinvestigationsandconsiderationofpermeabilityshouldberequired,becausetherockfoundationmaycontaincracksorfissureswhichgoverntherateofseepage16)

Page 35: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–669–

12.2 Revetments with Amenity Function Ministerial OrdinancePerformance Requirements for Revetments

Article 202Inadditionto theprovisionsof theprecedingparagraph, theperformancerequirementsforrevetmentstobeutilizedbyanunspecified largenumberofpeopleshallsatisfy therequirementsspecifiedby theMinisterofLand, Infrastructure,TransportandTourismsoas to secure the safetyof theusersof therevetmentconcerned.

Public NoticePerformance Criteria of Revetments

Article 432In addition to the provisions of the preceding paragraph, the performance criteria for the revetmentswhichareutilizedbyanunspecifiedlargenumberofpeopleshallbesuchthattherevetmentshavethedimensionsnecessarytosecure thesafetyofusers inconsiderationof theenvironmentalconditions towhichthefacilitiesconcernedaresubjected,andtheutilizationconditions,andothers.

[Technical Note]

(1) Inamenity-orientedrevetments,thecrosssectionoftherevetmentshallbesetconsideringthedangerofusersfallingintothesea,andancillaryfacilitiessuchasfencestopreventfallingshallbeprovidedappropriately,asnecessary.

(2)Infacilitieswherewaveovertoppingcanbeexpectedtoreachpartswherepeoplenormallywalkduringevenhighwaveconditions,itisnecessarytoensuregeneralpublicknowledgeofthedangerbyappropriatemeanssuchassigns.

(3)Whenfacilitiesareusedbyelderlypersons,andpersonswithphysicaldisabilities,effortsmustbemadetoenablesafemovementofwheelchairswhendesigningpassagesontherevetment,thewidthandgradientofslopes.

References

1) Nagao,T.,K.FujimuraandY.Moriya2) Shibata,K.,H.UedaandK.Ohori:StudyontheDimensionsofEmbankmentandSeawall,TechnicalNoteofPHRINo.448,

19833) Sekimoto,T.,Y.MoriyaandT.Nagao:Estimationmethodforsettlementrateofslopingseawallsbasedonovertoppingrate,

ProceedingsofOffshoreDevelopment,JSCE,Vol.20,pp.113-118,20044) Nagao, T., K. Fujimura and Y. Moriya: Study on examination of performance of sea walls, Proceedings of Offshore

Development,Vol.20,pp.101-106,20045) Iai,S.,Y.MatsunagaandT.Kameoka:ParameterIdentificationforaCyclicMobilityModel,Rept.ofPHRIVol.29,No.4,

pp.27-56,19906) Higashijima,Y.,K.Fujita,K.Kazui, S. Iai,T. Sugano andM.Kitamura:Development ofChart-sype earthquake proof

Inspectionsystemforcoastalfacilities,Proceedingsof31stSimposiumonOffshoreDevelopment,JSCE,20067) JapanInstituteofConstructionEngineering:Analyticalmethodfordeformationofriverdikesduringearthquake,20028) FLIPStudyGroup:ReportofPrecisionImprovementWorkingGroup2003,20049) FLIPStudyGroup:ReportofWorkingGroupfortheexaminationofsheardeformationoflocks2004,200510) KobeTechnicalsurveyoffice,KinkiDstrictDevelopmentBureau,MinistryofLand,InfrastructureandTransport:Guideline

forChart-sypeearthquakeproofInspectionsystemforcoastalfacilities,200511) Furudoi,M.andT.Katayama:Fieldobservationofresidualwaterlevel,TechnicalNoteofPHRINo.115,197112) Kubo,K.andM.Murakami:Anexperimentonwatersealingperformanceofsteelsheetpilewall,SoilandFoundation,Vol.

11,No.2,196313) Yamamura,K,T.Fujiyama,M.InutukaandK.Futama:Experimentonwatersealingperformanceofsteelsheetpilewall,

ReportofPublicWorksResearchInstitute,Vol.123No.3,196414) Syouji,Y.,M.KumetaandY.Tomita:ExperimentsonSeepagethroughInterlockingJointsofSheetPile,Rept.ofPHRIVol.

21,No.4,pp.41-82,198215) NipponSteelCorporation:Reportofwatertightnesstestofsteelsheetpiles,196916) RockEngineeringforCivilEngineers.GihodoPublishing,pp.238-254,1975

Page 36: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–670–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

17) TechnicalCommitteeforCoastalprotectionfacilities:Technicalstandardsandcommentaryofcoastalprotectionfacilities,JapanPortAssociation,2004

18) CoastalDevelopmentInstituteofTechnology:TechnicalManualforPortenvironmentupgrading,199119) JSCEEdition:Landscapedesignofportsandharbours,Giho-doPublishing,199120) Transport EconomyResearchCenter:Guideline of the facilities for elderly and handicapped people in public transport

terminal,1994

Page 37: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–671–

13 Coastal DikesMinisterial OrdinancePerformance Requirements for Coastal Dikes

Article 21 TheprovisionsofArticle16shallbeappliedcorrespondinglytotheperformancerequirementsforcoastaldikes.

Public NoticePerformance Criteria of Coastal Dikes

Article 44 TheprovisionsofArticle39shallbeappliedtotheperformancecriteriaforcoastaldikeswithmodificationsasnecessary.

References

1) TechnicalCommitteeforCoastalProtectionFacilities:Technicalstandardsandcomment\aryofcoastalprotectionfacilities,JapanPortAssociation,pp.3-19-3-60,2004

Page 38: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–672–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

14 GroinsMinisterial OrdinancePerformance Requirements for Groins

Article 22 1TheperformancerequirementsforgroinsshallbeasspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismforthepurposeofmitigatingtheinfluenceoflittoraldriftthrougheffectivecontrolofsedimenttransport.

2Theprovisionsoftheitem(2)oftheparagraph(1)ofArticle14shallbeappliedcorrespondinglytotheperformancerequirementsforgroins.

Public NoticePerformance Criteria of Groins

Article 45 TheprovisionsofArticle38shallbeappliedto theperformancecriteriaofgroinswithmodificationsasnecessary.

[Commentary]

(1)PerformanceCriteriaofGroins①Applicationwithnecessarymodificationsofperformancecriteriaofsedimentcontrolgroins(a) Settings in connectionwith thePublic Notice, Article 38 Performance Criteria for Sediment Control

Groins shall be applied with the necessary modifications to the performance criteria of groins. In theperformanceverificationsofgroins,appropriateconsiderationshallbegiventotheeffectofincreasedearthpressureduetoaccumulationoflittoraldrift,asnecessary,andappropriateconsiderationshallalsobegiventotheeffectsofwavesandrivercurrents.

(b)Controloflittoraldrift(usability)Inthelayoutofgroins,inadditiontothepositionswheregroinsareinstalled,theirdirectionandthemutualspacingbetweengroinsshallbeconsidered. In thedimensions, thestructure,crownheight, crestwidth, and length shall be considered. In setting the layout anddimensions in theperformanceverificationsof groins, appropriate consideration shall begiven to thepredominantdirectionofwavesandwatercurrents,topography,expectedconditionsofuseoftheobjectivegroin,andtheimpactonthenaturalenvironment,etc.sothatthefacilitiescandemonstratetheirrequiredfunctionofcontrollinglittoraldrift.

(c)Layout(usability)In the layout of groins, attention shall be paid to the fact that excessive reduction of longshoresedimenttransportbyinstallationofgroinsmayincreasethepossibilityofshorelineretreatonthesurroundingcoast.

References

1) TechnicalCommitteeforCoastalProtectionFacilities:Technicalstandardsandcomment\aryofcoastalprotectionfacilities,JapanPortAssociation,pp.3-77-3-85,2004

Page 39: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–673–

15 ParapetsMinisterial OrdinancePerformance Requirements for Parapets

Article 23 The provisions of Article 16 shall be applied correspondingly to the performance requirements forparapets.

Public NoticePerformance Criteria of Parapets

Article 46 TheprovisionsofArticle39shallbeappliedtotheperformancecriteriaofparapetswithmodificationsasnecessary.

Page 40: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

–674–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

[Technical Note]

16 Siltation Prevention Facilities16.1 General

(1) Incaseswheresiltationofharborsandwaterwaysisexpected,themodeofsiltationshallbeanalyzedbasedonanadequate investigationof thepotentialcausesofsiltation,andappropriatecountermeasuresshallbe taken,consideringthevarioustypesofeffectscausedbysiltationpreventionworks,safenavigationofshipsandeconomy.

(2)CausesofSiltationCausesofsiltationarelistedbelow.

① Invasionandaccumulationoflittoraldriftmainlycausedbywavesorthatcausedbycurrents

② Settlingandaccumulationofrivererosionsediments

③ Depositionofwindblownsand

④Movementofsedimentswithintheobjectiveareaandchangeinlocationofdeposition

⑤Movementofsedimentsduetodisturbancesintheharbor,collapseofslopesinwaterways,andformationofsandwaves.

16.2 Facilities for Trapping Littoral Drift and River Erosion Sediment

(1)When it is aimed to prevent shoaling due to littoral drift bymeans ofmaintenance dredging, an appropriatefacilitytotrapthesedimentshouldbebuiltataproperlocation,atwhichthefacilitycanpreventsedimentfrominvadingtowaterwaysorbasins.Thefacilityshouldbeabletoreducethewaveactionsarounditandincreasethedredgingefficiency.Thetypeandlayoutofthesesandtrapfacilitiesispreferabletobedeterminedbytakingintoconsiderationtheircapabilitytotrapthesediment,thedredgingconditions,andtheconstructionandoperationalcosts,basedonadequateinvestigationsandresearches.

(2)FacilitiestoTraptheSedimentTransportAs themethod to trap the sediment, provisions to limit sedimentdeposition area are commonly employed invariouscountries,bymeansofbuildingadetachedbreakwaterorpartiallyreducingthecrownheightofupdriftbreakwater.Therearealsosedimenttrapssuchaspocketdredgingexecutedinthewaterwayscrossingalargesandbarintheseafloorofstraits,whichisgraduallyrestoredbynaturalprocessafterdredging.Pocketdredgingisalsodoneontheriverbed,whereshoalingoccursbyriverdischargedsediment.

(3)ProperPositioningofSedimentTrapThesedimenttrapsmaybeinstalledinareaswheredepositionoccurseasilyundernaturalconditions,asshowninFig. 16.2.1(a),(b),and(c),orartificialconditionsmaybecreatedtoencouragesedimentstosettleoutofflowswithahighconcentrationoflittoraldrift,asshowninFig. 16.2.1(d),(e),and(f).Toidentifysuitablelocationsofthistypeandcapturelittoraldriftinthemostefficientmanner,anadequateunderstandingoftheconditionandmechanismofsedimenttransportisindispensable.Furthermore,inselectingthepositionsforsedimenttraps,inadditiontosedimenttrappingefficiency,incaseswherethetrappedsedimentswillbedredged,itispreferableto give adequate consideration to dredging conditions, in otherwords, to easilymaintaining thewater depthnecessaryfornavigationofdredgersandcalmconditionsduringnavigationandwork.

Page 41: PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR ...ocdi.or.jp/tec_st/tec_pdf/tec_dw/tech_635_675.pdf · (4) The curtain wall breakwaters can be broadly divided into the single-curtain-walled

PART III FACILITIES, CHAPTER 4 PROTECTIVE FACILITIES FOR HARBORS

–675–

(a)

Sea bottom shoal Pocket dredging

Pocket dredgingWaterway

(b)

River mouth harborRiver mouth harbor

(c)

(d) (e) (f)

Submergedbreakwater

Breaking wave

Fig. 16.2.1 Positioning of Sediment Traps

16.3 Wind Blown Sand Prevention Work16.3.1 General

Wind-blownsand,i.e.,sandthatismovedbywinds,iscarriedintoharborsorwaterwayswhereitsettlesanddeposits,andcauseshoalingthere.Insomecasesitalsoaccumulatesonroadsurfacesandisdispersedintoresidentialareas,disruptingthedailylivingoftheresident.Inparticular,therearemanyinstancesthatopendiggingofduneorlandreclamationcauseproblemsrelatedtowind-blownsand,andthoroughcountermeasuresmustbepreparedinadvance.

References

1) OZASA,H.:FieldInvestigationofSubmarineSandBanksandLargeSandWaves,Rept.ofPHRIVol.14,No.2,pp.3-46,1975

2) Tanaka,K.,Y.Nakajima,H.EndouandE.Kinnai:Saboatcoast(Coastalerosioncontrol),SaboScience,CompendiumofSaboSeries,III-9,JapanSocietyofErosionControlEngineers,Ishibashi-shotenPublishing,1985

3) JSCE,CivilEngineeringHandbook,Vol.II,pp.2135-2136,1989