24
Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How far away is a point of light ? . Is it a 100-watt light bulb ? . A star as bright as the Sun ? . A galaxy of stars ? - Brightness alone is not enough. - How to measure astronomical distances ? 11 10 Stars & Elementary Astrophysics: Introduction Press F1 for Help 2 Astronomical Distances distance = speed x time light speed 0.002 s Edinburgh-St.Andrews 0.1 s Earth circumference 1.2 s Earth-Moon distance 8 min Sun-Earth 40 min Jupiter 5 hr Pluto km/s 10 3 5 × = c Stars & Elementary Astrophysics: Introduction Press F1 for Help 3 Astronomical Distances 4.3 yr nearest star (Proxima Centauri) 25,000 yr centre of our Milky Way Galaxy nearest big galaxy . (Andromeda, Messier 31, M31) nearest cluster of galaxies . (Virgo cluster) edge of visible part of Universe . (The Big Bang) yr 10 2 6 × yr 10 5 7 × yr 10 10 Stars & Elementary Astrophysics: Introduction Press F1 for Help 4 geometrical method p = parallax angle a = 1 Astronomical Unit (1 AU) = radius of Earth’s orbit around the Sun. d p a d p p d a p d a = ) angle (small tan p a Parallax Stars & Elementary Astrophysics: Introduction Press F1 for Help 5 The Parsec -new distance unit yr light 3.26 m 10 1 . 3 AU 206265 radian 180 1 " 3600 " 1 AU 1 ) 1" ( arcsec 1 16 = × = = ° × ° × = = = = p p a d p Example: Fast Method: d = 1/p For p in arcsec and d in parsec = 1 parsec (1 pc) a d p Stars & Elementary Astrophysics: Introduction Press F1 for Help 6 Bessel (1838) First parallax: 61 Cygni p = 0.29 arcsec d = 1/0.29 = 3.42 pc also in 1838: Henderson (á Centauri) . Struve (Vega) The nearest star (beyond the Sun) Proxima Centauri p = 0.76 , d = 1.31 pc. Stellar Parallaxes are tiny

Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 1

How far to a Star ?

- Fundamental problem …..

- How far away is a point of light ?

. Is it a 100-watt light bulb ?

. A star as bright as the Sun ?

. A galaxy of stars ?

- Brightness alone is not enough.

- How to measure astronomical distances ?

1110

Stars & Elementary Astrophysics: Introduction Press F1 for Help 2

Astronomical Distances

• distance = speed x time

• light speed

• 0.002 s Edinburgh-St.Andrews

• 0.1 s Earth circumference

• 1.2 s Earth-Moon distance

• 8 min Sun-Earth

• 40 min Jupiter

• 5 hr Pluto

km/s103 5×=c

Stars & Elementary Astrophysics: Introduction Press F1 for Help 3

Astronomical Distances

• 4.3 yr nearest star (Proxima Centauri)

• 25,000 yr centre of our Milky Way Galaxy

• nearest big galaxy. (Andromeda, Messier 31, M31)

• nearest cluster of galaxies. (Virgo cluster)

• edge of visible part of Universe. (The Big Bang)

yr102 6×

yr105 7×

yr10 10≈

Stars & Elementary Astrophysics: Introduction Press F1 for Help 4

geometrical methodp = parallax anglea = 1 Astronomical Unit

(1 AU) = radius of Earth’sorbit around the Sun.

d

pa

d

ppda

pda

≈=

) angle (small

tanp

a

Parallax

Stars & Elementary Astrophysics: Introduction Press F1 for Help 5

The Parsec -new distance unit

yrlight 3.26

m101.3

AU206265

radian

180

1

"3600

"1

AU1

)1"( arcsec1

16

=×=

=

°×

°×==

==

πp

ad

pExample:

Fast Method:

d = 1/p

For p in arcsecand d in parsec

= 1 parsec (1 pc)

ad

p

Stars & Elementary Astrophysics: Introduction Press F1 for Help 6

• Bessel (1838) First parallax:61 Cygni p = 0.29 arcsec ⇒ d = 1/0.29 = 3.42 pc

• also in 1838: Henderson (á Centauri). Struve (Vega)

• The nearest star (beyond the Sun)Proxima Centauri p = 0″.76 , d = 1.31 pc.

Stellar Parallaxes are tiny

Page 2: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 7

Limits of Parallax

• Ground-based CCDs 0.05” 20 pc

• Hubble Telescope 0.01” 100 pc

• Hipparcos (all sky) 0.005” 200 pcToday: Nearby Stars Only

• 2015: GAIA (whole galaxy) 10,000 pc

Stars & Elementary Astrophysics: Introduction Press F1 for Help 8

The Distance Ladder

• Different methods

• for different supernovae

• distances

• cepheid variables

• stars

• PARALLAX IS THE FOUNDATIONFOR ALL OTHER METHODS

Stars & Elementary Astrophysics: Introduction Press F1 for Help 9

Inverse Square Law

Stars & Elementary Astrophysics: Introduction Press F1 for Help 10

Luminositytime

energy=L

Units: Joule / sec = Watt (e.g. 100 W light bulb)

Solar luminosity:

Flux

Units: Watts / square metre

Sun viewed from Earth:

W108.3 26×=L sun

mW/1380 2=F sun

areatime

energy

×=F

Luminosity, Flux

Stars & Elementary Astrophysics: Introduction Press F1 for Help 11

L

Flux viewed from distance d :

d 24sphere of area π=

d

LF

24π=

d

Inverse Square Law

Stars & Elementary Astrophysics: Introduction Press F1 for Help 12

http://concam.net

Continuous sky images.fish-eye lens + CCD.

7 observatories

Sky from Australia:

Magellenic Clouds

Milky Way centre

Page 3: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 13

Magnitudes• Hipparcos (2nd century BC)

stars visible by eye:1st mag = brightest6th mag = faintest

• Herschel (1780s) 1st mag stars are100 times brighter than 6th mag stars.

• 1800s -- eye responds to flux ratiostrue flux 1 : 10 : 100perceived 1 : 2 : 3

Stars & Elementary Astrophysics: Introduction Press F1 for Help 14

Apparent Magnitude(measures apparent brightness)

• Pogson (1856). apparent magnitude:

(Vega)star mag 0 offlux

10

)/log(5.2

0

)5.2/(0

0

=

×=

−=−

F

FF

FFmm

Stars & Elementary Astrophysics: Introduction Press F1 for Help 15

Naked Eye Stars

• brightest: Sirius (mag -1.5)

• bright mag -1 1 star. 0 3. 1 11. 2 40. 3 150. 4 500. 5 1600faint mag 6 4800 stars

Stars & Elementary Astrophysics: Introduction Press F1 for Help 16

Magnitude Difference(measures brightness ratio)

)/log(5.2 2121 FFmm −=−

%)1(01.101.0

%)10(1.11.0

512.25 1001

1010

1005

/

4

1221

2121

≈≈

−<>FFmm

FFmm

Stars & Elementary Astrophysics: Introduction Press F1 for Help 17

Apparent Magnitude

• Sun m = -26.8

• full moon -12.5

• venus -4

• Sirius -1.5

• Vega 0.0

• faintest galaxiesdetected by HST +30

10mag25 10=

10mag30 12=

Stars & Elementary Astrophysics: Introduction Press F1 for Help 18

Absolute Magnitude(measures true brightness)

• m = apparent mag at distance d.• M = aparent mag at 10 pc.

• d known (e.g. parallax) for nearby stars.

( )( )

)pc10/(log5

/)10(log5.2

pc10

2)()pc10(

0

dmFpcFM

ddFF

−=−=

×=

Page 4: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 19

Absolute Magnitude• m = apparent mag at true distance d.

• M = aparent mag at 10 pc.

• d known (parallax) for nearby stars

• star m M d(pc)

• Vega 0.0 +0.5 8.1

• Sirius -1.5 +1.4 2.7

• Sun -26.8 +4.5 1/206265

• Which star is truly brighter?

Stars & Elementary Astrophysics: Introduction Press F1 for Help 20

Distance Modulus(measures distance)

( )5)pc/(log5

pc10/log5

−==−

d

dMm

Stars & Elementary Astrophysics: Introduction Press F1 for Help 21

Electromagnetic Radiation(EMR)

• EMR = Light (of any wavelength)• speed of light in vacuum (slower in air, glass,…)

• wave properties (interference,diffraction). frequency = speed / wavelength. Hz = cycles/s = (m/s) / m

• particle properties (photons). discovery by Planck (1900). photon energy :. h = Planck’s constant (6.6x10^(-34) Joule/Hz)

/sm103 8×=c

λ/cf =

fhE =

Stars & Elementary Astrophysics: Introduction Press F1 for Help 22

Thermal (Blackbody) radiation

• Characterised by temperature T.

furnacetemperature T

blackbody radiation

small hole

light reaches equilibriumwith hot walls of furnace.

Stars & Elementary Astrophysics: Introduction Press F1 for Help 23

Stellar Spectra

• Resemble blackbody spectra

• temperature T at star surface

• (hotter interior invisible)

To Earth

photon escapes

photon trapped ingas near star surface

Stars & Elementary Astrophysics: Introduction Press F1 for Help 24

Blackbody SpectraPlanck function (1900)

hot

λ wavelength

cool

1. Peak shifts

2. Area increases

First clue toquantummechanics

),( TB λ

Page 5: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 25

Wien’s Law

≈=

T

T

K 10

nm300

Km003.0

constant

4max

max

λ

λ

Stars & Elementary Astrophysics: Introduction Press F1 for Help 26

Star Colours

cool hot

Stars & Elementary Astrophysics: Introduction Press F1 for Help 27

• Sun: T ≈ 6000 K, λmax ≈ 500 nm

– intensity peak at visible wavelength

– looks yellow or white to us

• hot star: T = 12000 K, λmax ≈ 250 nm

– ultraviolet peak, looks blue

• cool star: T = 3000 K, λmax ≈ 1000 nm

– infrared peak, looks very red

Wien’s Law in action

Stars & Elementary Astrophysics: Introduction Press F1 for Help 28

Blackbody Flux

( )KKm

W

m

W

area time

energy :units

)(

4422

4

=

= TTB σ

KmW107.5

constantBoltzmann Stefan 42-8 −−×=σ

),( TB λ

Area increases with T.

λ

Stars & Elementary Astrophysics: Introduction Press F1 for Help 29

Review

TTB

T

fhEcf

c

dmMFFm

4

4max

8

0

)( :flux

K10nm300

:peakblackbody

:energyphoton

/ :frequency

s/m103 :speedlight

)pc10/(log5

)/(log5.2 :magnitudes

σ

λ

λ

=

==

×=−=

−=

Stars & Elementary Astrophysics: Introduction Press F1 for Help 30

Review

==

=

=

=

dR

Td

LF

FdL

ddTRL

RR

TTB

T

2

4

2

2

2

42

2

4

4 :flux

4 :luminosity

4:area : distance

4 :luminosity

4 :area :radius

)( : surfacestar at flux

:etemperatur

σπ

ππ

σππ

σ

TR,

F

d

Page 6: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 31

White Dwarf vs Red Giant

RR sun1 01.0=K 000,301 =T

TRLTRL

T

T

R

R

L

L

log4log2)4log(log

4

101010 42

448

2

1

4

2

1

2

2

1

.

++==

=×=

=

−−

πσσπ

RR sun2 100=

K 000,32 =T

(Earth-sized star)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 32

log L = 2 log R + 4 log T + const

Tlog

Llog100

10

R/Rsun

0.010.1

1

coolhot

faint

bright

Stars & Elementary Astrophysics: Introduction Press F1 for Help 33

Our Sun’s Future

Tlog

Llog100

10

R/Rsun

0.010.1

1

Stars & Elementary Astrophysics: Introduction Press F1 for Help 34

How a Star works

Nuclear furnace H --> He --> C, N, O, … Fe

Gravity pulls in .

Force:

RMG

F 2

2

in ~

Hot gas pushes out.

Force:

RmMTk

F ~out

K102~ 7×≈Rk

mMGTSun’s Core Temperature:

Stars & Elementary Astrophysics: Introduction Press F1 for Help 35

Our Sun’s Future

75% H, 25% He(made in the Big Bang)

H --> He

He core

envelope ejects(Planetary Nebula) envelope expands

(red giant)

He --> C,N,O,...

Ashes cool

(white dwarf)Stars & Elementary Astrophysics: Introduction Press F1 for Help 36

Planetary Nebula (PN)Planetary Nebulae (PN)

Page 7: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 37

Dumbell Nebula (M27)Dumbell Nebula (M27)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 38

Egg Nebula (polarised)Egg Nebula (polarised)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 39

NGC 3132NGC 3132

Stars & Elementary Astrophysics: Introduction Press F1 for Help 40

Hourglass Hourglass

Stars & Elementary Astrophysics: Introduction Press F1 for Help 41

Spirograph Spirograph

Stars & Elementary Astrophysics: Introduction Press F1 for Help 42

Ring (M57) Ring (M57)

Death of a Star, Birth of a White Dwarf

Page 8: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 43

300 500 700 nm

U

B V

R

I

B(λ,T)

λ

Broadband Photometry

bandpass filters

measure flux in each bandpass

)()()()()( IFRFVFBFUF

Flux ratios

e.g. F(B)/F(V)

change withtemperature T.

Stars & Elementary Astrophysics: Introduction Press F1 for Help 44

Spectrum of VegaVega Spectrum

VU

B

RI

Stars & Elementary Astrophysics: Introduction Press F1 for Help 45

Spectrum of Sun

U

B VR

I

Sun-like Spectrum

Stars & Elementary Astrophysics: Introduction Press F1 for Help 46

Colour Indices

( )

etc.) , , ,for similarly (and

)()(

)()(log5.2

:indexcolour

etc.) , , , ,for similarly (and

pc10/log5 :mag absolute

)(

)(log5.2 :magapparent

0

0

0

R-IV-RU-B

VFVF

BFBFVB

IRBU

dmM

VF

VFmV

VV

V

−=−

−=

−==

Stars & Elementary Astrophysics: Introduction Press F1 for Help 47

Theory Observation

indexcolour etemperatur

)pc10/log(5

mag absoluteluminosity

,...,,

magapparent flux

VBT

dVML

VBUF

V

−=

Stars & Elementary Astrophysics: Introduction Press F1 for Help 48

Hertzsprung-Russell (or H-R) Diagram

VB −

MV

Bluehot

Redcool

Bright

Faint

Page 9: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 49

Globular Cluster (M55)Most starsare born inStarClusters.

Samedistance,age

Stars & Elementary Astrophysics: Introduction Press F1 for Help 50

H-R Diagram

main sequence

red giants

white dwarfs

Stars & Elementary Astrophysics: Introduction Press F1 for Help 51

– light is dispersed into a spectrumusing a diffraction grating (or prism)in a spectrograph

– Fraunhofer (1815) first extensive study ofthe Sun - identified about 600 dark lines

– Fraunhofer lines - strongest named A,B,...

Spectral Analysis

Stars & Elementary Astrophysics: Introduction Press F1 for Help 52

Kirchhoff’s laws3 types of spectra

blackbody

prism

gas cloud

1. Continuous spectrum

3. Continuous +absorption-line spectrum

2. Emission-line spectrum(+ weak continuum)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 53

Kirchhoff’s laws

A hot opaque body , e.g. a hot dense gas, produces acontinuous spectrum , e.g. a “black-body” spectrum.

A hot transparent gas emits an emission-line spectrum ,bright spectral lines, sometimes with a faint continuousspectrum.

A cool transparent gas in front of a continuous spectrumsource produces an absorption-line spectrum - a series ofdark spectral lines.

(Kirchoff and Bunsen laboratory experiments, 1850s)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 54

SS Cygni - emission lines

Vega - absorption lines

Page 10: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 55

Kirchoff’s Laws

hot opaque interior,cool transparent atmosphere

hot transparent gas(accretion disc)

absorption lines

emission lines

Stars & Elementary Astrophysics: Introduction Press F1 for Help 56

– Each element / molecule absorbs and emitsonly certain specific wavelengths of light.

– Spectral lines are diagnostic of thechemical composition and

– physical conditions (temperature, pressure)

Spectral Fingerprints

Stars & Elementary Astrophysics: Introduction Press F1 for Help 57

• atoms: nucleus (protons + neutrons) + electrons

mass charge proton 1 +1 neutron 1 0 electron 1/1836 -1

atom - neutral : equal numbers of protons (+ve) and electrons (-ve)

ion - ionised : electrons removed, positive net charge

Atoms and Ions

Stars & Elementary Astrophysics: Introduction Press F1 for Help 58

• Examples:

– Hydrogen ( H ) ( 1 proton ) + 1 electron– H II ( 1p ) charge +1

– Helium (He) ( 2p + 2n ) + 2 e- 0– He II ( 2p + 2n ) + 1 e- +1– He III ( 2p + 2n ) +2

– Oxygen (O) ( 8p + 8n ) + 8 e- 0– OIII ( 8p + 8n ) + 6 e- +2– OVI ( 8p + 8n ) + 3 e- +5

Atoms and Ions

Stars & Elementary Astrophysics: Introduction Press F1 for Help 59

Atomic Energy Levels

n=1

23n

I

r

eE

nn 2

2

−=−=

orbitelectron of size

chargeproton

Potential Ionisation eV6.13

==

==

r

e

I

∞e.g. Hydrogen:

0

eV 6.131

=−=

∞E

E

Stars & Elementary Astrophysics: Introduction Press F1 for Help 60

Atomic Transitions

n=1

2

3

absorptionemission

ionisation

photon

recombination

bound-boundbound-free free-free

Page 11: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 61

• Energy change associated with each transition is

( h is Planck's constant)

higher E →→ higher frequency (shorter wavelength)photon is absorbed/emitted

• energy changes are very small– measured in ELECTRON VOLTS (eV)

1 eV == 1.602 ×× 10-19 J

λch

fhE ==

Stars & Elementary Astrophysics: Introduction Press F1 for Help 62

Energy Conservation

EEch

21 =+λ

bound-bound

vmEEch 2

12

1+=+ ∞λ

bound-free

free-free

vmch

vmch

22

2

12

1

2

1

2

1

+=

+

λ

λ

Stars & Elementary Astrophysics: Introduction Press F1 for Help 63

• Example:

– H atom• (see handout: energy level diagram)

– Energy difference between the ground state (n=1)

and the first excited state (n=2) :

in UV part of spectrum

Lyman α line (Lα)

nm6.121

J/eV)10eV)(1.602 (10.2

nm/m)10m/s)(10s)(3 J10626.6(19-

9834

××==

Ech

λ

eV2.10eV)(0.75)6.13(2

1

1

12212 ==

−×=−= IEEE

Stars & Elementary Astrophysics: Introduction Press F1 for Help 64

Lyman Series

n=1

23

αLyman β γ

nm 2.91

L ∞

Lyman continuum photons ionise H from the ground state.

Stars & Elementary Astrophysics: Introduction Press F1 for Help 65

Balmer Series

n=1

23

nm 656.3

HBalmer α Hβnm 364

H∞

Balmer continuum photons ionise from n=2

Stars & Elementary Astrophysics: Introduction Press F1 for Help 66

Balmer absorptionand emission lines

∞H βHαH

Page 12: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 67

1 1 12 2λ

= −

Rn nul

R = × −1097 107 1. m- Rydberg constant

nl - principal quantum number of lower levelnu - " " " of upper level

LYMAN series nl = 1 nu = 2, 3, 4 … UV

BALMER 2 3, 4, 5 … visible

PASCHEN 3 4, 5 … near IR

BRACKETT 4 5, 6 … IRPFUND 5 6, 7 … IR

nm2.911

=R

Rydberg formula

Stars & Elementary Astrophysics: Introduction Press F1 for Help 68

• Hydrogen is simplest.

• Multi-electron atoms have morecomplicated energy-levels.

• ions with 1 electron are like Hydrogenbut with larger Ionisation Potential dueto higher charge of nucleus

Stars & Elementary Astrophysics: Introduction Press F1 for Help 69

Ca II Fe I, II

HdHe

Line Strengths and Widths

each line has different strength (quantum mechanics)

more ions --> stronger line Stars & Elementary Astrophysics: Introduction Press F1 for Help 70

Equivalent Width

Measures line strength, NOT line width.

Same width, different equivalent width.

E.W. = width of rectangle with same area as line.

Units: nm

1

0

Stars & Elementary Astrophysics: Introduction Press F1 for Help 71

Doppler Shift .λλ= 0

λλ< 0

gapproachin 0 :dblueshifte

receding 0 :redshifted

:redshift

:ty veloci :engthrest wavel

0

0

0

0

<>

≈−=∆=

zz

cv

z

v

λλλ

λλλ

λλ >0

Doppler (1843)for sound.

Stars & Elementary Astrophysics: Introduction Press F1 for Help 72

• Example: v = 200 km s -1, λλ0 = 500 nm

• small shift, so no colour changes.

• unless v ~ c (near a black hole, or relativistic jet)

• Cosmological redshifts can be large:

• Big Bang

nm3.0nm500s km103

s km20015

1

0 =××

==∆ −

λλcv

( ) nm848)61(nm)121(10 =+=+= zλλ

K7.21100

K3000

1 0 ≈≈

+=

zT

T

Doppler Shift

Page 13: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 73

Hubble Deep Field

Typical redshift: z ~ 1

High redshift: z > 5,

UV light shifts to red wavelengths

Stars & Elementary Astrophysics: Introduction Press F1 for Help 74

Thermal Broadening

λ0

kTvm ≈2

2 random motions

of atoms

Stars & Elementary Astrophysics: Introduction Press F1 for Help 75

Rotational Broadening

λ0Stars & Elementary Astrophysics: Introduction Press F1 for Help 76

Pressure BroadeningEnergy levels shift when particles are nearby

high pressure gas

Stars & Elementary Astrophysics: Introduction Press F1 for Help 77

Zeeman ShiftEnergy levels shift and split in Magnetic field

magnetic field

Stars & Elementary Astrophysics: Introduction Press F1 for Help 78

Quantum Uncertainty“fuzzy” energy levels

short visit

-> uncertain E

sec eV 101.4 15−×=≈∆∆

h

htE

Page 14: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 79

Spectral Types

B V

O

A

G

M

OAG

M

Spectral Types

Stars & Elementary Astrophysics: Introduction Press F1 for Help 80

• Line strengths (EW ratios)change mainly due toSURFACE TEMPERATURE(hot-> high ionisation and excitationcool-> neutral atoms and molecules)

• Some line widths and ratios changewith LUMINOSITY

• Very little range of abundances (74% H + 24% He 2% everything else)

Why spectra differ

Stars & Elementary Astrophysics: Introduction Press F1 for Help 81

– 1890s first photographic spectra

– 1918-24 Henry Draper Catalogue"spectral classes" of ~ 225,300 stars !!!(star names HD 35311, HD 209458, etc)

– original classification:A,B,… R,S from simple to complex lines

– many letters later dropped or merged.

– 1920s photometry (colour indices)revealed correct temperature sequence

– confirmed by atomic physics

– 1940s Morgan & Keenan (MK spectraltypes)

Spectral Classification

Stars & Elementary Astrophysics: Introduction Press F1 for Help 82

• handout:– spectral classes provide a "short-hand"

description of the appearance of a stellar

spectrum.

Stars & Elementary Astrophysics: Introduction Press F1 for Help 83

hot cool

O B A F G K M

( "early-type" "late-type" )– sub-class 0 - 9 e.g. B0, B9, G2

Spectral Types

( Oh! Be A Fine , Kiss Me! )GirlGuy

Stars & Elementary Astrophysics: Introduction Press F1 for Help 84

hot cool

O B A F G K M

( "early-type" "late-type" )– sub-class 0 - 9 e.g. B0, B9, G2

( No Romeo, Scram )

Spectral Types

(N R S )

( Oh! Be A Fine , Kiss Me! )GirlGuy

Page 15: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 85

¬ one example of a luminosity criterion:

• H lines of Balmer series are affected stronglyby pressure broadening

• pressure gradient ∝ surface gravity of star g

(M = mass, R = radius, G = gravitational constant)

• dwarf star, small R, large g ⇒ broadened H lines

• giant star, large R (~100×), small g ⇒ narrow H lines• (handout: spectra showing luminosity effects)

g GMR

== 2

Stars & Elementary Astrophysics: Introduction Press F1 for Help 86

– main-sequence V most common

– subgiants IV

– red giants III common

– bright giants II rare

– supergiants Ia,b very rare

(blue to red)

– white dwarfs DA quite common

– DB,DO

¬

¬

Luminosity Classes

Stars & Elementary Astrophysics: Introduction Press F1 for Help 87

– e.g. Sun G2 VVega A0 V

. Betelgeuse M2 Iab

Rigel B8 Ia

Aldebaran K5 III

MK Spectral Types

Stars & Elementary Astrophysics: Introduction Press F1 for Help 88

• Multicolour Photometry

– Use filters (e.g. U B V R I )– measure flux densities : (fB, fV, ...)– apparent magnitudes : (B, V, …)– colour indices :

– absolute magnitudes (d from parallax):

( ) [ ] constantlog5.2 +−=− VB ffVB

Review

)pc10/log(5 dVM V −=

Stars & Elementary Astrophysics: Introduction Press F1 for Help 89

Mbol = absolute bolometric magnitudetotal flux over the entire spectrum.

Difficult to measure Mbol.

Easy to measure MV .

F

λ

gives MV

gives Mbol

Bolometric Magnitude

Stars & Elementary Astrophysics: Introduction Press F1 for Help 90

Spectral Types

B V

O

A

G

M

OAG

M

B.C. vs Spectral Type

Page 16: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 91

• B.C. = Mbol −− MV < 0 to make star brighter.

• Sun: MV = 4.83, B.C. = −0.14 Mbol = 4.69

• F0V B.C. = 0 (most optical)

. O5V = −3.8 (mostly UV

M8V = −4.0 mostly IR)

Bolometric Corrections

−=−

=

−−

)sun(log5.2)sun(

10 )sun()sun(

4.0

L

LMM

MML

L

bolbol

bolbol

Stars & Elementary Astrophysics: Introduction Press F1 for Help 92

• Calibrations of colour indices, temperatures,absolute visual magnitude (MV), and

(less precise) spectral types

– very well defined for most main-sequencestars (5,000 ≤ T ≤ 30,000 K)

– less so for hotter O stars (> 40,000 K)

– and cooler M stars (< 2,500 K)

(handout: example of relevant calibrations)

Calibrations

Stars & Elementary Astrophysics: Introduction Press F1 for Help 93

• The Hertzsprung-Russell (HR) Diagram

– first presented independently by H (1911)and R (1913) to show links between

spectral types (or colours) of stars andabsolute magnitudes

– now recognised as one of the mostimportant diagrams for all astronomy,

because of its importance forunderstanding the evolution (ageing) ofstars

• (handout: HR diagram)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 94

• Alternative versions of the H-R diagram:

LuminosityLor

Mbol

Temperature T

Mv

colour index (e.g. B-V)or Spectral Type

theory observations

Theory vs Observations

Stars & Elementary Astrophysics: Introduction Press F1 for Help 95

• To calculate R:

• Observe:. parallax p --> distance d=1/p.. spectral type or colour index --> T. apparent magnitude, e.g. V.

• Not highly accurate (10-50%)

424 TRL σπ=

)pc10/(log5 dMV V =− ..CBMM Vbol +=

( ))sun(/log5.2)sun( LLMM bolbol −=−

Stellar Radii

Stars & Elementary Astrophysics: Introduction Press F1 for Help 96

• Solar radius: Rsun=7x10^5 km

main-sequence stars:

R ~ 0.1 - 10 Rsun

giants: R ~ up to 100 Rsun

supergiants: red: R ~up to 1000 Rsun

blue: R ~20-50

white dwarfs: R ~ 0.01 Rsun

Typical Radii

Page 17: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 97

• Most accurate radii (<1%) from. ECLIPSING BINARY STARSand (for nearby stars). INTERFEROMETRYand (for a few stars). LUNAR OCCULTATIONS.

• Accurate R improves T via

• if distance (hence L) also known.

T LR

=

4 2

14

π σ

Accurate Radii

Stars & Elementary Astrophysics: Introduction Press F1 for Help 98

-- two stars in mutual gravitational attraction,orbiting their common centre of mass

-- only source of empirical masses for stars

-- accurate sizes, shapes, temperatures,luminosities (hence distances)

Binary Stars

Stars & Elementary Astrophysics: Introduction Press F1 for Help 99

Centre of Massa

m1 m2 a1 a2

mmm

aa

21

21 +

=

mama 2211 =

mmm

aa

21

12 +

=

primary star secondary star

Stars & Elementary Astrophysics: Introduction Press F1 for Help 100

Orbit Velocitiesa

V 1

V 2

a1 a2

Pa

VVπ2

21 =+

P = orbit period

m

m

a

a

V

V

1

2

2

1

2

1 ==

Stars & Elementary Astrophysics: Introduction Press F1 for Help 101

Elliptical Orbits

Model binary

binary1

Elliptical Orbits

Stars & Elementary Astrophysics: Introduction Press F1 for Help 102

Visual binary

Page 18: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 103

Types of Binaries• visual binary

• spectroscopic binary. SB1 SB2 lines from 1 or 2 stars

• eclipsing binary

Stars & Elementary Astrophysics: Introduction Press F1 for Help 104

Spectroscopic binary

Stars & Elementary Astrophysics: Introduction Press F1 for Help 105

Eclipsing binaryStar sizes from timing

Stars & Elementary Astrophysics: Introduction Press F1 for Help 106

Proximity Effects

ellipsoidal variations

heating effects

Stars & Elementary Astrophysics: Introduction Press F1 for Help 107

Types of Binaries

detached

semi-detached

contact

Stars & Elementary Astrophysics: Introduction Press F1 for Help 108

Binary Star with Accretion Disc

Page 19: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 109

Light curves for close binary starsComputer Models ofEclipsing Binary Stars

Stars & Elementary Astrophysics: Introduction Press F1 for Help 110

Light curve of Contact Binary

Orbital Phase

Light curve of Contact Binary

Stars & Elementary Astrophysics: Introduction Press F1 for Help 111

redder

bluer

Stars & Elementary Astrophysics: Introduction Press F1 for Help 112

Velocity curves for binary starsVelocity curve

K1

K2

Orbital Phase

Rad

ial

Vel

ocit

y

Stars & Elementary Astrophysics: Introduction Press F1 for Help 113

Orbit inclination

i = 0 for face-on orbit

i = 90 degrees for edge-on orbit

Doppler shifts measure

. K = V sin i

Stars & Elementary Astrophysics: Introduction Press F1 for Help 114

To measure masses:- visual

– radial velocity and light variations - spectroscopic- eclipsing

velocity

+

-

11

4

2

2

34

orbitalphase(time)

C of M×

4

1

1

2

2

3

3

4

radial velocity curves

Page 20: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 115

Masses

=

+

AUyr

32

sun

21 aP

Mmm

Observe:

Kepler’s Law:

iVK sin11 =iVK sin22 = P

PKKia )(sin2 21+=π

Calculate masses:

KK

mm

1

2

2

1 =

Stars & Elementary Astrophysics: Introduction Press F1 for Help 116

• Analysis of RV curves gives"minimum masses"

and projected sizes of orbits

( ) ( )M i M i13

23sin , sin

( ) ( )a i a i1 2sin , sin

Stars & Elementary Astrophysics: Introduction Press F1 for Help 117

• Analysis of light curvesof eclipsing binaries gives

–orbital inclination i– radii of both stars,

relative to the size of the orbit

ra

ra

1 2

,

Stars & Elementary Astrophysics: Introduction Press F1 for Help 118

• Hence, for eclipsing, spectroscopicbinaries, we obtain:

– masses M1 and M2

– radii R1 and R2

– luminosities L1 and L2

• (if T1 or T2 known)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 119

–used as tests of theoretical models ofstars

L

T

HR Diagram

high mass

low mass

main sequence

Stars & Elementary Astrophysics: Introduction Press F1 for Help 120

• Empirical MASS-LUMINOSITYrelationship for main-sequence stars:. i.e.

(handout) plots log.log see LvsM

sunsunsunsun

MMMM

M

L

L

ML

104.0for

4

4

<<

=

Page 21: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 121

Mass-luminosity and HR diagram (T-L) for detached eclipsing binaries

Stars & Elementary Astrophysics: Introduction Press F1 for Help 122

Mass-radius plot for detached eclipsing binaries

Stars & Elementary Astrophysics: Introduction Press F1 for Help 123

Mass-Luminosity for Main Sequence

sunsun

4

MM

LL

ML 4∝

Slope = +4

Stars & Elementary Astrophysics: Introduction Press F1 for Help 124

Star Lifetimes• Energy supply:

• Rate of burning:

• Lifetime:

• Stars burn for a long time.

• Big stars burn out faster.

(Joules) 2cME ∆=Joule/s)(W 4 =∝ ML

∆=∆=

M

MMM

LcM

MM

LcM

LE

t

sun

3

10

22

0015.0

/yr 10~

~

Stars & Elementary Astrophysics: Introduction Press F1 for Help 125

5. THE MOTIONS OF STARSIN SPACE

Stars & Elementary Astrophysics: Introduction Press F1 for Help 126

The Celestial Sphere

Celestial Equator

Celestial Pole N

S

Page 22: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 127

Star Coordinates

S

N

α

δ

Declination ( Dec, )(Degrees North)

Right Ascension (RA, )(Hours East )(24 hours = 360 degrees)

E

α

δ

W

Stars & Elementary Astrophysics: Introduction Press F1 for Help 128

Stars & Elementary Astrophysics: Introduction Press F1 for Help 129

star

observer

vr

3 velocity components

(mutually perpendicular)

Star Velocities

Stars & Elementary Astrophysics: Introduction Press F1 for Help 130

star

observer

vr

- in line-of-sight (radial direction) RADIAL VELOCITY vr (km s-1)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 131

star

observer

vr

- 2 components perpendicular to the line of sight TRANSVERSE VELOCITY vt (km s-1)

22

δα VVV t +=

Stars & Elementary Astrophysics: Introduction Press F1 for Help 132

star

observer

vr

vα and vδ are the components of vt in the directions of increasingRIGHT ASCENSION (α) and DECLINATION (δ) on the sky.

Page 23: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 133

• vr - from Doppler shift of spectral lines

• vα, vδ - projected onto the sky

–we can measure only angularchanges over time,called PROPER MOTION. µ ( arcsec yr-1 )

–Two components of µ areµα cos δ, µδ

– (see handout …)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 134

Speeds of stars orbiting the Galaxyv ~ 250 km s-1

• but distances are in parsecs -1 pc = 3 × 1013 km

• thus proper motions µ are small(< 0.1 arcsec yr-1)

Proper Motions tiny

Stars & Elementary Astrophysics: Introduction Press F1 for Help 135

×

×××=

=

1-7

1-151-

yr s 103

pc km 103

dian)(arcsec/ra206,265

(pc))yr (arcsec

d

dV t

µ

µ

µ V t

d

small angle

Stars & Elementary Astrophysics: Introduction Press F1 for Help 136

• Fast caclulation:

• ONLY for V t in km s-1,

dV t µ74.4=

µ in arcsec yr -1,

d in parsecs

( )µ µ δ µα δ= +cos2 2

Stars & Elementary Astrophysics: Introduction Press F1 for Help 137

22tr VVV +=

+ direction specified by vα, vδ, vr

star

observer

vr

• SPACE MOTION = velocity vector

speed

Stars & Elementary Astrophysics: Introduction Press F1 for Help 138

• HIPPARCOS (1997)

• Accurate parallax and proper motionfor bright stars (V < 9)

• stars to 200 pc

• GAIA planned ESA (2012 ...)

• parallax

• proper motion

• distances and motions. of stars throughout the Galaxy

yr arcsec 10-13−

arcsec 10 5−

yr arcsec 10-16−

Astrometry Satellites

Page 24: Parallax - ASTRONOMY GROUPstar-kdh1/sea/sea-stars-six.pdf · Stars & Elementary Astrophysics: Introduction Press F1 for Help 1 How far to a Star ? - Fundamental problem ….. - How

Stars & Elementary Astrophysics: Introduction Press F1 for Help 139

Star Cluster at the Galactic Centre

Infrared light

(to see throughthe interveningdust)

VLT (Very LargeTelescope)

D=8m, one of 4,in Chile.

Stars & Elementary Astrophysics: Introduction Press F1 for Help 140

Stars orbitingthe Black Hole

arcsec 2.1

radian

arcsec 206265

pc 8500

pc 05.0

=

×

Adaptive Optics

(corrects for seeing)

Stars & Elementary Astrophysics: Introduction Press F1 for Help 141

Star Motions at the Galactic Centre

Stars & Elementary Astrophysics: Introduction Press F1 for Help 142

Stars & Elementary Astrophysics: Introduction Press F1 for Help 143

Black Hole at the Galactic Centre

• From the proper motions, measuresizes and periods of the star orbits.

• Kepler’s law :

• the black hole mass

MM sun6

103×≈

=

yrAU

23

sun

Pa

M

M

Stars & Elementary Astrophysics: Introduction Press F1 for Help 144

THE END