151

Panel O-28 Ships Mat.thermal Insulation R.dec.1963.T-R

Embed Size (px)

Citation preview

Tetical

&

Resear~ BuUetin47

Thermal Insulation Report

TECHNIULANDRESEARmBULLETINNo. 47

ThermalInsulationRepoti

Prepared by

Panel O-28 (Ship’s Material)

of the

Ship Technical Operations Cotittee

Publishedby

The Societyof Naval Architectsand Marine En@neers

74 TrinityPlace,New York, N.Y. 10006

December, 1963Reprinted April, 1966

Reprinted January, 1974

~ble of Content8

Prefncc

Definitionsand Swbol~

Introduction

General.Notes

Design Temper;ture8

Sobr Radiation

Cooling Lmd Calcuktions

Heating Load Calculations

Formlas

Penn State College Test Panel No. 5

Methnd of Calculating Airs~ce Conductance

ConvectIon-ConductionCoeff~cient for Heat Tra\~sfer

Across an Airspce

CondensationPreventIon

PgychrometricChart

Selection of Insulation

Design Temperatureand Mximm Temperature

Differences Between Variou8 Spces

Temperature DifferencesVersus “U” Facwr6

Heat Dis6i~tlon From Personnel

Values of Surface C0efficient9

~erml Conductance of Air S~ces

~ermal Resistance of Air 9paces

Heat Trmefer Coefficients

L

2-3

4-6

7-9

10

10-11

E-13

14

15-18

19-23

24-27

28

29-34

35

36-38

39

40

41

b2-45

46

47

48-51

I

,.

.Conductivity or Conductance Values

Values of ‘V” - No Insulation

Values of “U” - 1“ Insulation

Values of “U” - 2“ Insulation

Values of “U” - 3“ Insulation

V~l!]eoof “U” - h“ Insulation

6“ Insulation

V~lues of “U” - 6“ Insulation

AcollsticInsulation

.Vnl.uesof “U” - Acoustic Insulation

Wood Decking

Valllesof “u” - Wood Deck Combinations

... Mngnesite Deck Coverings

Values of “U” - ~gnesite Deck Coverims

$Jpecial.C0n8tnction6

Values Of.”U” -’Special C0n3truc<,lon0

“C” Factor8 for Various ~pes of

Mar)ufacturersPerformance Curves

Conductivity of ~terials

Bibliographyand References

.

52-56

57-63

&-72

73-83

W-90

91-100

101

102-103

104

105-107

108

109-119

Eo

121-126

H7

128-u9

Construction Appendix I

- ~eml

Appendix 11

II

panel o-28 of

Technical Program,

,.,

,.

P~ACE

Society of Naval Architects and Marine ~glneers,

been investigatingthe use of various Insuktion

materials, and their proper application, for the purpose of obtaining the

mo9t satisfactoti comfort conditions on shipboard in the mo8t economical

manner.

In compili~ the data on heat transmissionthrough the various types

of constmctions as given in this Report, the corresponding “U” values have

been based on the,latest available Informationand technical data supplied

by the manufactmera of the insulationand sheathing products now anilable

to the industry.

It is recognizedthat the basic “k” values are subject to change as

result of improved manufacturing technique9 md more etienaive transmission

te9t6. It.is requested that prowsed revisions to the Text and Table9 be

referred,toSN~ for preparation of future revi8ed editiong of thig Report.

D~INI~ONS AND SY~OW-— —— _

The following is a list of comonly used standard terms and symbols.

Special terms and s~bols used in the text are defined where used.

A = Boundary area in square feet. This IS the plane boundary area, not

including the surface area of the 8tiffeners.

a = Specific area indicated.

as = Air Space.

B~ = British Thermal Unit. me quantity of heat required to raise the

temperatureof one pound of water one degree Fahrenheit at or near

its maimm density.

C = Themal Conductancee of structme or material, B~/~/Sq .Ft./oF for

given thickness. ~is does not include the conductance of the

surface film coefficients “fp” and “fs”.

f = Total surface film coefficient= (hc + hr) B~/~/Sq.Ft ./°F.

fi = Inside surface film coefficient.

fo = Outside surface film coefficient.

fP = s~face film cOefflcient On the Plane Eide of a deck or bulkhead.

fa = Surface film coefficfent on the stiffener side of a deck or bulkhead.

h = Heat transfer coefficient,B~/~/Sq.Ft ./°F.

ho = Overall heat transfer coefficient,BTU/~/Sq .Ft./%.

hc . Heat transfer surface film coefficient by convection, BW/~/Sq.Ft ./~.

hr = Heat transfer surface film coefficient by radiation, B~/~/Sq.Ft ./%.

Pak = Thermal Conductivityof mterials, B~/~/Sq.Ft./~/~one inch of

thickness.)

L = Length of heat flow path = total depth of 6tiffener = lerigthof web +

, length of fbnge.

1 = Depth of the covered part of a stiffener.

,/ .

3

D~IllITIOllS~D SY~M—. .____ . . ._

q = Rate of heat transmission,B~/HR.

R=

r=

Tf=

t=

tm =

to =

ti =

u=

tu=

H=

17=

At =

d=

c=

Themal Resistance, I/U.

Thenal Resistivity, l/C.

Absolute temperature,F*renheit =. 459.60 (use 4&0).

Tem~rature, ‘F.

Mean temperature”,% = tf + to2

Mr or surface tempenture outside of com~rtment, ‘F.

bbi ent temperature inside compartment,%.

Overall heat trmsmiss ion, including surface film coeffIcients ‘

“fp” ud “fs”, B~/HR/Sq .Ft./OF.

Heat flow up, B~/HR/Sq .Ft./degree F.

Heat flm horizontal, B~/HR/Sq .Ft./degree F.

Heat flm d-, B~/HR/Sq.Ft ./degreeF.

Temperature difference, degrees F.

me Stefan-Mltzmann radiation conatmt = energy/area, time, (%)4

in solid angle 2 x above a plane element = 1730 x 10-4 BTU/HR/Sq.Ft./~

absolute temperature to the 4th power = .173

bisaivity factor accounting for the emission or absorption

characteristicsof the surface for the radiation which exists.

6 for insulated surfaces = .~

6 for bare metil surfaces = .65

4

Heating, ventilation and air conditioning demmds for modern @hips are

con6tantw increa91ng,and, M thout efficient themal insulation exce99ively

large quantities of air for either heating or cooling would be neces9ary to

maintain the prescribed habitability.

me need for effective insulation is apparent. Wundariea of liting

and working swc e9 exposed to the weather or to the sea mu9t be protected

from the effect9 of temperature and temperature differentials due to the

weather, sea90ns, latitude, and time Of day. C0mpartment8 adjacent tO

boiler and mchinery spaces, upWke9 and other spaces involved with heat

producing equiwent mst algo be protected.from the high temperatures pre-

valent at these gwceg.

~i9 report pre9ents a method for determinationof required insulation

for sea going ships suitable for varting rates of heat transfer at different

4“temperature leve19 taking into con9ideration econow of installation, con-

“:+9truction, maintenance and weight.

~ermal 9hip insulation involves the application of heat re9isting

material to deckg, to the shell, and to tbe various bulkheads ‘andpartition9

associated with the compartmentationof a ve99el. In most instances a com-

bination of

~nels, air

purp09e as

be included

materia19, hereinafter knom a9 “c0n9tmcti0n9”, consisting of

9pace9, 9heathing, deck coverlng9, and other mterials ❑ay serve the

in9ulation. me themal properties of 9uch con9truction9 should

in the determinationof insulation requirements which will gatisfi

the prescribed temperature d1fferential.

~is report has been compiled for use as a

9electing satisfactorytypes and thicknesses of

guide to the de9igner in

thermal insulation and

constmctions for new ship de9ign, and to detemine the prevailing temperature

5

gradients and their resulting “U’’-factorsthrough’the various boundaries on

shiphard, under a standard code of acceptable ambient’compartment temper&-

tures for both the co61ing and h~ting’s eason.

Table 1 ~rnishes the designer with the ambient temperature for each

t@e of compartment,with the outside design temperatures for solar radiation,

weather air and sea water, and also indicates the mximm ‘tem~rature differ-

ente that wi11 occur between two conditions of comprtment8 . The indicated

m=imm differencewill, in some cases, occur during the heatl~ seaaon, in

others during the cooll~ season. In arrivl~ at economical and efficient

loads for the cooli~ and h-ting plants, the maximum temperature clifference

should be kept in mind when selecting the desired types of construction. .,

~perience gained from existing installationsindicates that the ❑ost

satisfactoryresults have been obtained when the mximm “U’’-valuesrecom-

mended in Wble 2 are not exceeded.

Utilizi~ the basic Information in Tables 1 and 2, the

‘.$!haveno difficulty in selecting a type of construction frOM

designer should

the tablea of

“U’’-values that will satisfy the prescribed condition. It should be noted

that the rate of heat flow is inversely proportioml to the thickness of the

insulation,that Is, proportionallyless heat is tr~s ferred a8 the thickness

of insulation increases. The rate of heat stoppage depreciates rapidly WItb

insulationthicknessesof over two inches. In viw of this rapidly diminishing

return It is more economical to cover stiffener webs and ftinge8 to obtain an

Overall heat flow rate WIthin

thickness of the flat surface

reasonable amount.

The tibles of “U’’-values

the limits of Table 2, rather than increase the

area insulationbetween the stiffeners beyond a

are based.on a 36” frame spacing with 61’x b“

angle 9tiffener5. Other frame spacings ranging from 18” to b8° with pro-

portional stiffener sizes have been included at the beginni~ of each “U’’-value

6

section, frm bare steel up to and including a h“ lnsuhtion thickness. ~ese.

tables have been included to show the variable ‘~’’-factorsfor clifferent frsme.

n~c i~s. Heat flow through the stiffeners is dependent on several factors,

and therefore cannot be computed as a straight-line reht ionship. me worst

condition, namely that of heat flow from a heated compartment to 0° weather,

has been selected to shm the mximum variance that can occur. Comparisons

between these tables WI11 show that the variance is negligible for insulation

thickneseea of more than 3”, me nriance, therefore, mey be neglected from

consideration for insulation thicknesses in excess of 3“.

tithough insubtions specific for acoustic and refrigeration space instalJ

btion are treated in sepsrate reports, various types of acoustic insulation

have been covered in this’report in recognition of th,eirtherml Insubti on

value. ml credit should be taken for the thermal properties of acoustic

insuht ion wherever it ia to,be used to avoid ppmiding of deaign requirements.

It is the objective of this presentation that the informetion given in the

text and the various tables will provide the designer with sufficient infor-

mation to Calcubte ‘~”-factors for con9truction types and insulation ~terial~

not included in the Wbles of ‘V” Values.A comparison of the calculation of

con9truction9 similer to types #50 and *8 with actual test9 with ~ne19 having

4“ x 3“ x ~“ stiffeners by Penn State College is included herein for information

and guidance.

7

One of the most important and complex problems confronting the Marine

Designer involved,with design of insuhtion is to provide satisfactory ship

habitability for all seasons. me various types of constmction and amount

of insulation mu9t be carefully 9elected to insure minimum beat transfer

under the conditions in which the greate9t temperature difference occur

considering the variable9 involved with the season9. me grsate9t tempera-

ture difference between one compartment and its ad,ioiningspace my occw

during the cooling 9eason, while another two adjoini~ compartments❑ay chow

the greate9t tem~ratore difference during tbe heating season. &imm

temperature differencesbetween various 9paces are gIven in Nble 1. U9ing

the Informationgiven in Table 1 with the mximum “U” factors containd in

Table 2, the designer should have no difficulty in selectinga satisfactory

and economical type of comtmction and insulation.

IF is evident that the cooling load and,,,

must be baeed on the selected constmction.

season and heat loss for the beati~ season,

tions, must be established. The temperature

the beating lmd requirements

The heat gain for the cooling

involving two sets of cOmpta-

aifferences will rmge from a

minimum of 5° F in tbe cooling season to a mximum of 750 in the heating

geason. Since the rate of heat transfer through stmcture varies with the

temperaturedifference ana with the air~tion of flow, it 19 important that

the correct heat transfer factors, hereinafter referrea to as ‘V” factor9, be

.aPPliea tO the various conditions invOlvea. In selection of ‘V” factors it

19 well to remember that heat wi11 always flow from high temperatore to low,.

never from low to high.

....:

.-.

Heat is a fom of energy which is transferred, as a re8ult of temperature

difference,by means of convection, conduction and radiation. For heat gain

or heat loss calculation these three factors have been evaluated and combined

into a single overall coefficient of transmittance, “U”, for the various t~es

of construction in general use. Calculations for “U” factors have been divided

into 4 groups as follows:

1. SURFACE ~ INSIDE AIR: ~ese coefficients evaluate the effect of heat

tras fer from 9urface temperature on one side of a boundaw to the alr

temperature on the other eide. Surface temperatu= 8.apply to cooli~

6eason calcu~t Ions only, ae sokr radiation temperature of a deck or

bulkhead exposed to the sun, or a9 the 9ea water temperature of that

prt of the shell platiog extendiog belw the designed water line. Under

these conditlon6 only “C” =d “fa” are considered, “fp” la neglected.

2. wwm AIR w INSIDE AIR: ~e9e coefficients evaluate the effect of

heat transfer thro~h the “ship’6stricture from in9ide com~rtment air

temperaturesto the out9Ide air temperature in the heating 9ea9on.

and “fs” are applicable. For “fp” use 7.0 where bulkhead9 or decks

exposed to weather. ~is is an average coefficientwhich evaluate9

effect of wind at 15 mph, spray and rain. .~ese coefficients also

evaluate the effect of heat transfer from.outside temperature in the

cooling season to the in9ide air temperature of such air conditioned

compartmentswhich have a weather boundary not fiubject to solar radiation.

In the9e cases “fp”, “C” and “f9” factors apply.

3. INSIDE AIR ~ SEA WA~ : ~ese c0efficient9 evaluate

tran9fer through

ture9 to the sea

“fp” and “C” are

25.O for heating

the ship’9 9hell plati~ from inside

water temperature outside duri~ the

the effect of heat

com~rtment tempera-

heating aea90n. “fs”,

applicable. For “fp” use 37.0 for cooling 9eason and

9ea90n. see reference No. 6, page175

9

4. INSIDE ~R ~ IliSIDEAm: ~ese coefficients evaluate the effxt of

heat transfer through decka, bulkheads and ~rtitions from one inside

comprtmont to nnoLher. “fp”, “C” and “fs” apply.

—-

10

DR?IGN ~~~A~ES

Design temperature of outside air and 9en water, as well a9 of the various

compartment within the ship are usually given in the detail 9pecification9 for

each ~rticuhr 9hip. Where they are not 9pecified, the temperatures listed

below and in Table 1 are recommended for de9ign purpo9en.

C~LING SWON :

Outside air, Ventilation ........ 950F. hy Sulb

0ut9ide air, air conditioning ... 95%. my mlb, 82%. Wet 2ulb

Air ~onditioned 9paces .......... 80%. Dry Wlb, 66%. Web Wlb

(Subject to owner’s requirements)

Sea water........................ 85°F.

HWTING S~ON :

Outside air ................. O°F. .

Seawater .$................. 28% .

me effect of solar

temperature of un9haded

SOM WDIATION

radIation on weather boundaries produce9 surface

Oreas during the cooling season as follows:

Steel and aluminum decks .... 140°F.

Wood deck9 .................. 120°F.

Vertical metal boundaries ... UO°F.

Vertical wod boundarie9 .... llO°F.

~le heat transfer re9dt ing from the9e temperature is considered only for that

1!eather boundary 9howing the greate9t heat gain. ‘Solareffect on other weather

boundaries 19 neglected. If a compartmenthag two adjacent vertical boundaries

e~oa ed to the weather, the area to be “usedfor the solar radiation heat gain 16

the proJected area of the exposed boundaries representedby a di~onal plane

extending between the two opposite e~osed comers of the space. Vertical

boundaries common at weather deck areae and which are pe-ently ehaded by

structural overhangs, such as at open promenades, open ~ssage ways, etc.,

are not considered subJect to Botir radiation, and heat transmission through

such boundaries should be based on an “air to air” concept.

COOLIN2 UM C~ATION9

~~ARI~ :

Include heat gain

windows e~osed to the

from solar radiation. Include solar radiation for

sun (both single and double glass) and add to the

l~d for vertical boundaries as follms:

Clear Windtis ......................160 B~/HR/Sq .Ft. gbsa

Include heating effect of all ad,lacents~ces. me cooling effect of

adjacent SPC es or weather boundaries ie not considered unless W e lower

tempemtures are maintained by air conditioning equi~ent. For heat gains

fr~ Engine and Boiler Room caairrgato adjacent epacea use caoing tempera-

tures of 140° for horizontal boundaries and 120° for vertical boundaries.

LIGH~ :

Consider heat gain frcm lighting units at a rate of 3.41 B~/hr per

watt, plus ballast load for fluorescentlighting.

Pmsom :

Cons ider both sensible and htent heat from personnel in camputation of

heat loads for all air conditioned epaces. In ventilated compartment heat

gain frm personnel la not considered since the sensible heat gain is negli-

gible at ventilation design temperatures. Ventilation design neglects latent

heat because the moisture content of weather air varies such that the rehtively

amll addition by personnel is on~ of academic interest. 9ee ~ble 3 for

reCO~ended heat 108s frOm per80nnel in Eir conditioned spaces. In air

conditioned dining rooms and mess room, add 30 B~/hr sensible heat and

30 B~/hr htent heat per occuwnt and 325 B~/hr sensible heat and 675 BTW/hr

latent heat for each attendant in consIderation of heat dissapation from food.

13

EQU~m:

Consider heat gain from all heat producin~ equiwent, allwing for

probable load factor9 of such equiwent. me load factora should take

into acco””tsltiltaneoususe of combi=tlona of equi~ent, md inter-

mittent or continuoususe of equi~ent.

A..

14

H~TING ~AD Emulations

~~DARIB :

Neglect solar radiation. Include heat loss thro~h all boundarie~.

Heat gains through boundarie6 are deducted if the

the ad,lacentspaces are maintained by the heating

from Machinery or Boiler Room casings to adjacent

temperature for both horizontal and

LIGH~ :

Heat.gains from lighting units

higher temperatures of

8YBtem. For heat gaina

spces use 70°casing

vertical boundaries.

are deducted from sxc e-heatlog

requirements for all heated compartments excent cabins, stiteroome and

toilet & shower syces.

PERSONNEL:

Heat gains from personnel are not considered.

Considered hat gain from qui~ent only in compartments where

equlpent is in continuous use during period of occupancy. For example,

at galleys, bakerles and radio central.

.15

FORW~

me heat flow through a etncture is given by the formla

H = UA (ti - to)

1in which U equals 1 1 1—+—+— for air to air (~uation 1)

fp c fa

1and U equals 1 1 for surface to air

—+(Equation 2)

c r

me values of surface coefficients !,fp!and ‘Ifs”for various frame

spacings and temperaturedifferencesare given in ~blea 4 to 7 inclusive

for reference in calcukting “U” value9 for c0n8tncti0n types not given

herein.

In the interest of simplification,the following temperatures for

surface resistance factors are considered ,ju9tifiablesince the actual

calculated value9 for any prt icular temperaturedInferentialof the average

“U” value 1s within 10 per cent of the average ‘W” value given in Kbles

15 to 24 inclu9iveand since the boundary gain9 or lo8aes form only a part

of the to’talload

COOLING SEMON :

mAT~G SEASON:

“fp” for air to air at 100°F.

“fs” for surface to air at 100°F.

“fs” for all other conditions at 90%.

“fp” for air to air at 70°F.

“fa” for inside air to weather at TO°F.

“fs” for all other c’onditionaat 60°F.

16

Fiber glass insuhtion i9 indicated for the constructions shmn in

Tables 15 to 24 inclu6ive unlegg otherwiee noted. The “k” values or “C”

values I]sedfor the varioug materials are’taken from the manufacturer

performlance curves ae shown in Appendlx II, or, where perfo-nc e curve8

for variable temperature,are not available, as given in Table9 8 to 14

inclu9ive for 75°F. mean temperatures.

In determining the “U” values, consideration ha9 been given to the

9election of “C” factors at mean temperature com~tible to the various

conditions encountered in the heat transmission, 9uch as a “C” factor for

solar radiation correspondiu to .35 BTU/~ at 135 degrees meao temyrature,

while for the same congtmctlon the “C” factor dropg to .30 B~/~ at 35

degreee mean temperature.

The “U” valueg given in Tables 15 to 24 inclusive are based on a 36

inch 9tiffener spciw. he to the fact that the heat conduction rate

through the steel or aluminum changee rapidly with the increase or decreaae

of the stiffener size and it9 conductive cro99-section area, a arbitra~

size of 6“ x 4“ angle bas been selected as basis for the determination of

the average “U” nlue.

For frame spaciws other than 36”, as9miW that the stiffener 9ize9

cha~es in proportion to the

are given in Table9 15 to 24

In calculating the h=t

fomulag have been u9ed:

f = (hc + hr)

.25

frme 9paclog, f rme space correction factor9

inclusive for each of the construction type9.

transfer through the mteria19, the followi~

(Muation 3)

hc = .38 (Ata) : for heat flow up

.25hC = .27 (Ats) for horizontal heat

.25hc = .20 (A ta) fir heat flw down

(~uation 4)

flow (~uation 5)

(~uation 6)

.

where .30,.27, and .20 are convection constants from chapter IV Of reference 7,

and A ts is the temperaturedifference between the inside surface and the ambient

[w] “[%x+]

Compartment air, = (~uation T)

and where r i9 the therml resistivity through the bmndary to the inside kurface,

r=

[

1 1

1

_+ —fo c

[

~Tf + t9)4~-

~Tf + ti)4

hr =FdE 100(ts-ti) 1 (~uation 8)

F = Geometrical configuration emi9sivity factor for radiant exchange,

dimend onless, (my be neglected for the prpose of these calcu-

lations).

ts = Temperature of the inside surface.

tt = Temperature of the ambient compartmentair.

Heat Transmission or Absorption of ex~sed*rt of stiffener.

~ Insulation

*“

,..

I

,.,.;,.........,.:,.:.,.;,.........................;:,;, t

; ~~‘:.=..ql

Figure 1

[1

UR - uR1

(J-=. Al(~ution 9)

18

u’=R1

f=

‘> =

a=

k-

tanh .

[11uR=_

Rq

Rq =

Rql

m

[

mfp tanh ti1

‘[

mfp tanh mt1

:rQl”.5

(~uation 11)

(~mtion 13)lbJ

Boundary area affected by the heat transmission from stiffener, in

square feet.

Totil heat transmisaion

OF/ Sq. ft. of boundary

Total heat trmsmission

if not insulated.

Heat content in covered

B~/SR .

from the exposed ~rt of stiffener, B~/~/

area.

from stiffener for length given (p), B~/~.,

~rt of stiffener for length given (p),

Surface film conductance between stiffener surface and the ambient

com~rtment air, B~/~/Se. W./%.

Perimeter of conduction croga-section area “a” - Linear length of

stiffener in feet.

Conductance cross-sectionarea of stiffener in sq. ft.

Tberml conductivity of steel, B~/~/Se.FT~F/ 12 inChe8 thick.

The hyperbolic tangent.

lg

PSNN. STA~ COLL~E ~T PAN~ NO. 5

In the following heat transfer

for the panel test, namely:

1/4” Eteel pkte

(Page 13 of Test Report)

CO~ARAT~ CWATION

calculation,the same data is used as that

2“stiffener;,4“ x 3“ x 1/4” angle bar Iw:,:::::..,.,.,::::::.:.::.

2“ Fiberglas: insulationboard,‘9# density

~ k

:::::,,.,.

Effective ~nel area - 48” x 48” - 16.0ft2:,:;

Effective length of stiffener9 - 8‘ - 01’Horizontal heat flow, air to air - 59.TOO to 14° 52t - 45.7° air to air

.........

“k” for in9uhtion - 0.230::-:~~:.::

“k” for steel - 312.0 ~.....

For simplificationof calcuhtions, therml resistance values of mterials

and surface.film coefficientshave been used directly in lieu of B~/HR wherever

applicable. The “r” for the plane 9ide surface film coefficient (O.832)has

been obtained frm Table 4 as verified by Table 1 in the Naw Design kta Sheet

. D~3901-1 . Since this surface film coefficient 19 con9tant over the entire

~nel aurface and only varies with change9 in the ambient com~rtment tempera-

tures, no correction19 nece99aw. me surface film coefficient on the radiat-

ing or stiffener aide hwever, 18 dependent on the difference in emis9ivity

between the 9teel and insulation murfaces, the ratio of steel surface to insul-

ation 9urface, the temperaturegradlent through the pnel, and the combined

effect~ of convection and radiation on the steel 9urface and on the insulation

surface. Henc& the “fs” h= been pontulated for the given ambient temperature

by extrapokti on from Table 6, and then corrected by a camputation for cor-

rection of possible error to bahnce the 9um of the calcubted convection and

radiation factor9. For abbrevity reaaom the calculation for correction of

possible error has not been ehmn, and the calculation hereiufter only

includes the “fe” obtained by the equilibrium proces6 (mrked *), which

must correspond to the calculated “fs” (marked **).

Definitions and symb016 used are in accordance with

~ges 2 and 3 except where othemiee noted.

The heat transmission through the insulated area and

‘Ifs”is determined as followe:

fp 59.7°... 0.8321/4” Stl ... 0.0012“ ins’1 ... 8.700

R$...... 9.533f614 ...... 0.946*

R ......10.479

hc = 0.27(4.1)0’”=O.,

th06e giVen on

the corresponding

Correction factor for horizontal flow = 0.27

G= 0.90 & = 0.173 c ~ = 0.156

to = 59.7 -

( )

45.7 X 9.533 = 18.1°

10.479

A ts = 18.1 - 14.0 = 4.1°

384 Tf, =460.o + 18.1 = 478.1°

Tf2 = 460.o+ 14.0= 474.0°

1/10.479=0.095 BTU/RR/FT /°F.

mere are 15.83square

Total tran6mi66ion for thfs

WI- 15.83 x

hc = 0.384hr - 0.673fs = 1.057

R - 1/1.057 = 0.946**

feet off pkne imulated area in the ~nel.

are6 is then,

0.0(}>= 1.50k B~/~

21

me “fs” for the steel surface of the stiffeners is determined 89

follows:

fp 59.7°...0.832 Correction factor ~or horizontal flw = 0.273.5” Stl ...0.011

Rs ....0.843 c = 0.65 4 = 0.173 Ed. 0.113f9 140......l.003*

R ......1.846 Wan pth through steel = 0.5(4” x 3“) - 3.5”

t~ = 59.7-( b)k5.7x 0.8L3 = 38,8°

1.84

A ts = 38a - lk.O . 24.a0

hc = o.27(24.a~”=0.603 m, = 46o.o + 3a.a = 49a.a0Tf2 = 460.o+ 14.0= 474.0°

Heat transmissionthrough

is a9 f011w9 :

mere are 16 studs in the

R=

the impaling studg

~nel, 0.190” dia.

hc = 0.603hr = 0.394fa = 0.997

1/0.997 = 1.003 **

for the insulationboard

x 2.25” long. Total cross-

gectional conduction area of the studs is 0.003 gquare feet. “r” for 2.25”

steel is 0.007. “r” for suface film from above

~= 0.003(

10.a32+0.007+1.003 1

Heat transmission thr~h the stiffeners is

19 1.003. Then

= 0.0016 B~/RR

(Say 0.002)

calculated USIX the

following factors: Mean heat flow pth though the stiffener is

0.5[(4” + 3“) + (3.75” + 2.75”] = 6.75”= 0.562’,of which 2“ (0.167’)

22

are covered with insulation. This leaved 4.75” mrnn flow path of exposed

stiffener sub5ect to heat diooiwtion. Total linear length of stiffener

in the test aree is 8’ - O“ with a croae-sectionalconduction area of 0.167

square feet. Previously calculated “fs” for steel is 0.997. “C” for one

foot thick steel i~ 26.0. Then

m= ( 0.997 X 8.026 x 0.167 )’5= (HT 1356

a = (1.356x 0.562)= 0.762 t8nh& = 0.642

ML,= (1.356x 0.167)= 0.226

Rqt =

(

1.356

7.98 X 0.642 )

me above would be

dissipation, However,

follows: Let ~ be tbe

stiffener. Let @ 1 be

i

t

t

where tinh is the

hyperbolic tangent

0.265 ‘t “ 01265 “ 3.773BW/m=

corrected’if the entire stiffener was exposed to heat

Ieductionfor the 2“ covered prt must be applied as

temperatureof the eteel, plane aide, in way of the

;heheat sink from @ to the toe of the flange. Let $2

be the heat sink frm @ to the intersection of the bare steel with the insula-

tion board. ~1 temperaturesare degrees Fahrenheit.

~ ~6 )@ = 59.7- !5.; x o.8~2= 39.1°

.

#2=3910-(xti:!eifi)=391- (*) ’100where “ex” Is the exponentialfinction of & and til.

23

FROM dl and d2above, the percentage of the heat sink in the exposed ~rt

of the stiffener is’found to be

()1.0 - > = 0.890

9.1

Then the heat transmissionfrom

U3 = (0.890 x

the e~sed part of the

3.773)= 3.358m/HR.

stiffener is

Total calcuktion heat transmlssion for the ~nel is now

U1 .....1.504U2 .....0.002

U3 .....3.558

Ut ..... . a

Calculation U =l!.85~

~

Penn State College Test U

B~/HR

= 0.304 ~/HR/SQ .~/°F ,

- 0.295 B~/RR/SQ.~/°F .

m extraction of “C” from the calculated ‘U’’-mlueand applying the

p~per factors, the correct “U’’-valuefor any modification of Panel K

can nm be readily obtained.

Tanking as an example the first test of Panel #1 in Penn Stite College

Test Report, For horizontal heat flm, we have

From preceding pWe,’ 1/0.304............................ 3.289Less “fp”

*...............................................

From Table

From TableFrom TableFrm Tablefire.Table

Calculated

Penn State

6, fs 14” (extrapolation).................... .T18

4, rp600 ............................~.!.....1.6790.832

9, airs~ce .... 6f-lo0 ....................o.8934, fp ll.~(extrapolation).................... 1.000~, 7/8” ~rinite 36 ........................ O.m

R = 5.272

“U” -“1/5 .272 - 0.190

College Test - 0.192

24

Method of calcubting Airspace Conductance

‘2—Heat flw ~—rto 3

rl(fo) %

(Airspace)

r5r6 (fi)

Figure 2

Definitions:

~1 -

E-

;.

hcc -

R-

r-

8-1

82 -

Tm -

tm -

e-

Total heat tranofer acrona ai~space, B~/~. /Bq.ft./degree F.

Radiation interchange factor for,surfaces of airs~ce.

Totil hemispherical ernittanceof surface.

Dimension across airspace in inches.

Combined coefficient of conduction and convection.

Total thermal resistance of boundary.

The-1 resistivities of boundary components.

Warmer surface.

Cooler 8urface.

Mean temperature of aire~ce, degrees F. absolute.

Mean temperature of airspace, degrees F.

Temperature difference acrosa alrspace, degrees F.

For additional definitions used, see text and ~ges 2 - 3.

25

Method of calcukting Airspace Conductancee:

me transfer of heat between the warner and cooler surfaces of an

airspace takes pbce not on~ by radiation, but also by a combined action

of convection and conduction. me total resistance to the heat flm by

the airs~ce and its surface film factors add a definite insulation value

to the constriction. In calcuhting the ‘U” values for the various typcn

of construction it is necessary to include the thermal resistance of the

exi~ting.airspces.

me heat transfer by radiation across an airspce depends on the

absolute temperatures of

interchangefactor which

faces, their emieaivity,

Orientation of the swce

the radiation.

the surfaceE bounding the Ewce, and a radiatiOn

tikea into account the re-radiation of the Eur-

and the geometrical configuration of the spce.

and the direction of heat flow haE no effect on

On the other hand, the combined heat trangfer by conduction and con-

vection depends upon orientation of the apce, the direction of the heat

flw, the dimension acroEE the Epece and its ❑ ean temperature,and the

temperatt]redifference between the two Eurfaces.

me two above deEcribed components of the total heat tranafer acroEa

the spce, work independently. ~eref ore, the total heat transfer can be

expreeEed by the equation:

C’ = ~r+ hcc (~uation lb)

me radiation Interchange ractor, E, is obtiined from the equation :

E= 1 (~uation 15)1—+ 1—-1e81 ’52

26

me radiation coefficient,hr, is expressed in accordance with the

Stefan - Boltzmann law, thus

~r ~ ~ 10-8 (Ts14- T,24)

(Tsl - T62)

[1

3hr = 0.00686 a approx.

100

(4uation 16)

or

(~uation 17)

mere extreme accuracy is required, the more elaborate procedure given

in equation 4-33 of reference 6 may ‘bewed. However, for the Wmse Of

calculatingaverage “U” factors, the errors introduced by using the above

quations are negligible. me values obtained from theee equations are

considered sufficient4 accurate for the ~rpose of simplicity and practical

application.

Reasonably accurate temperature of el and S2 in Fig. 2 are obtained

by using the resIatince concept through the ~rious aompnents of the

conetmction, thus:

td~l = n t. (rltr?+r?l (~uation 18)R

taa2=A t (rl+r2tr3+r4)

R(SquatiOn 19)

where td = temperature drop from the heat source (to) to the eurface.

A t = temperature diff;:renee (to - ti)

and r4 may be postuhted from Table 4 in Chapter 9 of reference 3.

Then t~= (to - ta) (~uation 20)

me values of the coefficient for the cotiined effects of conduction

and convection,“hcc”, can be reed direct4 fromthe curvesof Fiwre 3,

me values given in the curves are for ah airspace with “anarbitrarily

selected mean temperature of 50 degrees Fahrenheit.

27

me effect of variable mean temperaturesde~nd on whether the con-

ductirn or the convection 1s the pri- factor in the heat transfer across

the apace. mere the mean temperature dIffera t~m 500 the hc~ ovaluea50

should be corrected for the calcubted b. me foll~ing formuks will

then app~:

For hc~ >0.3,500

(hc)tm = (hc~50°) [ 1-0.001 (tm - 50)] (4uati0n 21)

For hc~500<0 .2,

(hc~m = (hc~ 500j [1 + 0.0017 (tm - 50)] (~uation 22) ;

In the range Of hc#500 values between O.2 and 0.3 the temperature

coefficient is variable and passee through zero in value, consequently the

❑ ean temperaturehaB insignificanteffect on the hc nlue, and correction

of the hc~500 factor is not required.

~ermal conductance of .aira~cea ranging in depth from one to Eix

inches have been calcubted for the various conditions encounter~ on

shipboard, and their “C” values have been listed in mble 8.

For the convenience of the deeIgner, the “C” values have ~rther been

( 1 ) which canconverted to ~erml Resistance factors, _ be read directlyc

from ~ble 9.

Nw

3,00,.

2.00

1.50

.20

.15

.10

CONVECTION - CON VUmlON COEFFI ClENT

FOR HEAT TWNSFER AcR05S AN AIRSPACe.

I I I 1 I I I 1111 I 1A I I IIll=I I I I I IIll I I I I I IIIJ

o

@g3. VEG. F./ INCH3

.. . .

29

COND2N9ATION ~W~ION

One of the requirements for satisfactory insulation is that the thichesn

and density of the insulation material mu6t be stitable to prevent condensation

on the interior surfaces of the ship’s structure.

me foming of condensation depends on the relationship of the follming

factore:

Outside temperature.

Inside surface temperature of the boundary.

Insulating ability and absorption resistance

of the boundary. .“

Inside dew-point temperatureand relative

humidity.

me inside aurfac”etemperature should not be asaumed to be the sme ao

the dry bulb temperature of the mbient comwrtment air. This surface temp- -..

erature is dependent upon the re8ifitanceto heat flow through the boundary,

the resistance of the inside surface film coefficient,and the total temp-

erature difference between the outside air or eurface and the inside air.

With the to and ti design temperaturesgiven, the inside surface temperat{lre

can be determined by using the resistance concept previously summarized in

quotations 18, 19 and 20 or by the follwing formula which is dependent on

the direction of air flow, where “rfi” is the re8iatance of the inside 6ur-

face film coefficient.

‘s= ti -ft: ‘fi)(NquatiOn 23)

30

If the inside ourface temwratwe (warm side) is lwer than the

ambient compartment alr dew-point temperature, moisture will condense on

the surface.

Condensation may occur either in visible or invisible form. If a

surface of insulating uterial or a Wnel of hydroscopic Wterial is not

properly sealed WIth Wint or an appropriate vapor barrier, condensation

maY.be absorbed by the material M fast as it forms on.the surface and

thue remain unnoticed until the mterial has reached its mimum satu-

ration point. me increase in the conductivity of the heat flow ~th due

to the presence of moisture in a bounda~ compartment wi11 have a detri-

mental effect in its Insukti on value. fie absorption process will force

the moisture tm~ard the colder surface of the metal structure.,bythe action

of the temperaturegradient, me moisture at the metal structure will

freeze when the metal surf ace temperature drops below the frost point. me

most effective control of concealed condensation involves the use of types

of insubtion having an effective npor barier bounding directly on the

warm ambient air. ~1 joints in the insulationand interfaces at framing

members, should be thoroughly sealed and taped to prevent thermosyphonic

seepage of alr frm the heated compartment into and through the insulation

or airspace behind the barrier.

me control of condensation is accomplished by providi~ sufficient

insulationto mintiin the interior gurface temperature above the pre-

vailing dewpot temperature of the compartment,by reducing the relative

humidity in the space, and by ventilation. Since the condensation depends

on factors previouslY mentioned, the method or combination of methodg to

overcome the problem can only be determined from a study of each individual

caee.

31

Determinationof the rquired Insulation thickness to prevent con-

densation can be accomplished as in the following example:

Assume a com~rtment temperature of 70°F and 50$ relative humidity

and outfiidetemperature of O°F. me boundary consists of steel deck, air

gpce and 3/~6°krine Veneer ceiling. Heat flow up to outside air. “k”

value of insuktion to be applied = .22. For resistance components, see

Figure 2 on p%e 2k.

men rb (inside film) = .bw

r5 (3/16”M.V.) = .125

r4 (Air Spwe) = .758

r2 (Steel) = .003

rl (Outside film) = .143

R =1.517

(0

From ~uation 23, tS = 70 - 7° x .488)

= 47;5°1.517

. .From psychometric chart, 70° Fdb and 50~ R.H. = 50.5° dew point. Since

the gurface temperature is lower than the dew point, condensationwill

occur, me use of in~ulation is therefore indicated. Since the dw

point temperature is 50.5° the allowable temperature drop in the film

cannot exceed 70°- 50.5°= 19.5°. men

~= Atxr6

td film(~uation 24)

= 70 X .488 = 1.75totalresistance required

19.50

1.75 - 1.517 = .233 additional resistance required.

Insulation at .22 “k” value; R =~ 4.54 Wr inch. Since only .233

reelatance is required, 1/2” insulationwill be sufficient to prevent

condengatlon.

me foregoing procedure for prevention of condeneation ham dealt vith

determinationof requirements for insulation on the steel pkting of decks,

bulkheads and @hell, If the insulation is installed continuously on the

plane side of the boundary, no trrntment of the stiffeners is required.

If, however, the insulation is installed between the stiffeners, the

stiffener surfaces may be subject to condensation due to the rapid rate of

heat transfer through the metal

fenei surface film. One of the

requirements is the ambient air

and the temperature drop across the atif- -

decidi~ factors in aetermini~ insulation

dew point temperature of the SPC e from

which the surface la absorbing heat.

In case of Fig. 2, the stiffeners are absorbing heat from the air

and hence the first step is to determine the tm for that swce aa

‘m”(-)Assuming the sme conditions as before,

insulation,we have from Muation 23

apcce,

follova:

(~uation 25)

and R corrected for the added

tS1

= ~o” - ( 70°(r6 + r, + r4)R

= 700 - (700)(1.371)= 44,T03.792

and ts2 = 70°- (7°0p + ‘5?

0= 70 - (70°)(.613) = 58.3°

then ~ =(ti? = 51.50

33

With the tm of the airs~ce determined, find the A t between the npce

and the outside air, and compute the surface temperature of the stiffener.

We have then a t - 51.5°- 0° . 51:5°

and

where

and

to= ..- (y) (~uation 26)

‘7 = the surface film conductance from the

RI =

airspace to the stiffener, horizontal

heat flow,

(r?+ r8+r1)

in which r8 is the mean heat flow Pth resistance through the steel from

the stiffener surface to the ourface

outelde air.

Thus we have

t, = .51.50-

From psychometric chart, with 51.5°

of the steel pbting bounding on the

[7(51.5) (.%3)11

= 7.9°.863+ .013+ .143

dry bulb temperature and assuming

the relative humidity of an effectlve~ sealed air spce to be 20%, we

find the dew point temperature in the space to be l~” . ~ain we find

that the surface temperature is

causing a condensation problem.

must be covered with insulation

lower than the dew point temperature,

To correct this, either the stiffener

of sufficient thickness (Muation 24),

or the resistance of the celling pnel mu8t be Increaged in

lower the dw point temperature of the airspace’to a degree

that of the stiffener surface.

order to

legs than

34

Dew point temperatures for corresponding relative humidities at given

Dry and Wet Mlb temperatures can be read directly from the Peychrometric

Chart, Figure 4, on we 35.

It should be noted that the insulation thicknesses determined by

these procedures sre rquired specifically for condensation prevention.

me final selection of insulation thicknese must take this into consideration

as well as thicknesses suitable for comfort, air conditioning, ventilation,

heating and control of fire.

.

Figure 4

PSYCHOMETRIC GliART

BAROMETRICPRESSURE29.92”MERCURf.IEETNO. T._ $..,—1-TT1T71’ T-I”,‘-USE TYPECOILolvFNA,ROOM LOAO. BTUInn. ....,

0,ROOM SLOPE.

c.REPLENISHMENT&IR.,!(

COILLOAD ,,.,

012,0

COILSLOPE

2.<

ENTERINGEFFECTIVETEMP..COILSELECTION ,,0

COILSLOPE.

E.T. ‘. ,,0

COILLOAD. TONS

USE AT F*U..

dOTE:MAXIMUMFACEVCLOCITY

SIZE FPM.46 a0042 800+3 60044 95045 52048 300

,.

A

35

36

S~~ON OF INS~ATION

Themal Insulation mterial of a thickness sufficient to economically

offset exceaslve heat tranemiseion thr~h boundaries, to provide a com-

fortable atmosphere in living and worki~ spaces, to protect perishable

stores and cargo, and tO preventconaensxtionof Moietureon the gh~p‘S

structure, ghall be j.ngtalledgenerally as follows:

On the inside gurfacee of those boundaries of heated apaceB which

are exposed to the weather, or surfaces bounding on unheated spaces.

On the inside surfaceg of those boundaries of air conditioned spaces

which are ex~sed to the weather, or eurfacee bounding on non-air condi-

tioned spaces located adjacent to or above, except gurfaces of bulkheads

which are comon to machinery and boiler room cagiws and to non-air

conditionedheat producing equi~ent gpaceg.

On the Ingide surface of those boundaries in non-air conditioned heat

producing equi~ent spaceg which are common to accommodation gpaces.

Inside gurfaceg of boundaries in such heat produci~ equiment spaces

which are expoged to cold weather shall be treated with anti-sweat Wint,

Vermic,lltiteor equal.

On the inside vertical eurfaces of boiler room and machinery casi~s

where exposed to accommodationand working a~ceg.

On overhead eurfaceg in boiler ~oom and mchine~ spaceg where ex-

posed to accommodationand worki% spaces. me insulation my be installed

either between deck beams inside of the space or in the form of an insul-

ated deck covering on top of the gteel plating.

On the overhead gurfaces in unheated space8 where bounding on heated

spceg. The insulation my either be installed.between the deck beams

inside of the spce, or in the form of an insubted deck coveri~ on top

of the steel phting.

For the ~rpose of Insulation, “unheated”spaces are consldered to,.. .

be all cargo holds, voids, and compartments havi~ tempemtures of 55

degrees or less when located over or adjacent to heated spaces, and those

having tempemtures of 45 degrees or leas when located under heated spces .

An industry stindard for thicknesses, t~es and densitiee of thermal

insulationwould be highly desirable, kt impracticabledue to the dif-

ferences In compartmentationof the various types of shiy, and differfng

climtic conditions at the routes and ports of call of different ships.

It is obvious that a ship running the North Atlantic in winter, or desiened.,,

for hctic conditions will require considembly more Insuktion than one .

desiened for coastal service in the tropics. me desired thickness for

comfort insu~t ion depends not only on the temperature differences between

the hot and cold aide, but also on the details of the conatmction, and

whether deck covering, sheathing, ceiling, or pnelllng is to be Inntalled.

Insulation denaltien a~ lW ao 1/2 to 1 pound per cubic foot can be used,

but 3 to 4 poundg per cubic foot Is more cmmon.

me U. S. Coast Guard regulationsj latest issue, are to be used to

define insulation typeg, dengity and congtmctions suitable to minimize

fire hazardg, and to prevent the spreading of fire. me therml value Of

fire protective mterials must be taken into consideration to avoid pyra-

midal effectn In the ingubtion design.

Congtructlon types involvingwood or tigneaite deck coverings, mrinite

bulkhead llningg or ceilings, Bound attenuation mterials etc. are acceptable

in lieu of Insulation provided the respective “U” vml11e8are compatible with

the insulationrequlremente for the prescribed condltion.

3a

me selection of insulation la theprerogative Of the designer or

Shlpbullder, and iS based on considerations including local contracting coste

shipyard instalktion pract~ce and the insulating wlue of deck covering,

oheathlng or interior trjm.

of an adequate design for a

vith the mximum “V” valuea

The only restriction imposed in develo~ent

therwl insulatio~ installation i9 compliflnce

listed in ~ble 2.

Ihe following requirementsare to be considered in gelectjon of

constmlctiontypeg from Tables 15 - 24 inclusive:

1.

2.

3.

...

For comfort insulation,do not exceed the mximum “U” values

recommended in ~ble 2.

Check selected typeg for condenaatlon prevention, wherq 8uch

problems exj9t. Where 9tlffener8,beam9,or frame6 re 1~ ire

in~ulation,the insulation need not extend more than .Q inche9

on tbe web from the point of interjectionwith the steel plati~.

For fire zone insulation,u8e only approved mterials of

thicknessesand densities listed in the latest U. ,S.Coast Guard

~uipment List.

.

TABLE 1.

DESIGN TEMPERATURESAND

M~lMUM TEMPERATURE DIFFERENCES BETWEEN VARIOUS SPACES

See text “Selection of Insulation”

40

Table 2

Temperature dlfferenceB versuo “IJ”factors

me followlng table indicates the s~gested mximum ‘V” values, for

each constmction detail representing the rate of heat transmission in

B~/HR/SQ .FT./°F, upon wbi.chto base the Insuhtion requirements for

steel decks, bulkheads, and shell within the temperature difference ranges

ehown. Any type of construction other than ebown in the tables of “U”

values, and which i~ suitable for the ~rpose intended, such 88 eecondav

bulkheade and prtitions, decks with specific deck covering materials,

etc., i9 acceptable, prOvided it9 “U” value doeg not exceed the maxim~lm

indicated for the particular temperature difference in question.

Temperature differenceg: Wximum ‘V” value:

OF

O“to 15°............................. 1.75

16°to 30°............................. 0.37

31°t0 50°............................. 0.26

Over 50°............................. 0.16

41

w

MAT DISSIPA~ON FROM PSRSONN~

APPLICA~ON

312

Stateroom..................... .......Offices...............................Lou~ea ...............................Dance Floora..........................Dinni~ Room and Mess Rooms..........Pantries..............................~eatera ..............................Shoppi~ Area.........................Radio Rwm and Chart Rooma...........Waiters and Mess Attendant...........

;SNSIBLSHSATm/m

22020020027022029522020020095

LAmm

mvm180250300600330645180300250675

Q= Includes

heat for

30 B~/HR eensible heat and 30 ~/~ btent

dissi~tion from food.

@ ‘ Heat diasimtiOn from food not included. For heat

di6ai~tion from food warmers, toasters, coffee urns,

etc., see Chapter 13 of Ref. 3.

~TAL~ATmjm

40045050087o5509404005004501000

Table 4

Value9 of Smface Uefficiental

PNE SIDE

,,f~“

1

tmp.“k+‘F

fp

Mrection of Neat F

1 +D

fp’ ~fp

0.70 1.430

0.75 1.332

0.80 1.250

0.85 1.180

0.90 1.UO

0.95 1.050

1.00 1.00

1.05 .950

“1.M .9M

1.u .87o

1.20 .832

1.25 .800

fp

1.08

1.12

1.M

1.20

1.2L

I.2a

1.32

1.36

l.bo

1.&5

1.50

1.55

l/fp

.7&o

.7M

.925

ho” .a931.L1

.6ao

.65k

.629

.606

.5aa

.571

.553

. a63

600

70°

1.53——

.a32

.a061.59—-

Q .7al

.75a900 1.70

1.75

1.al

.735

.715

120° 1.a7 .535

.sla

.69o

.66?1300 1.93

.6b5.502

Notet USE a surface coefficientof 7.0 for decks or bWead~ eqosedto the weather, te~erature range 10° F. to - 10° F. Thi~ 18 anaverage coefficient evaluating the effects of tid, spr~, Mdrati.Use a surface coefficientof 37.0 for heat lees thm~ she~ tosea water in cooli~ seagon, and 25.O for heat ‘lossto aea inter hheating season,

43

Values of Smface Coeffioiente:

t

fs

SWfener aido - Heat ~OW UP

1 Frme 9padMtimpttte~. all 301, i 3611 b2n 1 L8*‘F.

fe ~fa fe ~fn f, ~fe fe Vf o fs Vfm

3oe 1.8L .5b2 1.80 .555 1.76 .569 1.72 .581 1.68 ●595

“h@ 1.91 .523 1.87 .535 1.33 .5b7 1.79 .550 1.75 .571

5.0 1.98 .505 1.9b .5U 1.90 .526 ~*86 .538 1.82 .550

600 2.07 .b83 2.03 .493 1.99 .5o2 1.9h ●5V 1.90 .526

Too 2.15 .L65 2.10 .476 2.05 ●h88 2.00 .500 1.96 .5~

80° 2.23 .448 2.18 .b58 2.13 ●~7Q 2.oE •~81 2“03 “~92

900 2.31 .L34 2.25 .M5 2.20 .455 2.U .465 2.~ .477

Moo 2.39 .418 2.33 .429 2.27 .~o 2*21 .452 2*M “~63

~o 2.47 0405 2.L1 ●JU 2.35 .~~ 2.29 ●437 2.23 ●U8

120° 2.55 .392 2.&8 ●L03 2.L2 .413 2-36 “~~ 2“3Q ●435

130° 2.63 .380 2.56 .391 2.L9 .Lol 2.43 .412 2“3~ ●~22

Uo” 2.71 .369 2.64 .379 2.57 .309 2.51 ● 398 2“~ “~ 8

44

Table 6

Valw9 of Sorface C0efficient9I

Stiffener side - }featFlow Ilorizontil.f

s~

Complttemp.

OF.

60°

700

80°

~oo

1300

Uo”

i

1.56 .6h0

1.62 .618

1.68].596

+

l.~b .575

1.8o .555

1.861.538

T1.93.5192.00.500

2.07.L83

2.U .L67

Frmo Spacing

301, 36II b2” ~8!,

fe l/fe fa l/fs fa l/fa fe yfa

1.39 .719 1.36 .736 1.3b.7L5 1.32 .758

1.L5 .690 1.k2 .705 l.bo .7s 1:38 .725

1.53 .653 1.50 .666 1.~7 .680 1.U .695

1.59 .629 1.56 .6b0 1.53 .653 1.50 .667

1.6h .610 1.61 .621 1.58 .632 1.55 .6L5

1.70 .588 1.66 .&2 1.63 .613 1.60 .625

1.76 .569 1.72 .581 1.68 .595 1.65 .606

1.82 .550 1.78 .562 1.7L .575 1.70 .588

1.88 .532 1.8L .5b3 1.80 .556 1.76 .569

1.95 .513 1.90 .526 1.% .538 1.82 .550

2.02.L95 1.97 .508 1.92 .521 1.88 .532

2.09.b79 2.Q .L90 1.?9 .503 1.9L .5UA

45

Tabh 7

Valma of SWfacO ~offioienti:

1

fsStiffemr side - Heat tilr b~n.

1@qlt Frw Swainz

tiq. 24. 30,1

or.f. ~fa fa Vfo

30° l.~ .870 1.U .893

b“ 1.x .832 1.17 .855I

~oo 1.25 .Mo 1.22 .82o

&o 1.30 .770 1.27 .788

700 1.35 .7bo 1.32 .758

8@ Lb .7s 1.37 .730

90° 1.45 .690 1.41 .7D

m“ 1.50 .668 1.L6 .685

Uo 1.55 .645 I1.51 .662

Uoo l.m .625 1.56 .641

Uo” 1.65 .606 1.60 .625

Mo” L?o .588 1.65 .606

36.

f. ~fn—

1.09 .918

1.u .a76

1.19 .8L0

1.A .a06

1.29 .775

1.34 .7L6

L 38 .725

1.42 .705

L.b7.6ao !

L52 .65a ~

1.56.$L2

1.60.625

&2’ h80

f. ~f e fa Vfa

1.07 .935 1.05 .953

1.12 .892 L ~ ●9U

1.17 .855 Lx .87o

1.22 .82o L20 .832

~26 .795 1.24 .8ti

1.31.764 L28 .781

L35 .7L0 L32 .758

LB .720 L% .735

1.43 .7W Lbo ●7S

1.4a

L52

1.56#

.676 1.44 .695

.658 L48 .675

.642 L52 .658

~e~ @nductance of ~ Syces.

Val~s given are lICI1= BTU/HR./SQ.FT./°F.

tintition:

Horizontal Heat Flow.................Heat Flow Oon ......................!

~SIDE AIR TO WTHERY

Heat Fbw ~ . . . . . . . . . . . . . . . . . . . . . . . . .HefizontilHeat Flow.................Heat Flow Don .......................

Heat Flow @ .........................HorizontalHeat Flow.................Heat Fkw Ocwn.......................

I~DE AIR TO IM~E AIR!

@oling Sea90n:

Heat Fbw ~ .........................Mtizontal Heat Flow.................Heat Fbw Mm .......................

Heating Season:

Heat Flow @ .........................Horizontal Heat Flow.................Heat Flow hm .......................

@ = No Mstition

be:

11,

L.20LL.20L

L.~3.98o.718

1.068.995

L.1931.172

L.077

L.016.97L.973

21,

..216

..207

..317

..120.730

..261

..061

..3K

..186,.080

..153

..005.976

on acroeeAAr Spce I

~

..302

..222

,.5L9,.330.77L

.L70

.S8

.&85

.279

.088

.275

.oh9

.979

&,,

1.b371.230

1.8171.523.80b

1.691L.M6

L.652L.L53L.Ml

L.L06L.2ti.993

611

0

.733

.ml

.806

.992

.857

.535

.820

.613

.U1

.661

.960

.831

.396

.8L2

.

47

TABU 9

~e-1 Resistance of Air Spaces:

ValWs @ven are ‘lR1l= l/c.

Dtiension across Air Space1titition: 1,, 2,1 3“ ~tt 5,, 61,

@SOUR RAD~TION:

Horizontal Heat Flow................ .830 .822 .768 .696 ::: .577Heat Flow Dom ...................... .830 .828 .818 .813 .908

INSIDE AIR TO WT~i

Neat Flow ~ ........................ .907 .759 .6b5 .550 :;: .356HorizontalHeatFM ................ 1.020 .093 .752 .656 .502Heat FIowDem ...................... 1.393 1.370 1.292 1:2M 1.M1 1.U7,

IWIDE AIR ‘TOSM WATER:

Heat Flow m ........................ .936 .793 .680 .591 .L99 .39hHorizontal Heat Flow................ 1.005 .9b2 .795 .692 .m .5L9Heat Flow Dom ...................... 1.630

~SIDE AIR ~ ~SIDE AIRI

OOOMnR Season:

Heat Flow Op........................ .838 .760 .673 .605 .530 .b69Horizontal Heat Fbw ................ .853 .8L3 :;g .688 .616 .602Heat Flow Dom ...................... .928 .926 .9o8 .885 1.0L2

Heating Seasont

Heat Flow Up........................ .98L .867 .78h :;g .612 .5L6Horizontal Heat Flow................ 1.027 .995 .953 .728 .7UHeat Fbw km ...................... 1.028 1.025 1.021 1.007 .989 1.188

@ * NO ~sdation

THwL WNDUCTIV1rY OF COMMON WWDS I

Fir,Fir,Fir,Fir,Fir,Fir,Fti,Fir,Fir,Fir,

balsam, (Abieg bdgmea) ....................corkbark, (Abie9 mizonica ).................lowland, white, (Abie9 grandig).............noble, (Abie9 nobi~g )......................red, (Abies magnifiua)......................9ilver, (Abiea @biUa )....................wt]ite,(Abies concolor).....................C0ugla9, c0a9t type.........................OOuEhs, inland empire type.................Mugh9, mountin type......................

Omwood, black (Ny99a sylvatice).................Owwood, tupelo, (Nyeea aquatic)................Omood, blue, (Eucawtue glob~ua) .............Ommd, rod, (Uqtidmbar 9tyractilua)..........Oumbo, Umbo, (Bur9era gi~uba) .................

Hackberry, (Celtis occidenta~e ).................Haw, pem, (Cratiegu9 t0mento9a).............0...Hemlock, ea9tern, (Tau&a canadengis).............Hedock, muntdn, (T9uga merten9iana)...........Hedock, wegtern, (Tguga heterophylb )...........Hickory, bigleaf, (Iticorialacifioga)............Mckory, bitternut, (Mcorla cortifor~g )........Hickory, mckernut, (Wcoria ala)...............Wckory, nutmeg, (Mcoria Wrieticaefotig )......lUckory, pignut, (Wcoria glabra)................~ckory, 9hagbwk, (ticoria ova~) ...............Wckory, water, (Mcoria aquatica)...............Hol~, (Ilexopca) ..............................

Inkwood, (hothea panicdati) ....................

brch, wegtern, (kix occidenta~s ).............hurel, muntiin, (KaMa htifolia ).............kcuet, bhck, (hbinia peeudocacia).............bcu9t; honey; (Cletitaintriacanthog)....

Madrona, (Arbutus manziesil)..............Magnolia, cucmber, (Magnolia ac~nata )..MagnoMa, evergreen, (Magno~a grantifloraMagnoti, muntdn, (Magnolia fraaeri)....

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .ktiog~, (Swieteti a.)................. .......

;pecifi{;ravity

.3L

.28

.31

.35

.37

.35.35.L5.hl.ho

.b6

.L6

.62

.bb

.30

.49

.62

.38

.h3

.38

.62

.60

.&

.56

.66

.6b

.61

.50

.73

.L8

.62

.ti

.60

.58

.LL

.b6

.bo

.b6

lox

0.770.660.830.790.630.790.190.980.910.89

1.001.001.330.960.70

1.061.330.850.950.851.331.291.371.201.421.371.311.08

1.56

lob1.331.b21.29

1.250.961.000.891.00

Itent o15%

0.820.690.a7o.abO.a7o.~ho.8&lob0.960.9L

1.051.05l.bo1.020.73

1.12l.bo0.aa1.Wo.aal.bo1.35l.bh1.261.b71.LL1.371.M

1.63

1.101*4O1.L71.35

1.311.021.05;.:;.

re

20X

0.a50.730.91o.a70.91o.a70.a7l.Oa1.000.97

1.101.101.U1.060.77

1.16l.bb0.931.OL0.931.LLl.bol.~a1.321.55l.~a1.k21.la

1.69

1.Ul.kb1.551.LO

1.361.W1.100.971.10

THLWL CUNDUC’rlVITYOF ~FU>lONW~DS :

A9h, white, (Fr=inu9 ~ericana) ................Ash, white, (Frdnu8 BP.) ......................Ash, Oregon, (Fr=in~ Oregon)............. .....Ash, black, (Fradnug nigra).....................Ba9swood, merican, (TiMa ghbra )...............~ech, american, (Fagm grandifotia).............Birch, yellow, (Betda lutes)....................Birch, gray, (Betti pop~ifo~a) ................Birch, paper, (Betfia papyrifera)................Birch, sweet, (Betti lenti).....................Birch, Ala9ka, (Beth daskana) .................Blackgum, (Nys9a 9ylvatlu) ......................Blackwood, (Adcemia nitida)....................Buckeye,yellow, (Aescdu9 octin~a).. ...........Butternut, (Jugbns cinerea).....................Buttonwood, Florida, (Conocarpua erects).........Cagcaa, (Wwm purshima) .....................Catilpa, (Catolpa gpecioga)......................Cedar, white, northern, (muja occiden~~s ).....Cedar, red, ea9tern, (Juniperue virginiana)......Cedar, red, wegtern, (Thuja pMcate) .............udar, white, gouthern, (Chmecyperis thyoides).Cedw, Port Orford, (Ch-ecyparie lawsotim)...@&r, ~aska, (hecyxris nootkatengis)......Cedar, incense, (Hbocedrw decurrene)...........Cherry, black (Prunue serotina).................Cherry, pin, {Prunue pennsylvanica)..............Chestnut, (Castenea dentate).....................~ttinwood, black, (Poptiu9 trichocarpe).........Cottonwood, eastern,(POP~U6 deltiidea)..........Cypres9, aontbern, (Tmodium diatichm).. ........Oegwood, fhwering, (Cornue Florida).............Mgwood, Pacific,(timm nuttiUll) ..............muglas Mr, coagt, (Pseudotguga t=ifo~a )......Mugka Fir, Inlmd, (Peaudotguga ttiolia) ....1bugla9 Fir, M.untain (Pseudotauga ttifolia) ....I;lder,blueberry,(Sambucu9 coerulea)..............-, merican, (U~u9 Americana).................Eh, rock, (Utie racemsa )......................Eh, a~ppery, (Ulmu9 f~va) .....................Fir, alpine, (Abiea laeiocerpa)..................

>ecificratityI

.55

.5L

.50

.&s

.32

.56

.55

.h5

.L8

.60

.b9

.L6

.83

.33

.36

.69

.50

.38

.29

.M

.31

.31

.ko

.b2

.35

.h7

.36

.Lo

.32

.37

.L2

.4

.58

.b5

.kl

.Lo

.L6:$

.L8

.31

Ilk

10%

1.181.161.080.980.7L1.201.180.9alob1.291.06l.m1.790.760.all.bal.OaO.a5o.6a0.960.720.720.a90.930.791.02o.alO.a9o.7k0.a30.931.371.250.900.910.a91.00l.m1.22lob0.72

‘orkloiatureIntentc15b

l.zh1.221.Ulob0.761.261.2&lob1.101.351.121.051.a60.79o.a6l.sb1.uo.aa0.721.020.7ho.7h0.9L0.9ao.&l.Oao.a60.9L0.760.a70.9a1.M1.31lob0.96:.:;

1:051.281.100.74

204——

1.301.27l.lal.Oa0.811.321.30l.oa1.U1.LO1.M1.M1.920.a30.a91.60l.la0.930.751.060.790.790.971.020.a71.120.a90.970.al0.911.02l.ba1.36l.Oa1.000.971.10

:$1.M0.79

50 Table M

Maple, bigleaf, (Acer mcrophyllm )..............Maple, black,(Acer nigrm) .......................Maple, red, (Acerrubm) ........................ttiple,silve~, (Acer 9accbinm) ................Maple, 9triped, (Acer penn9ylvaficm). ...........Maple, 9~ar, (Acer saccham) ...................

oak,Oak,Oak,Oak,oak,oak,oak,oak,O&,Oek,Oak,oak,oak,oak,oak,Oak,oak,oak,oak,oak,

Hne,Pine,Mne,Mne,Hno,Pine,Hne,Mne,Pine,~ne,~ne,fine,Hne,,Mne,Mne,Hne,14ne,

1I(

1I1111

(

1

1I1

~lack,(Quercue velutina)....................our, (Quercue mcrocarpa) ..................;aliforniablack;(Quercue kelloggii)........:anyon Uve, (Quercue chryeolepie)..........:hegtnut, (@ercue rent- )................lawel, (Quercue laurifo~a) ................Uve, (Quercuetireinlana)..................lreeon whiti, (@ercue garryana)............?in,(Quercue palustris)...........’.....~st, (Quercue 9telhta )................red,(Quercus borealie).................IockyMountain White,(Quercue utahensiascarlet,(Quercue coccinea).............southernred,(Quercu9 rubra)...........

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .3wmp red,(Quercw rubra~godaefo~a)......3wamp che9tnut,(Quercu9 prinue).............3wamp white, (@ercua bicolor)..............Jater,(Quercue tiara).........,.............~~te, ( @ercue ala)............. .........tillow,(@ercue phe~oa )....................

jack,(Pin~ bankeiana)....................Jeffrey, (Mnua jeffreyi)..................umber, (Mnus fleti~e) ...................loblo~y, (Mnus tied)....................lodeepole, (Pinu9 contirti)................bnglmf, (Mnu9 paluetris).................muntain, (Mnue puneene)..................northern white, (Mnu9 strobua)............Norwayl (Mnua resino9a)...................pitch, (Mnw rigid)................ ......pond, (Pinue rieida 9erotina)..............sand, (Hnus ectinata).....................ehortleof, (Pinue echinata)................gkh, (PInug caribaea)....................eugar, (Pinue ti[bertiana).................weetern white, (Ianue monticob) ...........western yellow, (Pinue ponderoea)..........

;pecfliclratityi

.Lh

.52

.L9

.ll&:;;

.56

.58

.51

.70

.57

.56

.81

.a

.58

.60

.56

.62

.62

.52

.61●6O.6L.56.6o.56

.39

.37

.37

.50

.38

.55

.h9

.3L

.Lh

.&5

.50

.L5

.L9

.6L

.35

.36

.38

10%

0.961.121.060.960.961.22

1.201.251.101.501.221.201.751.371.251.291.201.331.331.121.311.291.371.201.291.20

0.870.830.831.080.851.181.060.770.960.981.080.981.061.370.790.810.85

1.021.181.121.021.021.28

1.261.311.161.561.281.261.811.4L1.311.351.261.ho1.LO1.181.371.351.4L1.261.351.26

0.920.870.871.N0.881.2L1.120.821.021.Ob1.u1.OL1.12l.Lb0.8L0.860.88

——20$

1.061.231.161.061.061.3

1.321.361.211.631.3h1.321.861.481.361.LO1.32l.kbl.bh1.23l.bz1.LO1.L81.32l.&o1.32

0.950.910.911.180.931.301.160.851.061.081.181.081.161.L80.870.890.93

,,Popkr, balsam,(Popdue balsatifera)...............Popbr, ye~ow, (Pop~u liriodendron tdlpifera )..

Redwood, (Seqtiia sempefirena )....................Rhododentin, great, (~ododendron _um) ........

Spruce, b~ck, (Mcea Diana ).....................Spruce, Mgeknn (Mcea engek~i) ..............Spruce, red, (Mcea rubra).........................Spruce, Sitka, (Hcea sitchenais)..................Spruce, white, (Hcea ghua) ......................Sycmre, (Phtanu occidentals )..................

Tuack, (Mfi laricina).........................Teak, (Tektcna grants)............................

Walnut, bhck, (J~lans tiara).....................Walnut, Mttle, (Jughns rupestrls)................WIUOW, bbck, (Salti tiara).......................Wi~ow, western bbck, (Salk lasiandra)...........Witch Haael (-eMe tirgitiana).................

Xew, Pacifio, (Tw brevifolia)...................

pec~ilratity

.30

.38

.hi

.50

.38

.31

.38

.37

.37

.b6

.L9

.58

.51

.53

.3b

.39

.56

Ilkn

Dx

0.700.85

0.911.08

0.850.720.850.830.831.00

1.061.25

1.Ml.ti0.770.871.20

1.29

)rMoistureltentw

0.730.88

0.961.U

0.880.7L0.880.870.871.05

1.121.31

1.M1.200.820.921.26

1.35

0.770.93

1.W1.18

0.930.790.930.910.911.M

1.161.36

1.211.250.850.951.32

1.LO

Note No. 1. The average specific gratity listed in the first colm is baeedonvolme when green, and weight when even ~. To ob~n the weight inpounds per cubic foot, mdtip~ the qpecific gravity by 62.b whichisthe weightof waterin pounds ~r cubic foot.

Note No. 2: ‘Theabove the-l conductivity coefficient have been derived from in-forwtion contdned in U. S. Fore9tProduots kboratory, hdiaon, Wis.,“Tecl.llcalN0tu9 No. 218 and 2h8.

52gblq 11.

@nductitity or Conductance of Institing titerial.

Values are givenat 75°Fmean temperate.

Wterfil: SFbol Nkal nC*

Acouatio Ins@tion Board (Oektex) ............... Ml. .3L0

Bacite@ld Set InsulationCement,38............. ~G .350“BXSpintex,6# Bhnket Instition................. Bx .40

OelotexAceuetlcBoard............................ ml. .3koWllufoem, (haofite)............................. cm .260Oement,In9&ting, “SUPER-66’’.................... :-$ .L90kment, Institlng,“SUPER-~8”, &# ............... - .Mo@rk Pdnt, Grantitid,8#........................ OKCK 1.m

Foamghs8, Ilpcll,.............. ................*. mu .395Foamthane,(Wgid Pow-Urethane).................. FTSW .170Fibergha Board,b.25#............................ FR~~ .*OFiberghs Board,9#............................... FS9 .230FibergMss Blanket,PF-334........................ FGo.5 .30FiberglassBMet, PF-336........................ F~l .2h5Fiberghgg,UltraliteBhnket, 0.75#.............. FGO.75 .295Fiberghge,~tralite Bhtiet, 1.001.............. FGL? .275Fiberghes,~tralite Bhnket, 1.50#.............. ;~;i5{l .255Fiberghgg,~tralite Bhnket, 2.00if.............. .40Fiberghga Bhnket, Mcrolite, %305 .............. B-305 .2hFiberghgs BHet, UtraMte, 3.00#.............. FG3# .225

tiirFelt,U-131................................. w .20

KayloB1o*, (85%OaloiumSiMcate)............... KAYM .375

Mgnegia Block(85%Oarbonateof Magneala)....... mK .510MONO-B~W, 18-20},FeltedNochool.............. MOWS .600finaralwoolBhnket, 8#......................... . Nw-8# .235Mneral Wool Bhnket, 6#......................... w-6# .&o~neral wool Bhnket tfL8tt,8#.................... Nw-b8-8 :%Mneral WOO1 BWet, l!h8!t,6#.................... m-L&6

~MPAN, (Xnded Mustyrene) ................. pm .240

53

Table11.

Oonductitityor Conductanceof fistitlneMaterial

Valws are giwn at 75°Fmean tem~ratue.

Wteria18 Sflbol: Nkfi “Ctt

NOCWO1 BWet, 8#.............................. W8 .235NO&wool Btiet, 6}.............................. -6 .&o

Spintex,BX, 6#.................................. Bx .tioSprayhpt, (Asbeston~ber), 12#.............. SPL :;;Stpfom ........................................ STXN

THW (Mold UreMne Fore) .................... THUN .170~emobestos Blo& ................................ THW .325

~TWNg (M@d Fom) ............................. ~TH .170

Vetictite (~nded Wa), 50ffaggregate....... ~ l.moVedctite A~regate Spr~ (Mea)............... 1.700

VULTAFW (Pou-Urethne) ~2 sprayed............ w-w .aoVULWOAN (~v-Urat@e) CC13Fsprwed.......... WA .s7

NO~I Valuesgivenfor any eprqed p~stiasare for aged cotittin.

54

Table12.

tinductltityor Conductance of Panels and Boards.

Valwe are givenat 75°Fmean timperatme.

Materialt S*O1 ,,kll ncm

A9besto9-@ment Board (APACE)..................... APAC h.~Aebestos-CementSheet, 3/88s(123iY)................ AG123 -’-- 7.20A9beetoa Sheet, b8.3#............................. M-48 .W

OA~YSTO~ Wallboard, 3/16N...................... m ---- 21.boM~YSTO~ Sheathing Agbestos bard, 3/16”........ WA ---- 21.LOCEmTEX, Acouetic Panel.......................... Ml .340tirkboard, 7#...............................”..... CM7 .270Urkboard, ~# ................................... Cmu .3L0

Unabegtog Board................................. UB b.000

~rine Board,60-P (Ni~n Asbegtoa) 7/8~*panel.. Mm .7X .8titiiw Board,WP (Nipwn Agbes~e) 7/8”Pael. MBMO 1.LOO 1.600

tiinite 23$,7/8”panel......................... M-23 .550 .628~nite 36},7/8”pail ......................... M-36 .76o .868tiitite 65,Y,7/8’1pail ......................... M-65 1.500 1.718

brim veneer,3/16npanel....................... M.V. 1.500 8.OWwine Veneer,perforated~ound,3/16qpanel..... P.M.V. 1.880 10.030

tiwtite, StindardPregt~od..................... WP l.boohaotite, TemperedPregtwood..................... Mtp 1.500w90tite, Preetwood,Die Stick................... Mds 1.850hgonite, Panelmod.............................. Mpw .78o

,,.

P~ood, ~whs U, Pres9uretreated........... Plwd .78o

.>

~

Oonduotivityor Conductiveof Deck OoveringMatefib I

Vduoa are givenat 75°Fmean bprat

Wtiriall

‘OOWLWn W@eaita ................................~nvae, aet in badand paintad...................

D=-&~, ~h” Subcoten........................D~-G~, Terrazzo(Mtex-matio)................

Fiberghae tinete, 65%, tnwebd-on .............

Uobm, SettbaMp Gray,~~ ...................

~gneeite, Regti Soratah.....(Selby# 9@Wl)...~gneeite, Matited Scratch...(Selby# 92-0~)..o~meei~, Wom~~On ........(Selby # 7K).......Mgneaite, Hard mat ...........(Salby# WO02)..4~gneeiti, SelbatexRerd Top......................

~~bond @, ~b” bondingmedia..................mgnabond #3, w“ bon~nsme~.................~

mTsx ...........................................

Tib. .. . . . ..o.....................................

Mm t For woodde~ coveri~ aee Tabh M.

aWV

DxmT%O

Pm

m

ma

H7KMoSTX

nomHOD3

WI

TIU

nkll

1.8&----

1.3s06.3S0

2.000

—-..

5.m1.880.7006.m6.~

1.3s0L.bm

4.4M

12.000

55

8Ga

1.250

1.-

%

Conductivityor Conductanceof Itismllmeow Materials.

Val~e givenare at 75°Fm- temperat-.

Mterial: s~bol Nkm ❑ Cn

Alhum A~oys .................................... a. y~;.;Stiel.............................................. Stl. .

FreahWatir..;..................................... N b.05S6a Watar.......................................... SW b.02

Paper,Roofing,Heav Ron ........................ Pap --- 6.50

f

had .............................................. bad Moo

Rhber, ❑oft,5~. ................................ *S 1.22R~ber, eoft,e~tied, &.8#...................... m-x .boR@ber, krd, 7k.3#............................... ~H 1::Rubbr, Ce~tir, 3.7- 7.5)...................... w-o

knm Heatfbw q to 0° veatherairpaaing: fromcomNr@nt timporat-:

100 zoo 300 Loo 5.0 ho 7.0 &o

18. 1.257 1.388 Lh78 1.557 1.620 1.676 1.725 1.775~. 1.235 1.3U 1.L57 1.537 1.590 1.658 1.707 1.754~. 1.213 1.335 Lb20 1.&9b 1.551 1.605 1.651 L69036n 1.2W 1.326 l.bM 1.L86 1,5L3 1.597 1.6Jh 1.605L2” 1.107 1.306 1.39h L 46& 1.519 1.574 1.620 1.661ho- 1.173 1.VI 1.371 LL40 1.L95 L5M 1.590 L630

fieideWftioe 1.53° 3.1505.w” 6.80° 8.90° .U.OOO13.20°15.60°Tomp;

I Frm I Horizontalheatfkw to 0° weatherafi [

K9paoingl

Mo

18. 1.068&“ 1.05030. 1.03636n 1.022L2” 1.012~8,1 1.005

tiBitiWfaM 1.27°Tap I

from com rb

ESo 300 boo

1.172 1.Xl 1.3~1.155 1.229 1.301.138 1.2~ 1.2671.123 1.195 1.2521.U 1.182 1.239l.~1 1.167 1.223

2.60° L.M” 5.50°

nt terneratw

T

500 600

1.365 1.4~1.342 1.3891.3U 1.3581.302 1.3461.287 1.3291.270 1.3M

T7.20° 9.00°

:

T7~o 80°

u~6 1.L991.L35 1.&78l.hOO LL381.390 1.4281.370 LL08L350 ~ .390

D.ao” 12.60°

7 ●

Fr- Heatflow&m to O“ weatherairSpaoiog: f~m oompor~nt temperatm:

Uo 200 300 Loo 5.0 @o 700 Mo

18. .949 1.03b 1.099 L 152 1.200 1.246 L 285 L312~“ .930 1.012 1.078 1.131 1.180 1.225 1.26L 1.29530U .922 1.003 L064 1.M 1.M2 1.2oh 1.2b 1.270~“ .907 .988 1.050 1.M2 LU7 1.188 L 22L 1.252L2” .9W ●979 1.039 1.090 1.135 L177 1.2U 1.aobon .a96 .972 1.030 1.080 1.U2 1.U3 “LU9 L223

boideSwfaoa 0.80° 1.70° 2.80° 3.90° 5.20° 6.50° a.m” 9.90°Tmp I

oII

*

m Table15Valuesof “U’t

181, 1.2ob 1.518 1.663 1.770 1.8602b” 1.172 1.11701.625 1.732 1.82130. 1.171 1.b68 1.608 1.715 1.79536. 1.U7 1.b30 1.58b 1.691 1.7’{5b2n 1.139 1.k20 1.570 1.669 1.750hen 1.135 1.b19 1.552 1.648 1.78 &

1.9361.8961.861.l.8L31.8191.795

31.bo”mmSurface28.11°28.70°29 30° 30.00°30.70°

Ymo Horizontalheatfkw to 28°F.seawter

pcing t fMm w

300 I boo I5.0

~rhe

60°

1.4861.4b71.L371.k161.4031.391

a .50°

t temp

&

1.5s91.5191.5071.h861.b701.h56

ratme

F

1.6221.5831.5651.5LL1.5271.5U

f ~~

tl. or Al.180

1[1.050 .284 1.397

24u .022 .249 1.36b30. .027 .256 1.35636~ .003 .233 .33hL2U .998 .2U .322b8n .997 .2Q .3U

30.70’30.10

~artmenttemw raturf

80°

from cc

~

1.2301.1901.1921.1721.U31.156

-

700

1.3581.3221.3171.2951.2861.275

90°6001.2981.2631.2601.2401.2281.221

.937 1.136

.917 1.M4

.925 1.ML

.903 1.083

.900 1.o76

.900 1.070

1..4111.37b1.3671.301.33L1.323

29.60’28.80’29.20< 30.20’

I

=Value e of “u’!

oIIMide Air b Mside Air.No ba~ation

HeatflowUP fmm 70°F.compar~nt timp.b- compartmenttemp:

W“ 30° bo” 50°1.128 1.115 1.09b 1.0681.096 1.08b 1.065 1.0381.06$ 1.05b 1.036 1.0151.oh9 1.Oko 1.022 .9981.032 1.022 1.005 .9831.000 1.000 .981 .965

h6.h9°51.37°56.23°61.01°

60°

1.023.992.973.957.9h2.927

F.979.952.932.9U.903.889

1.1531.1201.0861.0731.0531.025

1.Uo1.3061.07b1.0611.01131.017

- Stl. or U.

36.L6C0.58( 65.67Cj7.92’

uHofinontalheatfkw from70 comwrtmenttamp.

b~

.920

.891

.876

.858

.8b5

.831

,5.85<

lpartm

300 ~

.892

.863

.85o

.833

.819

.808

0.61

100 ~

.863

.835

.82A

.805

.795

.786

j5.L2°

00

{

Sti. or Al.

.92b

.895

.880

.862

.8L9

.83k

&o.9L’

.835

.807

.799

.780

.771

.762

17.77C

.929

.899

.883

.865

.852

.837

)6.OO<

.916

.886

.870

.852

.839

.826

;..80(

.907

.875

.863

.81i~

.831

.818

;5.73a

Heatflowdownfmm 70QF.mmpwtment temp.to compartment tempi

30° I Loo I 500 I 600 65°10°0“, 1 I

.765

.738

.728

.709

.699

.760

.732

.722

.70&

.695

.685

.755

.728

.718

.701

.691

.682

.7L8

.721

.712

.695

.68L

.677

.731

.70L

.698::;:

.6ti

,767.7L0.730.7U

.763

.736

.726

.707

.698

.688

.7ti

.685

.68L

.662

.655

.6L9

57.L9°

.700

t

.691 .69o

32.80°38.17( I118.80°5A.2L”I59.57°6k.87’hsideSurfacaTemp.

60

ValMa of nun

No fistition. oII

F bnatrvotAon: Oondition:t 4u & D

Soti ~tiation............ ---- 1.755 1.6UWeatherAir b fisideti.. 1.b91 1.320 1.206

s. Sea wateru Mside Ati....l.be~ 1.3@ 1.198

Stl. or Al. fiside Air to ~eide Ati... 1.U3 .930 ..801

L hside Air to WeatherA*., 1.6U 1.390 1.22kw. hside Air to SeA WAter..i. 1.775 1.b86 1.295

heide Air to ~lde Air... .998 .833 .695

F

3. Sohr ~diation...,........ See Ncteen Fage 8

Wtiv ohs6 hside Air to Wide ti... .82

9@le -e

w. IneideAir b Weather~.. 1.Uheide Air to heide Ati... .75

k ,

Uhdov Ohsa s. Sob btiation............ See Nction Fage 8

~e-~ fisldefir to fiside~... .53

* * 9~oe

w.hsida Air b Weather~.. :8Maide Mr to IneideAti...

1“

s. Msib Air h ~ide Ati... .59 .50 .b3

~2fl%36#

W* beide Air to hdde U... .55 .b7 .39

~

s. haide Air b ~ide M... .7L .61 .50

~2ti&65#

w. hide Ur to hide fir... .69 .56 .M

S - Ooo~ Sea80n W - Heating Seaaon

61

P—

;.

i.

f.

1.

).

tinehtion:

*

5/8N&65#‘JoinerShd

la M Spaoe

t

SheetWtelJohr Shd.

1*’1Air S~oe

rSU. or U.

Tabb ~.

Vdws of nun.

No Mstition

s.

w.

s.

u.

s.

w.

s.

w.

s.

w.

@ndition:

Mside Air to hside Air...

InsideAir b IMide Air...

haide Air b kids Air...

hside Air to hside Air...

t

uA J

D

.h31 .376 .319

.bo7 .35b .285

.313

.283

.L25

.373

---- .736 .5U.7M .591 .363.767 .6u .361.609 .b73 .330

.882 .686 .U2

.935 :~y .359

.537 .281

.673 .b79:G .550 .3L7..- .571 .3b6.567 .U7 .317

.796 .633 .393

.Wo .657 ---

.5@ .398 .272

S _ 000bg Season ‘U= HeatingSeamen

3oh Sediation............ieatherAir to hsida Air..jeaWaterto hside Air....hside Air b hside h...

baide b to WeatherM..kside Air to Sea Water....kside Air to bide Air...

lolarNadietion............ieather~ to ~aide Air..;eaWaterto tiside&....baide Air to haide Air...

~side * to WeatherM..Wde Air to Sea Watir....knide tir ti IneideAir...

oII

62

Table 15

Valwa of l:u~

No hstition oII

ID-—.382.293.82.2?2

Yw

—-

M.

Untition:~

u

----.SW----.h35

s.

w.

s.

w.

s,

w<

s.

w.

s.

w.

5ohr Ihtiation............deather Ah to Inside Air..Sea Water to Ineide Mr....Ineide Air to Ingide Air...

~ Stl.or Al.

Inside fir to Weather Air..Ingide Air to Sea Watir....Ingide h to Ingide fir...

.559

.580

.397

----.6L0----.507

.683

.7U

.b56

.b73

.L86

.328

.590

.L93

.5M

.ho9

.559

.577

.367

.325----.238

.k36

.3a

.322

.298

Solar htiation ............Weather Air to Inside Ati..Sea Water to ~side fir....Ingido Air to hgide Air...—

~ Stl.or Al.

u.

Ineide Air to Weather Air..Inside Ati ti Sea Water....Mside Air to hide fir...

.363

.257.

PStl.or Al.

7/8qvM-;6#

hside Air to Inside Mr...(120°- 80°)

.330

—.—

.89

u.

Ingide Air to Mside Ah..(700-500 )

.398

.352

.36o

.307

.321

.%6

.255

.239

Solar fi~ation ............Weather Air b ~eide Ah..Sea Water to ~side Air....~gide Air to figide Air...

----

.ho7----.358K

Stl.or Al.

7/88tM-36ff

13.

.h38

.L51

.332

----.699----.567

.280----.213

.b79

.3h7

.3L6

.317

tieide Air to Weather ti..~aide Air to Sea Water....hside Mr h hgide Ah...

Sok ~dation ............Weather Air to figide ~..Sea Water b ks~de Air....fisidefir b bgide -...

~ Stl. or U.

u.

.633

.657

.398

hgide Air b WeatherAir.,hgide Air to Sea Water....InsideAir to hai.deMr...

.796

.8~o

.50b

.393----.272

V “ Heatig Seaeen

63Table#

.

Valuesof !lUn

No ~suktion oII

~e @na*otionl tinditiontt +u & D

,..

Sohr ~diation...........Weatherti b InsideAir

s. Sea waterto xneide~r* ● ●

15.haide Air ti Ineidefir..

IneideAir b Weatbr Urw. IneideAir to Sea Water...

Insideh to hside Air..

s.

U.

w.

s.

J7. __—. . .—

w.

“ s.

18.

w.

s.

19.

u.

.

.

S - ~oling SeaeOn W - HeatingSeason

Tabk ti.

Vdwe of 88u!!

fisideAir to Weatherh.

l!!Inotition. 118

fimpaoingt

18. i~“30.34.

b2”~8t,

heidefIW ace

TampI—-

—.. -hemepacingI

18.24m3on%“4211~e,,

hddeurfaceTempI

———bamopaoing:

18.

24”30,,36u~21t48n

Heatfbw up to O“ weatherah

~

.544

.544

.518

.507

.L83

.&5h

710

.L89 .5o6 .52o .532

.La? .50L .518 .530

.h70 .b8k .L96 .506;~; :~g .h8h .b9L

.&6h ●L73.&18 .b28 .L36 .U6

1 ,. 1

35° M“ 53° 62°9° 17° 26°

I I

Horizontalheatfkw b 0° weatherairfromCorartmenttemDf ature

60°

.h63

.460:;;;

.h23

.405

200 300

.k23

.418

.402

.398

.306

.37&

26°

.377

.372

.365

.356

.350

.3L4

.bo3

.3W

.389

.380

.372

.363

170

.L39:::;

.412boo.386

3L” h2° 510 69°

~

.M

.440

.L21

.bm

.bos

.391

6P

Heat fkw dom to 0° weatherahj

200

.367

.359

.356

.3L6

.3L0

.335

om com tmant tem rat~e I

m

3.0 &oo 5.0 60°—

.383 .398 .413 .L22

.377 .391 ●Lob .LM

.370 .382 .393 .bo2

.361 .37~ .386 .396~~;~ .366 .377 .387

.358 .367 .375

700100

:;g

.412

.L08,398.385

570

.347

.339

.337

.327

.323

.320

23° I310 &oO 480

I 1 1

TableM

valuesof “u‘t

h9ide Air to Sea Water.1!,~~~*t~~~

65

1II

1Frmepcing:

300

18*8 .L052b“ .39530W .39136m .380~211 :3&3~Bt#

InsideUrface 29.73=Tempt

Iieatflow up to 2U”F. sea watir Iahmwratura:

80° 90° 1000

.5L5;;$

.50L

.b8b

.L58

73.77°

bo”

.b63

.b56:g

.b21

.bo5

50° 600-

70°

.5M

.5m

.L81

.L77

.L62

.M1

.530

.527

.L95:$;

.M9

.b93

.L87

.L6L

.L59

.LL7

.L27

#tl. or Al.

. .

55.93’6L.791 ,’

&

‘{Stl.or Al.,8~e~tio~

=

}Iorizontalheatflowb 28”F.aeawaterfrem com~rtie t temperature

900 1000

J300

l~n .3682L” .36330n .36136,, .350.~2. .3A5L811 .M

hsideSurface 29.67CTempI

q~o 60°

.bti

.L56

.M2

.L35

.L22

.4081 ,

I

38.oflk6.50055.00063.52°72.12°

66Table 16

Vduas of !VUIU

InsideAir to IngideAir,

in ~9ulati0n 1II

Frame I Heat fbw up from 70°F. mm artmant temp.I

b compartment ten

500

1tio 65°

.U5 .434

.L37 .b28

.L21 .L1O

.k16 .L05

.boh .395

.390 .381

)8.92°@.b6°

Uo

.L80

.h76

.bL7

.446

.b31

.ho5

boo

la,,

2b“301136.~2!,b8n

naidaurfaceampt

.L79

.L73

.hk5

.M3

.b30

.L04

.L67

.L6L

.438

.h37

.b23

.&02

6.790

.L59

.b5h

.&33

.b29

.b17

.399

j7.85°

~ Stl. or U.

.—

62.72° 13.73CX.7L065.76C

—— —_—

=-r Horizontal heat flow from 70°F. compartment temp. 1SpacingI b compartmenttemp:

00 ~o 200 300 boo ~oo @o 65°

18,t .b2b .~23 .422 .L20 .419 .L152b“

.J105 .395.LM .L15 .ku

30. ::; .bol•~13 .1109 .bo5 .396

;p2 .399 .398 .397 .387 :;:;36n .393~2,,

.391 .390 .389 .379 :;$.38h .383 .382 .381 .380 .377. .371

4Bi, .372 .371 .370 .369 .368 .366 .362 .356

InsideSurface 61.19°62.39°63.62°64.84°66.09°67..39°68.68069.34°TempI

Heat flow dom from 70°F. compartment temu.bejpacing

18,,~,,301!36,,

L2”~8t1

h9idaIWfaceremp;

to compartment tel..

):

~

.387

.375

.371

.362

.353

.3k8

-300

.389

.378

.373

.362

.356

.3h8

~

.389

.377

.372

.362

.355

.3h8

100 65°200

.389

.379

.373

.362

.356

.3b8

.389

.379

.373

.362:;::

;8.22°

.389

.379

.373

.362:;;;

.380

.370

.368

.357

.350

.3L5

;8.210

.37L

.363

.362

.351

.3L5

.341

+tl. or Al.

l’thatition

;9.82°11.b5c )3.08( b.76c 19.10°

Table~

value of nun

1. Ina~latiOn 1II

P Oonst-tion: @ndAtini tu

A {D

Solarbtiation............ --- .5W .b8bWeather,firto hside fir.. .L80 .h52 .L29

s. sea water~ ~aide ~.. .. --- .L31 .Lu~side Air to hside fir....L71 .b3b .L05

m L1. ~~fition

~side fir to WeatherMr.. .b9b .&6 .bo8w. ~gide Air h Sea Water.... .k91 .U8 ----

~eide fir h hside Air... .L29 .389 .362

Soti Satiation............ --- .365 .357Weatherfir to ~side Air...3L5 .%0 .330

s. Sea watarto IneideAir.... --- .333 .326Mslde fir to Wide fir...●3n .3M .300

10 ~efi~ontisidetir to WeatharAir.. .33b .318 .301;

w. field.tir h Sea Water.... .3U .330 ----;Inskdefir to E.sidetir....301 .283 .271

SolarSatiation............ ---- .a3 .2L5

Stl.or Al. WeatherAir to ~aide ~.. .225 .2B ::;:”s. Sea Waterto Mgide Air...* ---- .229

hgide Air b IneideAir....2U ;207- .19922

lU ~~~tion Wgide Air to WeatherW.. .210 .206 .198w. fisidefir b Sea Water.... .220 .217 ----

bglde Air to ~side Air....192 .183 .179

1. ~g~tion SolarSatiation............ ---- .359 .317Weathertir b Wgide ti.. .351 ,320 .266

s. Sea Waterto hside . .... ---- .98 .257IngideAir to Mgide Air... .359 .323 .273

tisidefir ti Weathar~. . .380 03% .277w. hside Air to Sea Water.... .37b .331 ---

hgida U b Wide Air... .3ti .287 .ao

la ~&tio~

k

SolarSatiation........... ---- .28L .257Stl.or Al.

s.Weatherfir to -Ida &. . .273 .2& .2aSea Waterb ~ide Air.... ---- .~8 .221....

a ::” 10 ‘:~side W h ~ide ti.. . .270 .253 .221

tiel ~ting tilde Air to WeatherAir.. .278 .257 .223

s.M.wg w. tiaideAir h Sea Water.... .282 .262 ----tiide Air b Insideti.. . .&s .2* .U7

S - Whg Seeeon W - Hea~ Seaeon

Table16.

——.

m ConstructionI Wndi tlontt

u !{, 4

q-.,~.m D.—

1,,~8u~ti0n Sobr Radiation............ ---- .20L .19.3s Weather Air b ~side ,Ati.. .197 .190 .171. Sea Water to Inside Air.... ---- .185 .171h9ide fir to InsideAir... .185

25..178 .Ml

InsideMr to WeatherAh.. .186 .179 .tilw. hgide fir b Sea Water.... .193 .186

InsideAir to tieideAh... .ti8 .157 .M3—___

1,,~~ulatlO*

*

SOtirRadiation............ ---- .3b3 .3ob

Stl. or Al. Weather Air to Ingide fir,. .35L .30a .257‘. Sca Water to Ingide fir.... ---- .287 .2b9

...... . hside fir to hgide W... .3M26. ‘i”’’”:”

.3M .26L

Channel Mring hgide tir to Weather fir.. .363 .321 .26a

3~161!M.V.w. ~side fir to Sea Water.... .357 .318

InsideAir to fisideMr.. . .312 .276 .2A

1“ tiatiation

*

SOlnr~tiation............ ---- .320 .286Stl.or Al. s Weatherfir to hglde Air.. .328 .289 .~

. Sea Waterb figide&.... ---- .271 .237... ............... .....

27.IngideAh to InsideAir... .321 .’292 .251

Wside Air to WeatherAir.. .337 .301 .254~,,c~~ll wring w. InsideAir b Sea Water.... .333 .299bside fir h Mgide fir... .293 .261 .223

1,,~~~atio~

*

SObr Radiation............ ---- .25L .232Stl.or ~. ~ Weatherfir ti In9ideW.. .260 .23~ .20&

. Sea Waterto hide &.... ---- .222 .197........ .28.

hgide Air to Mgide Air... .25L .236 .208

Insidatir to Weatherh.. .26b .2h2 .2U01 tirtig w. hdde fir b Sea Water.... .261

7/a”M-36#.240

bside fir to fisideAir... .236 .216 .la8

ll!~9dati0n

*

SolarRatiation............. ---- .27k .~8

Stl.or Al. Waatherfir to hgide Air.. .2a .252 .218s. sea water~ ~alde ti ....

----- .&o .2UIneideAir b IngideAir... .261

29. ‘1” ‘1~”“’””’.a5 .2U

hnnel ~ng heide fir to WeatherAir.. .268 .2h8 .2173/fi01M.V. w. hside fir b Sea Water.... .272 .25h

hside Ah to hside Air... .238 .2U .192

I

I

S = Oootig Seaeon W . HeatingSeason

w @natmotion: UntitionItu

& +D

Solarbdiation............. ---- .259 .237111I~UlatiOn~ WeatherAir to hside Air....250 .239 .209“ Sea Waterb InsideAir..... ---- .2B .W5

)00InsideAir to InsideAir.... .a8 .233 .206

i~Ctiel ~ring hside Air to WeatherAir.. .255 .237 .208~,,~65# u..Insidefir ti Sea Water.... .258 .til

tiaideAir to fieideAir... .227 .2M .18L

lN h9titi0n Sohr ~diation............ ---- .2U .199

* ~

s Weatherfir to fisideUr.. .208 .m .178Stl.or Al. “ Sea Water to hgide W.. .. ---- .193 .176

Il.Ingide Air b Inside Air... ●m .196

1!!.177

Channel ~ring Inside Air to Weather *.. .2U .~9a .~7a~;

7/a~~L36ff w. Ingide fir b Sea Water.... .213 .202 ‘.;Inside Air h Inside Air... .191 ,179 .M1

Solar bdiation ............ ---- .199 .la9111~~fition

s

se Weather Air to Mgide Air.. .193 .la6 .16aStl. or Al. Sea Water to ~side fir.... ---- .lal .167

12.hgide Air to fiaideAir... .lal11, ;;~: .17b .l.5a

Ctiel ~ring IngideAir to WeatherAh.. .la2 .17L .Ea3/16nM.V. w. IneideAir to Sea Water.... .laa .la2

kgide Air to IngideAir... .165 .15L .U1

Solarvitiation............ ---- .191 .1821,1~~~ation

* ~

~ WeatherAir to ~oide Air.. .185 .~7a .U2Stl.or D. . Sea Waterto Ineide W.. .. ---- .175 .fi2

33.;,.r heide Air b Ingide Air... .175 .16a

1,, :.>!..153

Inside Air b Weather fir.. .176 .169 .U3~,,~~~1 ~ri~ w. Mgide fir to Sea Water.... .lal .175

figideAir to InsideAir... .159 .U9 .U7

Sok bdiation............ ---- .165 .15ain ~g~tionWeatherAir to IneideAir.. .Ml .156 .U3

s. Sea waterto heide ~.... --- .U2 .M3

lb.hsida ti to tiaide&... .U3

1,, .~8 .136

ChannelMring ~iide Air to Weatherti.. .U3w. IMide Air ~ Sea Water.... .Ua

.ua

.V3.u6

hside Air b ~eide h... .~1 .133 .W

S - &oUng Season W - Hating Seaaon

pa—

)5.

36.

17,

)8.

39.

tinstNotiont

Table16

ValwO of ‘lU’!

1,,~efiti~*

5.

u.

s,

i.

3.

d.

s.

w.

s,

it

@nditiontt

u

heide Air ~ heide A*...(120- 80)

InsideAh h heide Air...( 700-500 )

heide Air to IngideAh...( 120°-80° )

Wgide Air to Maide Ah...( 700-500 )

Wside fir tg ~side M...( 120 -m”)

Insidefir to ~gide AAr...

( 70° -50° )

bgide Ah to Mside -...( 1200-80° )

tiaideAir to hside ti...

( 70° -50° )

InsideW to heide fir...( 120°-80° )

hgide Air to ~eide Ah...

( 70° - 50:)I

1II

+.

DA

.296

.264

.226

.198

.166

.UL

.22k

.195

.209

.183

S . ko~ Seaeon U - Hea~ Season

OonstnotionItu H

- 4

Dme Oontitions

F

In ~a~tion s. ~side fir to heide Air... .222@m tiepaoe (1200-80° )

bo.

7/8”w3@n. ~aide fir to Ineida*... .198

(700-50° )

En

mhsulation s. hside fir to fisideAir... .U9.l~flAirapaoe (1200- 80°)

u. lM ~~fitio

7/80M-36#v. tiaidefir to Ineidati... .M~

(700- 500)

1. ~e~~~ns. Insidefir to heide fir... .m

(120°- 8@)

n. heide fir U tiside~... .131

(700- 50?)

~ 5U tin~ce

B

lfimetition s, ~side fir b ~ide ti... .202ym&ur Ig

(1200- 800)L3. “. 1*’Jtiswce

7/8*b36#w. fieidcfir to Mside *... .U?

(700- 500)

~ 5“ Mrspce

R

1’1hetition s. Mide Air to hside fir... .179

u. i::~::c; (120°- 80°)

7/8u&36# u. InsideAir to -ids U.. . .158(700-50° )

S - OooU~ Seaaon W - Hea* Season

72Tabh M

valuesof nun

1It

in Insuhtion

m bnstmotion: bntition:t

uA i

D

s.

b5.

w.

—-

S.

b6.

w.

s.

k7.

w.)

— .

s.

L8.

w.

s.

h9.

w.

.

S . Wling Seaeon u- HeatingSeaeon

73

2II.

wati-500

.344:g

.3b7

.33h

.3U

h7°

,rair*

.350

.371

.3L6

.357

.3b3

.320

~~o

I*7.0 ~

.359 .369:;;; :;:

Sti or U,

.36L .375

.3L9 .355 ‘““ “

.327 .332 2. ~fi~o~

.306

.3M

.306:3g

,289

.322

.334,320.32h.3s.300

.333.

.3L9

.329

.337,326.307

,I I

1 I

IU“ 28° 37°

Wrisontilheat fbw b 0° weatherairrhentF

.298

.306

.301

.301

.295

.28k

370

-

p

.307

.316

.309

.3o8

.305

.294

fT

.27$

.281

.280

.276i272.267

180

y

.287

.294,al.289.284.276

27°

,tw :~

.3U

.326

.3U,318●3U.297

7

.323

.336

.323

.326

.317

.303

F

.330

.345

.329

.333

.324

.309

.256

.261,263.259.256.253

90 550 6b”

mat flowdom b 0° weather airfmm cor ature

tio

.287

.295

.B2

.Wo

.285

.277

530

T700 80°

.296 .302

.305 .3M

.300 .304

.299 .305

.29b .299

.285 .288

200 ~oo

.238

.239

.245

.251

.255

.259

.253

.261

.266

.268

.264

.260

.257

.271

.276

.276

.273

.270

.265

.282

.287

.285.239.238.238

.283

.278

.272.251.*8

, 1I I

1

I1

350 440 MO I 720

74 ‘Cable17Valueaof 1fUt8

Jrame I Heatflowup w 28”F.gea nter I;~cing fromco

30° I Loo I 500

. 2b9 .307 .330

.273 :;;; .%5

.276 .332

.270 .315 .335

.268 ● 308 .325

.261! .296 .310

Framepacing:

18’!2b1*3011361142(s~8,,

Ingide,Wfacerap:

irti(

MO.3L6.361.342.351.339.319

7.82°

temperature:

700 mo 90° W“

.357 .3(.17,

.375 .388

.351 .361

.363 .373

.3L9 .356

.327 .33b

7.20° 76.62°

Horizontalheatflowto 28”F.sea waterfrom comwrtmenttemwrature: 1

30°

.250

.25h

.262

.253

.253

.253

boo

. 28b

.289

.290

.285

.283

.276

50°

.299

.3m

.30L

.302

.298

.289

-

&o.313.322.3U.315.310.297

-

70°

.322

.333

.323

.325

.319

.30L

1 I I 1

H90° m“

k80°

.331

.3L6

.331

.335

.326

.3M

75.71

2II

~Stl. or Al.

*n

,.

Table17.-Values of Uu’j

Frma Heatfkw up from70UF.oompartmanttemp.spacing: h compartmenttemp:

00 mo 200 ~oo boo 5.0 ho 650

18t, .335 .330 .328 .325 .32~ .319 .308 .3m2k” .351 .3L0 ●3L5 .3L3 .339 .331 .31830. .331

.306.329 .328 .326 .324 .319

36~.322 :;g .301

.338 .335 .333~2,t

.330 .328 .302.327 ~326 .325 .32h .320

48!,.316 .305 ::$

0306 .305 .30b. .303 .302 ●ml .29L

~sideSWf ace 65.88°66.u” 67.01°67.58°66.l? 68.77°@.3e” 69.@”Tap : i

FrameSpactig:

la,,

24”30”

$:L8W

~sideSufaceTemp8

Horizontalbat rkw r- 70UF.ec~tient te~. I

.296

.3ob

.299

.297

.293

.283

)4.89°

Tloo no no

.295 .29L .293

.303 .302 .301

.290 .297 .296

.296 .295 .294

.292 .291 ●290

.282 .281 .280

j5.58°66.~” 67.00°

-

.291 .289

.300 .297

.295 .29b

.293 .292

.289 .286

.279 .278

.283 .277:;:; .284

.283.284 .278.281 .276.275 .271

a00.272.278.278.273.270.265

j3.05°

FPIi7.72°‘8.L6° .22°69.610

Heatflowdom from70°Fcompartmenttamp.to computmnt

m

MO 200 300. 4.0 5.0

.272 .272 .272 .272 .271

.278 .278 .278 .277 .275

.27a .278 .278 .277 .276

.273 .273 .273 .273 .273

.270 .270 .270 .270 .269

.265 .265 .265 .265 .265

ti.m” a.95° 65.91°66.a9° 67.91°

empa

Ttio 65°

.266 .262

.271 .266

.274 .269

.268 .263

.265 .262

.263 .259

ia.94°69.470

75

2II

Stl. o? Al.

*

..... ... ..

2II~,~ti~n

76Table17.

Valuesof 1*U18

2II ,

—.

—.~

D

.3b7

.308

.296

.302

.299----.273

.255

.235

.231

.222

*—

50.

51.

tinstruotion:I

Solar lhdiation............Weather Air to ~gide Air..Sea Waterto In9ideAir....bside Air to Ingide Air...“

Ingide Air to Weather Air..Ingide Air to Sea Water....Ingide Air to Ingide fir...

Solar kdiation ............Weather Air to ~eide Air..Sea Water to Inside Air....hgide Air to Ingide Air...

.360----

.3h9----.352

.36L

.363

.322

----.247----.2L5

.327

.308

.322

.326

.325

--4 .292

.259

.ti2

.236

.232

/_21,~gu~tion I .2h4.2b9.226

Inside Air to Weather Mr..hgide Air b Sea Water....Wgide Air to Ingide Mr...

.231

.236

.212

.219----

.203w.

SolarWtiation ............Weather Air to ~gide Air..SeaWaterto ~gide Air....~gide Air to hside tir...

.15L

.ti7

.ti7

.137

.155

.U7

.ti7

.133

Sti.or Al.

*I

s.::,....:,.,:,,:.,::..,:.,:.,.,,,:.,.,.,,:,,.:.,,.,,.

(:!j:,:1“ ,.,,.:

----

.U5----.139

52.

53.

.129----

.122

Ingide Air to Weather Air!.hgide Air to Sea Water....Inside Air to hside Air...

Sok Mtiation............WeatherAir to kgide Air..SeaWaterto ~side Air....hgide Air to hgide Ah...

Wgide Air to WeatherAfi..hgide fir to Sea Water....tiaideAir to ~ido Ati...

.134

.Uo

.128

----.27h----.280

.292

.28a

.2S6

.131

.13a

.14

L 21!~dtion w.

I

,– 2“ ~9titi0n .277.ti9.231.250

.257

.253

.22a

:::

.207

.212

s.

.2m----.la7

SolarSatiation............deatherfir to kide &..SeaWaterto hgide fir....hgide Air to tigideAir...

InsideAir to Weatherti..kgide Air to Sea Water....M9 ideAh to hgide Air...

.212

.196

.la7

.191

. la9

.176

.172

.W

--=-

.~6----.207

*

.....,,.,.,.,::,,.y,.:...,.:..,.,,........111 : 1,1

ChannelMrinCS.M.Mntig

;L.

.20a

.210

.190

.U----.151

.193

.195

.175

S = tiOUng Sea80n W = Heat- Season.. ,, ::. .,

77Yabla 17.

valuesof IIUII

2. In*~latlOn 210

~e Construction: Conditiontt +u ~ D

2,,In~~~tion

*

9ok Wtiation........... ---- .12 .UStl. 9, Weathertir b haide tir.. .U .10 .m

Sea Waterto Inside~.... .U .M........:.,::.,,.:..,.......

55. “ i..“:.: 1“ MBide Air ti Inside“M... :E .10 .U.

Ctielhside tir b Weather &.. .10 .m .09

w. Sea Water to hside Ah.... .M .10 .09S.M.~g ~side Ah b fieide Air:.. .10 .M .09

21!In~tion 9oti btiation ........... ---- .28 .25

Stl. s.Weather fir b“ heide U.. .25 .23 .20Sea Waterb Ineideh.... .29 .27 .2h

::.!...,,..?..,:.>,:.4,...:,.:..2......56.

haide & ti Inside&... .26 .23 .20I

> *L Channel

4 kgide Air b Weather-.. .27 “:2 .22“

3/ti’fMitite ‘. Sea Waterb InsideAti.... .26 .22fisideAir b tiside~... .22.2& .18

21,~3&~on Soti Wdation ........... ---- .25 .23Stl.

s.WeatherAir to Melde Mr.. .23 .21 .MSea Waterto tiside&....T.q .26 .2L .22

M‘.’ +t...f57. ‘“’”‘“’””:”’I’’’’’-’!’”!’“

Ingidefir b InsideUr... .23 .21 .m

khannel helde Mr to Weather~.. .ti .23 .20

~ *’I&idte ‘*IngideAir to SeaWater.... .2L .22 .20hside M b ~side U... .22 .20 .17

2IIIn~~~tiOn SotirSatiation............ --- .22Stl. Weatherti b bside M..

s..21 .19 :;

Sea Waterb figldeW.... .23 .22 .20,:.,i:,..,........:.,::,r..,..,.

58. LInsidefir to hgide &... .21 .19 .L7

> 5 Inside* b WeatherAir.. .22 .20 .Mw. fi9idefir to Sea Water.... .a ,20 .18

tiaide~ b tieldeAir... .20 .18 .ti

2n In~~tiOn

+

SOh ~tiation........... .21 .19fl.

s.Weather& h: hgide W.. :; .18 .MSea Waterti InsideU.... .21 .20 .18

59* “ ‘:”’:;;.“’‘1:’v1, ~side U b ‘~eideti... ●V •~ .~

Wannel heide Air h WeatherAh.. .20 .19 .17

3/ti”MerMte ‘. ~gide ti b Sea Water... .19 .M .17~ide @ to bide h.. .18 .17 .U

S - GoMng SeaeOn w. HeatingSeason

78Tablo17

valuen of “Un 2II211fi~~~ti~~

Yw @natruotionl ~nditionst 4

u & D

Sok Mediation........... --- .19 ::WeatherAir to hside Air.. .18 .M

3. gea Water to InsideAti.... .20 ;19 .17InsideAir to tigideAir... .18 .17 .U

LCknel Ineide.Air to WeatherAir... .18 .L7

~~n tiinite u. IneideAir to Sea Watir.... .18 .17 :2IneideAir to haide M.... .17 .M .U

Sotir~diation..........~. .18WeatherAir to ~eide Air.. :; .U :$

s. sea wa~r to M9id9 ~-• ● ” .18 .17bside Air to figideAir... .16 .s :$

..

Mgide Air h Weather&.. .l~ .ti .sw. ~aide ti to SeaWatir.... .16 .&

hside Air to IneideAir... ●U :; .13

SoMr bdiation............ --- .~ .~~ Weatherb to ~side U.. .10 .10 :09

● SeaWatarto fisideAir.... .~ .10~eide fir b IneideAir... .U :: .U

62.

IneideAh, to Weatherti.. . .10 .09 .09w. heide Air to Sea Water.b.s .10 .10 .W

fisideAir h InsideAir.i. .10 .M .09

SotirWdiation............ --- ●

* ,,

II~allln WeatherAir to ~side Air.. .10 :5 .09s. Sea water b Ineide**• ● ●

:$Stl. .10 .M

:,...:>..,..,::...:,,........1.. InsideAir b InsideAir...63.

.10 .091,, ;~:.:j

InsideAir to WeatherAir.. .09 .09 .09Channel w. IngideAir to Sea Water.... .09 .09 .W

~LlMarinite hside’Air to hside Air... .m .09 .09

SOM Wdiation............ --- .D .10WaatherAir to fiBideAir.. .10 .W .09

9. sea Waterb InsideU... ● .10 .10 .09Meide Air to ~side M... .N .09 .09

6L. 1,,

hside @ ti WeatherAir.. .W ●W .08L Chnel w. InsideAir b Sea Water.... .W .09 .087/8’shini~ heide Air b ~ide -... .W ●W .~

.

.

S - OooUng Season w- &ati~ Seaeon

550

66.

67.

68.

69.

Table17

Valwo of ‘Iu”

2. In@~tiOn

@nditiont It u

B.

u.

s.

n.

9.

u.

so

u.

s*

w.

hnida m to msiti U.,. ---

mi& U to Witi U... ---

Mid. Air to Insidoti... ---

W“’Hea~ Se-n

2II

.22

.20

.17

.U

.U

.09

.17

●U

.15

+D

---

--

.-.

.-.

.-

---

---

---

79

80

.

.

S - OooM~ Seaeon ‘W - H*- Season

81

..

.

2II

— —.

~e : @MtmotiOnt ~ndition!t +u & D

R

2’SMsll!nChmel

s. Ineide& h haide Air.. --- .M --

75. : 7/Bnhrinite,.—.– 7/8n Morinite

w. hside Air b ~gide Air.. --- .U ---

H

-2n I~lllns. InsideAir to Inside*.. ---

- Chml.s ---

74. ‘;;:,,1,,I~llln

---*’1htiniteS.n.uning w. Ineidafir h haide -.. -- .U --,

s. baide b to Bni& ~.. -- .U —

77. > l’!Innllln —— ——

~aide ~ ti hside ~.. --- .U —

B

--2”Inssltn s. InsideAir b hside ti.. ---Cllennel

●U ---

i--- ......l

78. ::..:-“1”lna’l’n.: .-*I!tirinite

7/8~*krinite w. IngideAir b hside ti.. --- .M ---

— ..-.—-- ..—

~

-.20 I~lllns. ~side U b tiaide&.. ---

---Cbmel.ti –-

79.‘f. 1. Inmllln~~“v

~j/:’’MhdfiwAti4 . . w. hside Air b hai& &.. — .~ --

S.= tioling%-on W.= Hea~ Season

aVdus of nu” 2

II

.

.

85,

06.

97;

8.

9*

2II

btition.t iu A D

s.

w.

s.

w.

s.

w.

“1.

1.

1.

f.

83

1,.

84Table 18

Valuoo of ‘Uu”

hgide Air to Weather Air

j!!hstition. 3II

Heat flow ~ )h O“ outside air—

000

.256

.3L

.278

.299

.287

.268

76.9

Fromepacing:

18“2L“30”36,,

b2”481,

— .—WsidelirfaceTemp:

from c ~Wrtient Lemp:

500 ~

.250

.288~.272.293.282.265L

.232 .238

.2b~ .272

.2j6 .263

.270 .277

.26h .271

.251 .255

.2b5

.279

.268

.285

.278

.259

.200 .213

.219 .237

.226 .239

.230 . 2L8

.226 .2b3

.224 .235

.225

.251

.2L9

.259

.25L

.2b3

28.5C

{

9.5° i9° 57.5° 67°38° ~80

I

———Frame,pcing:

18112119130,136,,~21,

J8,,

Horizontal heat fkw to 0° outeide airfrom compartment tempt

T

Loo 5~o &o 700 800

.208 .2M .220 .227 .233

.230 .237 .2L5 .251 .258

.235 .2bo .2b6 .251 .256

.2L0 .246 .25h .259 .26h

.2L0 .2h6 .252 .257 .261

.231 .237 .2b2 .2b6 .250

100

+

:‘,tl or Al.

:;311~~llln.”,,:..::.,,.::;:

.181

.198

.210

.208

.208

.205

9.5° &.19L .203.2M .221.221 .227.220 .231.220 .230.215 .225

18.5° 28°Ineide;wfaceTemp!

Heat flowdom to 0° outsideair

100

Frm~cing t fmm comwrtment hmD:

~

.199

.217

.223

.226

.225

.222

80°

.213

.233

.2370242.2bl.23b

60°

.203

.222

.228

.231

.231

.226

.170

.181

.19L‘.191.19L.196

.180

.192,204.203.m3

.186 .192

.202 .209

.2M .216

.211’ .218

.2U .219

.208

.229

.233

.238

.236

.231 e .tl or Al.

,.:..... :................:.!,

3,, ~~lltn

S .M.Uning

.204 I .211 I .217, ,Iw 7L. 5°55.5° 65°

Table 18

Valuea of “U”

IngideAir to Sea Water.3!,~~~tlo~

*am. I Heatflow UP to 28”F. sea -ter I------Sp9cing

~sideSWfaceTemps

3@

.193

.207,218.218.218.217

from col

hoo I 500

.218 .235

.a2 .258

.245 .259

.252 .268

.2k9 .265

.238 .250

29.90°39.L1° k8.95°

tirhent timperatw I I

600 I 700

.2b5 .250

.270 .281

.265 .271

.281 .290

. 27b .282

.259 . 26b

58.51°68.09°

n+-800 ~oo Mo”

.253

.81 Stl.or Al.

.278

.297 . ...

.286., :,..,..,,,.:.: :

.,.269 3. ~s&:tion

, ,I I i

17.69° I I--

FrameSpcing

181,

2L”301,36,,~2,1~81,

~sideSmfaceTamp:

.17L

.191

.205

.201

.203

.m5

W.87°

Horl~

.2m;217.227.228.228.22h

39.27°

ntil1rom ct~

.2U

.231

.240

.2L0

.240

.23h

J8.69°

85

3II

gat flow to 28UF. sefinpartmant temperate

T

ao Too MO

.222 .226 .230

.WO .2b9 .257

.244 .251 .257

.250 .257 .266

.2~9 .257. .260

.240 .246 .250

I I

58.~3° 67.59° 77.06°

waterI

900

Table 18

Valws of “u”

bside Air to bside Air.

3“ Lnstition. 3II

~ Heat flow up from 70°F. comwrtment temp.

‘Cing’k to”cOmDartmont tempt

T200 300

.231 .230

.260 . 2s8

.256 .255

.269 .268

. 26L .263

. 2h9 .248

67.91°68.30° z500 600

.22b .217

.251 .Zho

.251 .ti3

.260 .251

.257 .ti7

.&7 .2bo

@ .13°69.56’

18,,

2&”300136,,~2t,~oll

.235

.265

.258

.272

.266

.250

.233

.263

.2~7

.271

.265

.2h9

.228

.256

.252

.265

.261

.ti8

68.71< 4.213.231.237.ti2.2L1.23~

69.78°

_Stl. or Al.

*

( Frm I Horizontal heat flow from 70°F. com~rtment temp.Spacingar0° 10°

.210 .209

.230 .229

.236 .235

.240 .239

.239 .238

.232 .232

b compartment temu:

60° F.197. 2U.224.226.224;223

69.72°

200

.208

.228

. 23b

.238

.237

.231

300

.207

.227

.233

.2.38

.236

.230

67.87’

10t,2&“30t,36,,~2t,~Bll

.206 .205

.226 .225

.232 .231

.237 .236

.m2

.219

.227

.229

.229

.227

9.L5’

.235

.230.233.229

67.38<

-

68.39°68.91°

1

Frame He4t flow dom frm 70”F.compartmenttemp.pcing: Itteml

00 boo

-

.19L

.209

.220

.220

.220

.219Q~oo @o 65°

.193 .191 .187

.207 .206 .201

.218 .216 .212

.219 .215 .211

.218 .216 .212

.218 .2ti .212

d.5b0 69.2P 69.62C

18” .19L2L“ .21030,1 .220361, .220~21t .220~8,t .219

.194

.2m

.220

.2m

.220

.219

)5.73C&.19L .19L.210 .210.220, .220.220 .220.220 .220.219 .219..,

6.L1°67.09’

~ Stl. or Al.

3“ hadatlons )7.79°emp: I

Table18.

a7

90.

91.

.-

92.

93.

9b.

- Stl,or Al.

r Stl.or Al.

Vnlues of I’U’l—

391~etiation

COntitiont

Sobr Wtiation............’~ Weatherfir to bside Ati..

● Sea Water M Ingide tir....In8ide Air to Inglde *...

Wside fir to WeatherMr..w. hside Air to Sea Water....

tiaidefir to tigideAir...

Solarhtiatlon............WeatherAir to Mide fir..

s. sea Waterto tialdetir....hgide Air to InsideAir...

IngidaAir b WeatherAir..d. hside fir to Sea Water....

hside Air to Insidefir...

SOW Satiation............

s.WeatherAir to hgide Ati..Sea Waterto tigidefir....InsideW to Mside ~r...

bgide tir to Weatherti..w, ~aide fir to Sea Water....

~aide fir h ~dda Mr...

So@ htiation............~. Weatiertir U hside &..

Sea Waterto heide ~.. ..haide fir to hside ~...

Mside Air to Weatherfir..w. IMidO ti b Sea Water....

Insidefir .ti@ide Air...

sow satiation..............~ WeatherAAr to ~ide h..

● Sea Water to heide fir....-Ide fir b IneideM...

bide Ah U Weatherh..U. ~side fir to Sea Water....

beide AAr b heide fir...

tu

----

.278----.282

.293

.290

.260

.201

.201

,20L)W.M9

----

mm----.105

,Ml,106

.094

----●Q97----.094

.088

.092

.084

----

.180

,171

,170,171,G7

3II

+

.287 .27L

.260 .2b5

.2&5 .235

.259 .2b3

.259 .238

.257 ----

.236 .219

.209 . 2ob

.194 .188

.19L .18&

.192 .M2

.191 .180

.195 ----

.177 .168

.116 .117

.U .U1

.U .m

.M5 .M2

.099 .097

.Mb ----

.094 .092

.100 .M1

.097 .096

.097 .096

.09> .090

.086 .084

.090 ----

.08L .081

.178 .Uo

.U7 .m:~: .U2

.U

1.156 ,1*.157 ----.W .u8

9 - tiUM %aeon W = Heatig Season

Table 18

Valoea of UIUIV

311Inedation3

al

m ~n9truotionl @nditionltu &

JD

-311~~llln Sokr ~diation............ ----- .189 .177Stl. WeatherAir to hnide Air.. .17L .U2 .U5

s. sea water~ Inside~.... .192 .182 .16a:,.,,,,....,,,,:.,..........._~aide Air ti hgide Air... .176 .16L .Ma

95. 1:+= 1“~ Channel hside Air b Weather‘Air.. .~7a .170 .1563/16fvminiti w. ~elde Air b Sea Water.... .17J .167 .152

bgide Air to Inside Air... .167 .S6 .13a-.

.3,1fiallln

*

SOh Mdation ............ ---- .175 .165Stl. Weather Ah to Mgide Ati..

s..162 .V2 .137

Sea Water to Inoide Air.... .17a .169 ::;.. .,:.:..!>...,;,;{:,:,:,::,::,.:.,,.,.:.,.:,.:..,..,.,., Ingide Air ti Incide fir... .16b96.

.V311 ;, 111

Channel baide Air to Weather Air.. .U5 .lsa .U6illMarinite w. heide Air to Sea Mater.... .163 .156 .U3

hgide ~ to Insideti. .. .157 .ti6 . Uo

3n Inatlnn Solar btition ............ ---- .161 .152Stl. Weather Air to Inside Ah..

s..150 .U1 .12a

Sea Water to ~Bide Air.... .U3 .156 .U5~,,.:..;.,~.....,.,.:,.,!.,;;:.>;:,:,:,..::....,.:Inside Air h Mgide Air...

97. 1! :,: 1,, .U1 .U2 .130

L Chnnel Ingide Air b Weather Air.. .M3 .~6 .1367/a’lmtititi w. Ingide h b Saa Watir.... .Eo .W .13L

figide Air to hside Air... .M5 .u6 .122

311~elll~

+“

Soti ~diation ........... ---- .0a9 .Oaa

Stl. Weather Air to Wgide Air..s.

.0a3 .OaO .075Sea Water b figide Air.... .0a5 .0a3 .079:.,.,,,,:.:,,.,.,:.,,.,..:.:,.:.,.:,,.,....,:,...,,,, ,,,, hgide ti to I~lde ti... ●ak

98. :.;,.:.’:.,:“.oal .077

l! .,

Channel Ingide Air to Weather Air.. .07b .073 .070

S.M.MninS w. Inside fir h Sea Water.... .075 .073 .070InsideAir to hgide Air... .076 .075 .071

3,,Inallln Solar hdiation ........... ---- .Oaa .oa6

Stl. Weather Air to ~gide Ah..s.

.oa~ .07a .07&Sea Uater b hgide Air.... .0a3 .081 .07a%..

......... ;::..:.;;..:::;’.’.\:;!!.99. 118+)~1

I~ide Air to Inside Air.. .0a2 .oao .075

Insido fir to Weather Air.. .073 .072 .069w, Insido Air b Sea Water.... .073 .072 .069

Ineida Air b InBide Ati... .076 .07b .069

S - .tiou~ SeaaOn w- hating Season

.,

Table18

3II

Values of nun

3“ tintition

m ~nstruetion: mnditintt +u & D

..

3H M!ltn

* ~~~

9oh bdiation........... ---- .08b .083Stl.

s.Weatherfir b bide 0.. .070 .075 .0729ea Waterto hei& W.... .080 .078 .075.:.’,.’.,,.,...............,.’,:..::’., ,.................

m.haide Air b mide ti. .. .079

1:.::,,,,: .077 .073.,.—

channel hide tir to WeatierU.. .071 .070 .06.{

4!!hriniti w. IneideW ti 9ea Watir.... .071 .070 .067bide Air to ~sida h... .07h .071 .067

3. fi~lll~

*

Sok utiob ........... --- .081 .Om9tl. Weathr * to haiti *.. .075 .073 .069

s. gea wa~r tO fiaideW... ● .077 .075 .073;.:.;:’,.:’...::.....,.::.::,,:.:.’::,. hside U to fisideAir... .077 .07b .071

ml. ~ ;::.:::

Ohanna tilde tir b Weather~.. .069 .068 .065

7/811Mniti u. ~aide ti b 9ea Water...* .06g .067 .065Inaidatir to ~ide ~... .071 .069 .065

s.

102.

w.

9.

D3 ,

w.

s.

w.

u.I

:.’,..

L

,’,,.,.

3II

-.-———. . .

w Conetruotion~ bntition:tu &

4D

s.

m5.

w.

s.

m6.

w.

s.

b7.

w.

s.

D8.

w.

s.

D9. —

w.

s- b~g Season W - htiw Saaaon

Tablo 19.

values of ‘Iu”

Ingide Air h Weather.Lm Insubtion

91

4II

Frme;qoyg :.

18.

2b“3on341,

:;:

hside;urfaceTamp:

Heatfkw .UPto O“ outside ahfmm compartms]

zoo 300!boo

t temp5.0

flang(.199.206.22L.223.212

L8.3°

100

.213 Stl.or Al.

.215

.al

*

,,:.,~,,..,..,,,.235

...4.,::.;..,!.....:,.

.221 ~11~111~.&St ffener web nr

.175 .185 .191

.188 .196 .ml

.N1 .2M .218

.ml .2M .218

.197 .20L .208

19.3° 28.9° 38.6C

1coverd.205 .209.208 .211.229 .235.227 .230.215 .218

.160.179.186.190.188

77.L”I9.6° S7.9°I67.7(

I J

hm I Horizontalheatflow to O“ outsideairpaoingt from

T

100 200 300

St ffener.46 .155 .~2.165 .175 .181.ti7 .180 .187.173 .183 .193.175 .18L .189

7.0

18,,2h”30.36.~211b8H uweb an fting oover(

.170 .177 .182

.187 .lgo .lgs619L .19g .205.W .205 .a8.lgb .199 .201

38.2° L7.8° 57.&”

I.186.198.2M.212.205

.190

.200

.2U

.2s

.m

67.1° 76.7°

name I Heatfkw dom to 0° outsidedrfmm comwrtint ten Itpacing:

2.0

T~oo 5.0

eb an flang(.155 .lb.173 .177.177 .lak.182 .188.183 .187

300 60° 7.0

L.170.185.B3.197.Ub

66.0°

fener.49.U8.172.175.177

28.0°

Covem.ti5.180

.188

.192

.190

56.b”

.135

.155

.156

.Ul

.*

.172

.Uo

.197

.m

.196

@tl. or U.

1

9.2° M.6° s7.k” b7.1° 75.6°1

92 ‘~able19Val{lesof !lU1l

Inside Air to Sea Water.

h” Insulation 4II

Frme I He; flowom cor

50°

3 b 2U”F. 9ea water

‘Pat’g’k irtroenttempe

T

600 700

1 flan ,e cove.199 .208.207 .212.227 .233.226 .232.215 .219

8.87°68.56°

itwe t

80° 900

.--sti~.179.19L.204.206.201

]d----.2U.217.239.235.223

‘8.25°

------

.15b

.17L

.177

.181

.183

Oner a.192.202.219.217.210

-----

~ Stl. or Al.

heideSurfaceTwp t

29.92°39.55C t9.20°

Hofizontilheatflow b 28°F.gea wterrme I-

70°

Lange (.185.198.210.213.206

;8.16°

pcingt

F 30°

mm co

50°

,atwe:

80°Lo” 90°

-----

mo”

.----

J18n ------z~,l .U3W. .1653611 .163~zll .169~8,, .17&

In9id9Wfaoe 29.91”remp:

Stil.162.180. 18&.189.189

19. MC

3nerw.172.188.195.199.197

19.00°

Iand.179.193.203.206.202

8.58C

,vered.190. m3.217.217.209

‘7.76°

Tublo 19—-valM9 of “u”

93

InsideAir to Insidefir.~,,fig~tio*.

r- 1 Heat fbw Up from 700F.mmpartienttemp. 1Spoing: ti com~rtienttemp:

00 Wo 20° 30°Loo ~oo 60° 65°

1810 Stiffener web ~d fknge cOverei.~tl .195 .193 .192 .190 .188 .185 .180 .172301,

● 201 .200 .199 .199 .198 .198 .193 .18836,, .219 .218 .217 .216 .215 ,212 . mb .199~2tl .221 .220 .219 .218 .216 .213 .205 .m

&8n .209 .209 .208 .207 .207 .206 .m2 .197

heide 11Surface 67.7a 6a.07 6a*39°6a.70°69.01069.33°69.~“ 69*a3°TemD:

,

Frme Hofizontdheat flowfrom 70°F.compartmenttemp.Spcing: h compartmenttemp:

, 00 100 mo 300 boo ~oo ~o 650

lat, stirfener<eband fknge coverei.2LII .171 .171 .170 .169 .ti8 .167 .Mb .159301, .187 .la7 .186 .la6 .las .lab .la2 .17936,, .195 .191) .193 .192 .191 *190 .la5 .182.h2n .19a .198 .197 .197 .197 .19L .191 .la7-ha” .19b .19L .19A .19b .19L .193 .190 .186

haideSwface 67.22°67.59°67.97°68.3P 6ao75° 69.16°69.5a”69.79°Temp:

Frame }leatflowdom from 70°F. compertSpacing* b compartment tempf

~;bp.

0° U“ 20° 300 bo”~oo @o 6P

la,, Sti:‘fenerIleband flange coveret..24“ .158 .15a .157 .157 .156 .156 .15L .1523011 .176 .176 .176 .176 .175 .175 .17L .17036n .180 .lao .180 .lao .lao .lao .176 .172~2,, .18k .la~ .lak .la~ .18A .la3 .lal .178Lam .la6 .la6 .la5 .185 .las .la5 .18h .la2

tifli&Su],face 66.17066.70067.22°67.75°68.2go 68.afl69.&1°69.70°Tf)lP I

4II

#tl. or Al.

*

~stl. or Al.

4II

m @n5tnotion I bndition:tu

& tD

SolarSatiation............ ---- .233 .222

s.WeatherAir b hgide Air.. .325 .296 .2b7Sea Water to Inside Air.... ---- .377 .358

Uo .Inside Air to bgide Air... .330 .301 .272

4W ~stition Inside Air to Weather Air.. .235 .210 .193w, hside Air to Sea Water.... .233 .210 ----

bside Air to InsideAir... .212 .190 .180

,8~~~~onSolar hdiation............ ---- .185 .175

s. WeatherAir to InsideAir.. .193 .183 .171Sea Waterh InsideAir.,.. ---- .210 .203

m.InsideAir to InsideAir... .196 .186 .17L

fieidetir to Weatherti.. .178 .M5 .155w. h9ide Air to Sea Water.... .182 .lb9 ----

In9ideAir to IngideAir... .165 .153 .~6

Sohr hdiation............ ---- .08L .085s. WeatherAir b. Wide Air.. .076 .07L .072

Sea Waterto hgide Air.... ---- .07b .075

U2.hside Air to tigideAir... .078 .077 .075

1,1 hgide Air to WeatherAir.. .065 .065 .063w. heide Air b Sea Water.... .067 .066 ----

heide Air h hside Air... .069 .068 .06b

Ln fi9uhtion

+

SolarSatiation............ ---- .082 .083Stl. or Q.

s.Weather Air to Inglde Air.. .07b .072 .070Sea Water to Inside Air.... ---- .075 .07b:,,:,::,.,.,.,,:::.,.,!.{;,..;,~.,,,,,.~.,;;,.:,:,.,!

U3. ‘“’‘““’’~’”‘“haide Air to Inside Air... .077 .075 .073,,:.,..,,:

.,.21! Ineide Air to Weather Air.. .06h .063 .061

v. heide Air to Sea Water.... .065 .ob4 ----~side Air to fieideAir....068 .066 .064

Solarhdiation............ ---- .283’ .25k

s.WeatherAir to IngideAir.. .252 .226 .196Sea Waterto h8ide Air.... ---- .272 .2&o

m.bgide Air to IneideAir.. .255 .230 .199

Lheide Air to WeatherAir.. .267 .248 .220

u. hside Air to Sea Water.... .260 .2h3 ----hgide Air to tieideAir....230 .218 .183

S - boMng Seaeon U - HeattigSeaaon

.

95

-

Vdueo of mull

&n Inafition

II4

Wp @nstruotAon I Ootition It +u & D

Sob Mtiation..........0. --- .26b .239WeatherAAr to IneideM.. .237 .2& .U6

a. goa wa~r b hside fir.● ● ● .27h .255 .227Insideb b ~side ~..

m..*O .217 .190

LtiaidaAAr h Weatherfir.. .250 .233 .209

w. Insidefir to~Sea Water.... .ti .228 .203Insideti to’hside ~... .228 .206 .175

~11~~llln

. * ~

Sob Satiation............ ---- .238 .217

-Stl. ~. Weathertir b ~ida ti.. .2U .197 .1739ea Waterti ~aide fir.... .45 .229 .207

u. ‘:;:”’‘+!’;::“’:’::2:<::!’:&aide fir to ~ido ti... .218 .199 .176

Ckmel hBide ti to WeatherA*.. .226 *213 .192II~~~ v. heide Air to SeaWatir.... :::: ●209 .M7

hside Air b -da ti... .190 .ti3

bn hallln SO* Matiow ............ ---- .212 .195~ Stl. Weatherfir ti reside,AAr.. .19h .179 .s9

8. sea watarb Mside ~.. ● ● .2M .206 .187:::,~i.;:{:.;::.!.;l(;.:’:’::.;l.y:?

tiz.fiaideAir b ~aide ~... .196 .M1 .U2

L

Ineidefir ti WeatherAAr.. .203 .192 .175u. Ineideti ti SeaW@ter.... .199 .188 .171

hside AAr to hoide..M... .188 .173 .M1

~11~~tlln

.+

SOW SatitAon............ ---- 9179 ‘*WStl. Weathar@ b MaAda Air.. .M5 .W .U9

8. g~ wa~r ~ ~aide W.....;. .181 .172 ●U9!....,.’.,:P.......:!.,:.,...,.,. 1;,0...

w ● :::’:”::’wide & b haAde W... .U7 .U6 .W

channel &ide ~ b Weatir AAr.. .W .X8 .U69.n,m u. =de AAr w 9ea Wabr .... .M .s7 .m

WW fir W tiide tie.. .253 .ti7 .131

90* SedAatin........... ---- ,171 .M2Weatbr AAr * - U.. :$ :$; .1A

s. gea’~w b .Ma Air.... .s3mide UP to Mide *.,. .W .s0 .136

u% .~ 1“

-1 heide AAr b Uutir U.. .M9 .U2 .U1w. MaAda Air to sea W* .... ,U7 .s1 .139

resideAAr b -de m... .U2 .%2 .127

S- Ooo* 9eaaon U - W- Seamen

96

‘fable19.

Valued of ‘1U’i

Ln Inguktion

II4

VW tinatruotionl bndi tion:t +

u ~ D

ktlInaillnSohr bdiation........... --- .’MO .151

Stl. 9. WeatherAir to hgide Air. .U8 .139 .127Sea Water h IngideAir.... .U1 .15L .Mb

:,:::,.,,,:::....::::,::..,;:.,,.:,:,..,........,.,:.....:} InsideAir b ~gide Air... .150 .U1 .129.,,.,,,...,,......m. I“+:*I”

~Channel IngideAir h WeatherAir.. .U9 .U3 .133

~ *IIminite w. IngideAir b Sea Watir.... .M7 .M2 .131InsideAir to IngideAir... .M3 .13L .120

hm Inatlln

*

SOhr ~tiation............ ---- .U8 .Uo

Stl. WeatherAir to ~aide Air.. .138 .130 .119s. s~a ~jater~ ~~ide Air.... ,~9 .U3 .134

.:,:::.,:,,.!.:,.:,,,., :.,.;:,,,..::..,,;,>.,,:.,;,.:.;.. ~gide Air to InsideAir... .139 .131 .121U1. 1“ : l“

Channel hgide Air b WeatherAir.. .138 .133 .1257/811Wrinite w. ~side Air b Sea Water.... .137 .132 .123

~side Air to IngideAir... .133 .125 .U

LM Inetl!n

*

SotirMtiation............ ---~ .077 .076Stl. WeatherAir to IngideAir..

s..071 .069 .oh

Sea Waterto InsideAir.... .072 .071 .069:.”J.:.:.,,,..,......f.’J:‘.:.;-,’:,;,:,-,.::.:.::,: Wgide Air h InsideAir...

122..073 .071 .068

1“ :,::’:figideAir to WeatherAir.. .062 .061 .059

chMel u. IngideAir to Sea Water.... .063 .062 .060S.M.Hning heide fir h IneideAir... .065 .063 .o&

~11Insllln

*

Sohr ~tiation............ ---- .076 .075Stl. Weatherfir to ~aide Air.. .070 .06C .065

s. sea waterto Inside Air.... .071 .070 .068,:,,;’.,1:‘,,:,.:..’,.,::,’:.:.,::,.:.;::,.:’.:.,!;;;,: Inside Air to Ingide tir... .072 .070 .067

M3. 1“ ~:’

Ingidg Air to Weather Air.. .061 .o@ .058hannel w. baide Air b Sea Water.... .062 .061 .059

3JMII Maritite hside Air b Ineide Air... .06b .063 .059

~11~~111~

* :

Sobr ~tiation ............ ---- .073 .073Stl. Weather Ur to ~aide ~r.. .068

s..066 .063

Sea Water to heide Ur.... .069 .068 .066.,.,,,....:,.,..:,.,

u. ‘:’::;::’’;’:”:.;.;:’’;2’”:’’’”Inside Air to Ineide fir... .070 .068 .065

~ide Air to Weather Air.. .059 .058 .057Ohannel w. hide fir to Sea Water....

49 Mariniti.061 .059 .057

Wide Air to ~ide Air... .063 .061 .058

97

7able 19

Valuesof OUW

Lm Instition4

II●

~u

----.066.067.068

H~

.071

.06b

.066

.066

+D

x.061.06L.063

Unatruotionl tinditioni

F

Sobr hdiation............WeatherAir to hside Air..

s. sea waterto InsideAir....

Mgida Air to IngideAir...

IngideAir b WeatherAir..W. IngideAir to Sea Water....

IngideAir to fiaideAir...*

Stl.., .::::::::,....:.... ~.:,..,.,.:...,,:::,.., .,..l, .,,.. ... .. . . . ,., ............. . .,,...

1“ :.::

Channel7/8tfltiiniti

M5 .

.058

.059

.061

.057

.058

.059

.055

.056

.056

:

s.

w.

s.

w.

Sokr ~diation............Weather Air to ~gide Air..Sea Water b ~side Air....tigide Air to haide Air...

.076

.067

.069

.070

.059

.060

.062

.075

.06b

.067

.067

,058.059,059

.07L

.063,066.066

.057

.058

.058

----

.069

.071

.072

.060

.061

.063

126.

IngideAir.teWeatherAir..bide Air to SeaWater....figideAir to InsideAir...

Sobr ~diatlon............WeatherAir to IneideAir..Sea Waterto InsideAir..i.bsida Air to hside fir...

.075

.066

.068

.069

.058

.059

.061

---

.068

.069

.071

.059

.060

.063

127,.

InsideAir b Weather’Air..InsideAir to Sea Water....InsideAir to hside Air...

Sotir ~diation ............Weather Air to heide Air..

s. sea Wa~r b fieide Air....

~ide Air b hide Air...

.072

.06L

.067

.067

,071,062,06b,U

----

.066

.068

.068F,.,..s ? .:.}, ..,,.,,,.:::, ..............:.> . .... .. ..... . ..: . ..... .. ..

z. ::.’,;:

channelA’!Wniti

120.

hel@ Air to WeatherAir..w, @ide Air to SeaWater....

,.~ide Air to fiaideAir...

Sokr h~tion ............~ WeatherAir to tisldeAir..

● Sea Waterto ~gide &....hida Air to,Meide Air...

Ineidatir to.WeatherAir..u. kside Air to Sea Water....

heide Air to hide &...

.058

.059

.061

.057

.058

.060

,055,056,057

.070

.063

.Oa

.Oa

,069,060.062,062

---

.06L

.065

.066U9 .

.056

.057

.059

.05L,055.055

T

1

1

1

1

1

aValuesof ‘Un’

4H Instition

II

4

.

s- @oMng *a80n U - H@ttig Seaaon

w emtiuonl tinUUont t +u A D

9.

Lo.

w.

s.

L

v.

8.’

kz.

u.

s.

43*

w.

9.

u .

u.

101

Table20

6“ Insuhtion

me follwing t~es Of insulationare recommendedfor use on

boundariesof mchine~ s~ces, boilerroom, uptakesand otherheat

producing spacea. The surfacecoefficientsare tisedon the follow-

ing tempenturea:

Horizontal Casing Boundaries................

Vertical Casing Boundaries..................

AdJoining air conditioned specee............

Cooling HeatingSeuon: Season:

140° 700

Uoo 700

MO Too

For eteel dech over mchine~ spceB with insulation on top

of deck plating, see ~ble 23, construction detail~ No. 244 ad 245.

102

P

—-

h5.

&6.

&7.

LE.

h9.

COnstructiOnt

___— .

–61, ~SIIin

*

Stl..,.,.,.......,,....,,.,...............,.,,:,::,:.:::l,:;,::.....,,....:..,,,,,.,....,:.,....:.,,

,..................,.’,..,.;:,y.:

2!,~~111~

——

—. .. .-.—

m:}:,,....:...;.,.,:,;,:&tt~Bllln

:: .,.,:,, 211fi*llln,.,:,}.,:,.,..,,::::? ,.:*,;;

II‘“’‘-’”‘“* ~hmel

:;{<<:.-$’!Wrinitey~y,;; S.M.Uning

Tabb 20

Vnlwa of ‘Iu’l

6,,fi~U~tiOn

Contition: It u

“1Sohr ~tiation...........Weather Air to hside Air.

5* Sea Waterto ~aide Air...InsideAir to ~side Air.. .061

halde tir to Weathertir.hside fir to Sea Water...hside Mr to hside fir..

Sohr ~tiation...........Weathertir to ~side Al?.Sea Waterto ~side Mr...btide Air to ~side M..

.ob7

.o&8

.052

.059

w .Ou.0L6.oh9

S. Mglde Mr to ~alde A&.. ----

‘i. Meide Alr to Weide fir.. ----

j. ~aide tir to bai~ Air.. ----

d. hside Air to haide *.. ----

ES. ~side @ to IneldeAir..

W. IneldeAir to ~side Air..

----

----

6II

+A D.068 .072

.060 .059

.0L6 .ob6

.We .Oba

.051 .050

.065 .069

.058 .057

.a3 .ob3

.0L5 .&5

.0L8 .ti7

.@7 ---

.U ----

.@6 ----

.d2 ----

.075 ----

.073 ----

S - 00oMng Season W - }{eatingSeason

~,

.

,.

Tabk 20

Val~s of ‘?UI1

6,,Ina@tiOn 6II

m Unatroction: ~ndition:t ,1u & D

,.

K

,.:~... ~11~*111~,..;,.:,.,.;2,,~~tlln s. ~aide tir to hsida Air.. ----;,~,,,:: .073 ----

.),.;,{;,.;Eo. :::,/,,,,mnnel

—:::~~,,:,,.,::;! 7/8’~~ritite.)........,,,:,/,:,., s.M.wg n. haide fir to Maide ti.. ---- .071 ----,,.

s.

Ml.

w.

s.

152.

w.

s.

K3.

w.

s.

15L.

w.

..:

.

,.

S n ~o~ng Season W- HeatingSeason

Table 21

Acoustic Insulation

Acol]sticinsulation which is used for nound attenuation, my be

fit~erglassblanket covered v~th perforated sheathing, Or the r]Kid

ncollst1c board. me perforated sheat;hin~is generally 3/~6°th~ck

Mrine Veneer, Wsoni te Prestwood, Mrini te, or other approved type of

similar mteriml. Perforated sheet metal 1a commonly used for coverlng

the acoustic insulationblanket in areas where high-grade finifihesare

not:required.

Blanket t~e insulationwith perforated eheathing now avatlable.,

from ueveral manufacturersas a combined unit simplifies installation.

me unit.aare generally secured to metal.furring with sheet metal screws

fitted through metal grommets through holes In the sheathing.

me rigid type acoustic board is 1“ nominal thickness, either in

psne.Lsor in tiles which are available in agbegtog, celotex, fiberglass

or other simiLar materials of guitable density and perforations suitable

for sound attenuation.

For absorption of gound from nomal conversation, 1“ blanket on the

overhead i9 satisfactory,a 2“ blanket genemlly is required at the

overhead in bars, lounges, and other public spaceg. Where thermal insul-

ation 19 a190 used for it’s acou9tic propertie9 the insulation is generally

kept away from the sheathi~ and fastened directly to the steel bulkhead

or overhead deck. In ve~ noisy compartments, ins+~l.lationof two 2-inch

hyers of insulation, seprated by a felt blanket, my be necegsary for

~atisfacto~ sound control.

105

TableZ1

Valueeof ‘Utt:

AcousticIn~tion.

tiw ‘@natruotiont Oondition:tu &

+D

1. ~ Sobr Wdiation........... ---- .568

*

.525

Stl. Weatherfir to InsideAir.. .U2 .391 .32g. sea watertO Mside Air... .595 ,552 .5M

X5.~sib & to hside Air.. .U8 .397 .3&7

~ ga.perf.Shtg. hside Air to WeatherAir. .5bo .505w. hside Air to Sea Water... .508 .L7L

.L05

.Moheide fir to bside Air.. .b25 .376 .320

Sohr Cation ........... ---- .L17 .396~ WeatherAir to heide Ur. .3M .3U .280

● Sea Waterto ~side Air... .~29 .L05 .38h~side Air to,haida Air.. .3b7 .3U .28b

M ga. perf.Shtg. tieidaAir to WeatherAir. .39L .375 .317w. ~eide Air to Sea Water... .376 .358 .338

InsideAir to ~ide ti.. .331 .3~ .26L

Soti htiation........... ---- :g .380WeatherAir to heide Air. .332 .272

s. sea water~ ~ei~ fir... .bu .391 .369fiaideAir to hsib &.. .335 .3M .276

ga. perf.Shtg. Mside Air to Weathertir. .378 :;g .307w. ~side Air to Sea Water... .3& .320.

~si~ Air to hsida Air.. .321 .292 .256

Sohr Satiation........... ---- .377 .358WeatherAir to InsideAir.

s..3U ,.289 .261

Sea Water to fiside Air... .385 .368 .3b9hside Air to fieide Air.. .320 .293 .265

G8.

haide Air to Weather Air. .356 :;% .291ga. perf.ShtgI w. ~~ide fir to Sea Water... .3b3 .3U

hside Air to Inside Air.. .305 .279 .46 ~

Sotir ~diation ........... ---- .272 .ti7 is Weather Air to Ingide A18. .2b3 .221 .193. Sea Water to haide Air... .284 .265 .236

M9.~side Air to heide Air.. .ti6 .2a .196

haida Air to \ieatherAir. .262 .~6 .220111~rf. *el w. hgide Air to Sea Water... .254 .ao .2U

baide Air to heide Ah.. .236 .2ti .U3

S - OoolingSeaeon W - HeatingSeason

106 Table 21.

values of ‘lu’~:

Acoustic ~suticion.

)

w @instruction: @*ltion If +’

DIu &

1,,~ Sobr %dlation........... ---- .199 .ti6

~ F

tl. Spc. ~, WeatherMr to Insidefir. .183 .170 .153Sea Waterto InsideAir... ● ~3 .19h .178

. ......... .... .......~,,* ::;:, Insidefir to ~gide Air.. ●185 .172 .155

M.

bsik ALr b WeatherAh. .191 .M3 .168Mel w. IneideAir to Sea Water... .188 .180 .165l!!prf. panel InsideAir to IngideAir.. .177 .M5 .U6

2,,~ Sotir ~diation........... ---- .U9 .U2

F

tl. Air Spc. g* WeatherAir to Insidehr. “137 .130 .120Sea Waterto InsideAir... .ti8 .ti3 .13h... ................

1,!’‘A :!:; InsideAir to Ingidefir.. .U9 .131 .121Ml. -..--..

tiaidefir to WeatherAir. ::; .,133 .125hel u. Mgide Air to Sea Water... .U2 .124!!psrf.~el baide fir to ~aide fir.. .U3 .126 .U

~411MHO

s “ ~~

tl. 2. ~s. hside Air to heids W.. .368 .2ti

U2 .

elm psrf.~el u. tigideAir to fieida-.. .352 .246

3/~flME s. hside fir to hslds ti. . .351 .257

ti3.

w. hside Air to hside fir.. .337 .239

s.

u .

w.

S - @oMg Season U = HeatingSeason

107

Tabb 21

ValWs of “Un

Acouotichstition

p DoMtmotion: Con&tIon:t

u &+

D

.,

9.

U5.

w.

..

s.

U .“

w.

9.

U7 .

,;w.

9,

m .

u.

s.

u 9.

n,

S - @oMng Season W = Heattig Season

Wble 22

Wood Decking—

Wood deck covering iB ueed extensively at promenade and weather decks

in ~ssenger areas, and at supergtncture decks in cargo ships. From the

polnt of comfort it is considered the moat degirable deck covering, and !t

requires little maintenance except scmbbing and periodic caulkjng.

Deck planking generally specified is the best quality Dowhs Fir,

2-5/8” thick, applied edge grain up by 4-~/8°wide,finishedsize, in

plankg not neea than 16 feet long. In topsideareassuch as the navigating

bridge,1-3/1)”thickhuglas Fir or teakplankingmay be used. me mrgin

plantfittedagainstthe deckhousela generallyof teak,8 by 3 inches, and

tapering to 2-5/8”for properdrainage.

me planksare laidforeand aft,with the edgegrainup. ~ey are

aet tn a thick coat of rust preventive compound, white lead ~8te being

c(]nsideredone of the best mterials to be used for the protection of the

steel deck plates. me planks are fastened to the steel plating by means

of studs which are welded to the steel platiog. Wits penetrating the

plating shmld not be used. me stud holes in the planking are sealed

with bungs and the seams are caulked with one thread Of cOttOn and two

threais of oakum then ~yed with a special type of elastic seam composition.

Wood decking has a definite insutitlon mlue, ranging in “ktlfactors

from .82forwhite pine to 1.44 for white ak.

Where wood decking is used, me herican Sureau of Shipping permits

slight reduction in euperatructuredeck phti~ thicknesses.

Tabb 22—.

Value of.PUm

Wood bck timbinationa.

w Oonatmotiont btition:. . , t i

-’ ‘ ‘ida*rtotiaide fir** .; ‘ ~D

Sohr titit$on...........

)0. hsibtir to Weatherfir. .&28w.

Weida tir to haide Air.. .347 .27~

Sohr Sadation.......... .2as.

haida w to wide m,. .27h .2U

‘L

beib ?.irto Weath*rU. .3Mv.

hsida fir to haide fir.. .258 .195

L3~1$ D.F. Sohr ~tiation.......... .249s.

hnide tir to hsida AAr.. .256 .2ti

‘2,

tiaidafir to Waather-. .208

3/MtlWmti ~.haide fir to Maida Atr.. .248 .~6

Sohr htiation........... .225s.

hsiti Air to fisidafir.. .232 .Mh

‘3.

Wide fir to WeatherU. .256

*81~rititi ‘.hsih tir to hsida W.. .22b .172

Sohr ~tition ........... .202s.

~eide fir to hsida fir.. .207 .U9

‘4.~Eide fir to WeatherM .226

w.~siti tir to ~sida Mr.. .201 .U8

s-@OMng Seamn U i Heat- Season

110

Tabh 22

Valuesof ‘!U’l

Wood hck bmblnationa

w Construction: Contitiontt Ju & D

Sohr ~diation ........... .259s.

haide Air to InsideAir.. .238 .207

.75.InsideAir to Weather Air. .259

w.InsideAir to halda Air.. .228 .19L

Sokr ~diatlon ........... .1939.

hside Air to Insidefir.. ●~97 .fi2

hside Air to Weathertir. .2~u.

~aide Air to tisidaAir.. .189 .K1

L3/h!tD.F. Sobr SadiatiOn........... .1848.

hsida Air to @side Air.. .188 .~6.77.

tiaidaAir to WeatherAir. .1993/161!~riniti W*

haide Air to keide Air.. ●181 .U5

Sour ~diation ........... .171

hsida Air to ~side Air.. .17L .ti6

hside Air to Weather Air. .18L

hBida Air to keide Air.. .M .137

~3/&llD.F.

P’

SObr Mtiation........... .S8Stl. s.

haib Air to hside Air.. .- .136.79.

ChannelInsideAir to WeatherAir. .168

7/8”Wriniti ‘.1“ TF~.

IneideAir to ti8ideAir.. .155 .128

9 - @oling Seaaon W - Heat- Seaaon

,..

Tabk 22

Wood Mok Cotiinations -

w “tH

@natmction t Condition:+

u ~ D

Sohr ~tiation........... .227s.

~side Air to hside Ati.. .210 .185

hside Air to Weatherfir. ● 221w.

InsideAh to hside Ur.. .ml .173

Sotirhdiation........... .175s.

hbide Ah to heide W.. .177 .U8

~side Air to Weathertir. .185w.

hside Air to tiaidmAir.. .170 .138

Sobr Iwdiation........... .ms.

Insidefir to IneideAir*. .170 .U3M2 ,

heide Air to Weatherfir. .177w.InsideAir to InsideAir.. .~3 .13&

Sokr ~tiation........... . .K7s.

InsideAir to resideAir.. .~8 .135MJ . t [.t~ 1.

hside Air to Weatherfir. ●l&w.

~aih Alr to Ingih Air.. .152 .126

Sohr Mtiation........... .M5s.

InsideAir to hside Air.. .U7 .u6

Wgide Air to WeatherAir. .152v.

Insib Air to hside Air.. .U2 .U9

S - @otig Seaeon W- Heattig Season

112

Table 22

Valuesof “U’!

Wood ~ok Combinations

m Oonstructio,n: Contition:t \u & D

b3/b” D.F.

+

Solar Mdiation .......... .2hlStl. 9.

Inside Air to Inalde Air.. .222 .194

185.2. TFOB

Ineide Air to Weather Air. .236n.

~aide’Air to ~side Air.. .212 .182

l-3/&nD.F.

,?

Sotir Mdiatlon.......... .183Stl. s.

heide Air to IneldeAir.. .~86 .Eb186. “’’”:’’’”:“’’”‘::’“’;’’”“’’”’”

2,,~~ InsideAir to WeatherAir. .195

Chnnel w.

S.M.Mng InsideAir to InsideAir.. .178 .W

SObr btiation........... .1758.

bside tir to WSide fir.. .177 .U9M7*

Insidefir to WeatherAir. .ti6v.

Insidefir to Insidetir.. .170 .U9

1-3/411D.F. .

* ~~

SOMr ~tiation..........Stl.

.1639.

,. ~Bide Air to hside fir.. .ti5 .40M8. “’’’’”’:’’”’”’’’”‘“’“’”’’:”’:’:‘“

2,, TF~ hside Air b WeatharAir. .172CbMEl w.

~n Mrinite heide Air to tialdeAir.. .159 .U1

L3/LtlD.F. Sobr ~tiation.......... .U1stL 9.

Aq~ . .,! In8ide Air to Inside fir.. .152 .130..............,......7............,.:...189. ? I-——-~

Inside Air to Weather Air. .158w.

~side Air to Inside Air.. .47 .123

,

S - Cooling Season V - Heating Seaaon

Tabh 22

Valws of nun

Uood Decktimbinations

m @netmotion t titition tt +

u A D

U3flW D.F.

+

So~r Satiation.......... .185Stl. s.

haide Air to IneideMr.. .172 .155

1~. ‘“‘:’”:’“!’’’::’‘“‘:::‘f;‘“‘“2. TF~

~eide Air to Weatherfir, .178u.

hside Air to ~side U.. ●M5 .~6

Sobr Satiation.......... .M93.

Mside fir to haida U. .Uo .129

U1. 4 Itk 1“,;

-Ide Air to WeatherAir. .U3u.

haide Air to hside fir.. .U .120

Sotir~~ation .......... .U3

Weide Air to tisidefir.. .U5 .125

haide Air to WeatherAir. .ti8

hside Air to balde Air.. .139 .U7.

l-3/hnD.?,

*

Sobr ~dAatiOn.......... .135tl. s.

InsideAir to ~ide Air.. .136 .m193. “:‘“’;““’”’”‘:‘“”:”’’’;’”

20 ~~ haide Air to Weatherfir. .139*W1

@ WrU@ ‘= ~side Air to ~side Ah.. .U1 .U

L3/b” LF.

“ *

Sobr Satiation.......... .126st~ s.

hside Air to Insidefir.. .127 .U2.,:..,.,,.......................Mb

2. TF~ InsideAir to WeatherAir. .130channel w.7/a~ tititi IngideAir to Mgide Air.. .123 .ti

.<

-.

S = tioMng Season W = bati~ Soaaon

~e

195.

—.

196.

——

1974

-.-—

198.

1994

Table22

values of I’uft

Wood Deck Combimtione

Conatruotionl

+

r2-5/8m D.F.r Stl.

=. .

s.

w.

9.

w.

s.

w.

9.

I

Iw.

s,

u.

Cotition:t

u &

;o~r ~diation...........

kside Air to.In6ideAir.. .219

haide Air to WeatherAir. ● ti5

[neide Air to Ineide Air .24

$oUr ~tiation ...........

~eide Air to Ineideti.. .m3

I I

Sotirhtiatlon........... I

IneideAir to InsideAir.. .174 IIneideAir to Weatherfir.I .190 I

baide Ati to hside Air.. .171—

+D

.296

.231

.220

.213

.177

.166

.202

.169

.160

.187

.158

.U9

.170

.u6

.139

..—

.

.

S- OooM~ 9eaaon W = ieati~ Seaeon

,.

115TaQle 22

Values of l!Un

Wood md Combination

w Oonatmctionl Con&tIon1t +u & D

Sohr ~diation . . . . . . . . . . .209

s.~aide Air to IngideAir.. .195 .173

200.L 1,,TFCB

IngideAir to WeatherAir. .2~w.

InsideAir to InsideAir.. .190 .166

Sohr bdiation........... .16Ls.

~aide Air to InsidoAir.. .fi7 .U1

201.

haide Air to WeatherAir. .177w.

IngideAir to IneideAir.. .162 .133

2-5/6~flD.F. Sotirbdiation........... .157Stl.

tiaideAir to InsideAir.. .160

2Y” %,. : 1n9i~Airt0 weatherAir ●~70 ;:InsideAir to ~aide Air.. .156

Sour &diation........... .U79.

haide Air to ~gide Air.. .150 .1*

203. f

tiaideAir to WeatherAir. .158w.

hside Air to kgide Air.. .~6 .122

Sobr Wdiation.......... .138s.

IngideAir to hside Air.. .Uo .121m.

IngideAir to WeatherAir. .N7w.

hgide Air to InsideAir.. .136 .U5

S - ~oling SeaBon W - Heating Seagon

116‘rable22

Valuea of ‘tUII

Wood M ok Mmbinations

w Constmction: ConMtion:t Iu & D

Sotir ~diatiOn ........... .M8

s,~side Air to ~side Air.. .176 .U8

D5.

~alde Air b Weather Ur. .m6u.

fieide Ur to hside ~.. .171 .E1

Sohr Mdiation........... .E19.

Mside Air b ~side Ah.. .G2 .U1

haide Air to Weatherti. .mu.

haide Air b 2neldeAir.. .M8 .123

Sohr ~tiation........... .Uss.

In9itiAir to hside Air.. .U7 .12637. 4

hside Air to WeatherAir. .s3u.

@side Air to haide Air.. .M3 .Mo

2-5/811D.F.

*

Sotirtidiation........... .137Stl. ‘ s.

,, fisideAir to heide Air.. .U8 .120)8. ““ ‘“‘“”’‘“““’”

1,,TF~B hside Air to WeatherAir. .Uchannel w.

~“ Wriniti Mside Air to hside Ah.. .135 .ti

Sohr btiation........... .u8s.

fiai~”Air to ~9ide Air.. .129 .U

resideAir to Weatherfir. .U5w.

IneideAir to heide Air.. .126 .m

S- holing Season W = HeatingSeaeon

Table22

valma Of nu’1

Wood DeckCotiinatiom

117

p @nattiotiont Oonditiontt +’

u & D

Sobr ~tiation........... .197s.

Waide Air to hside Mr.. .M5 .ti5

2M.

Wside fir”to WeatherAir. .197u.

fiaideAir to ~side &.. ●~79 .157

Sotir~diation..........~ .1579.

Wside Air to haide Air.. .X8 .U5

InsideAir b WeatherAir. ●U7u.

S.M.Mning Inei& Air to heide Air.. .m .128

Sob ~diation......o.... .U1s.

haide Air to tieideti.. .s3 ,131

2U.

L’ 2,1 T~ fisida +r to Weather Air. ●M@nnel w.

3/MllMriniti haide Air to ~side ti.. .U8 .123

2-5/8flD.F.

*

Sohr Mediation.......... .ti2stL s.

baide Air to fiaideW.. .U3 .la......... .... ....2U.

2W T~ @ide Air to WeatherAir. .s0eel w.

Au ~rtite hside Air to Maide W.. .Uo .n7

Sokr Satiation........... .U2s.

~siti Air to ~sih Air.. ●m .U7

.2*8

hside Air to WeatherAir. .Uow.

~aide Air to hside &.. .131 .U

S - Coohg Seaaon W= HeatingSeaaon

118Table 22

values of “u“

Wood h ck Combination

m Constnotiont ConditionIt

u &+’

D

Sobr ~diation........... .U7s.

~gide Air to InsideAir.. .M9 .136

2U.

In9ideAir to WeatherAir. .155w.

fi9ideAir to fieideAir.. ●U .Uo

Sotir~~ation ........... .U1s.

heide Air to ~eide Air.. .U2 .U

~side Air to WeatherAir. .u6u.

heide Air to helde Air.. .U9 .U

Sokr %diation........... .126,9.

hside Air to ~eide Air.. .L27 .U2

217.

haide Air to WeatherAir. .131w.

~aide Air to Meide Air.. .124 .106

Sobr Satiation...,....... .120s.

kgide Air to hside &.. .121 .U7

Meide Air to WeatherAir. .14w.

hside Ur to ~side tir.. .W ..U2

Sobr btiation . . . . . . . . . . . .-s.

~eide Air to bside Air.. .@ .M2

219. ?

hgide Air to Weather Air. .U7

w.hside Air to hgide Air.. .lU .097

S = OOoMng ~eaaon W- HeatingSeaeon

119

Tabb 22

Valwa of “U”

wOOa Mok Oomblmtlona

m OonstNotiont Conditiontt tu & D

Sotirbdiation............ .U8s.

mslaa m to msiaa m... .Uo .lW

haiti h to Weather*. .U2n.

Mside Mr to ~sida M.. .Uh .M2

So& tiation ........... .130s.

MS1* m to moiti m.. .@ .lM

~sida Air b WeatherMr. .M7w,

hsida Air to Mside ti.. .120 .m

9.

222.

u.

9.

223,

n.

s.

2a*

w.

9- Oootig 9aason V - Wating Sea-

Table 23

Magnesite Deck Coverings

Wgnesite {S a widely used finish deck covering at crew and working

spnces and ~ssages . It has excellent wearing qualities, is easy to

m~~intain,and is available in colors. A thickness of l/2° 8CratCh coat,

over which a quarter inch thick hard coat is troweled to a smooth finish

is satisfactory for deck areas subject to normal wear. At passages and

other’areas subject to heav traffic a 3/4” scratch and 1/4” hard coat

application is recommended. To prevent corrosion of the deck under the

magnesite, the steel should be

of two coats of “Koml” sho>lld

the mgnesite.

Regular magnesite scratch

Insulation scratch coat (Selby

has a l’k”factor Of 1.88. me

difference in price, the “MIS”

thoroughly cleaned and a barrier consistil]g

be applied prior to the installation of

c~t has an insulation “k’’-mlue of 5.60.

@2-Oil), hereinafterreferredto aS “~S”

to its insulationvalueand the slight

Is preferredfor installationin accOreo-

dations over unheated bridge enclosures and other spaces with aimilar

exposure.

Where heavier topside insulation is required on decks over

spaces and heated oil tanks, the installation of “Kaylo” blocks

magnesite coating hae proven effective. The steel deck must be

cleaned and covered with two coats

installed to prevent corrosion.

The average heat transmission

tion Is .22 B~/KR. /SQ.FT./~. for

~yer of 15} felt paper, 3/4” ~S,

of “Koml”> before the Kaylo

mchinery

under the

thoroughly

Block iG

through the Kaylo-~nesite compos~-

a combination of 1“ Kaylo Block, one

and 1/4” hard coat. This installation

will yield on approximate improvement of 33$ overa usual installationof

3“ mineralWOO1 and sheathingbetweenthe beams below deck.

121

Table 23

Ma~esite Wck ~veringa:

.

.

.

Insti~ationMtiil

K~k-Na@eeite bmbination.

(OcnetmctionaNo. U & 2L5).

Mmeeite Hard mat Finish(Sew # ~-002), ~~” t~~*

~~eeite ~stited Scratch(Selby# 92-OU), 3/hn~~.

Bend studo-r weher.

WeM stude1211oenterto oenterti nws 6N a-. At pfiter

2 ooateof Komd of spaoe,WM studs6flcenterto oenter,3tifmm btieada.

-He~eaia Bbok, “orKV1O Bhok,or equal.

HUT TWM~SSION @WFICIENTS :

IIkllfOr steel......................................300.00!!kltfor~tiooatkg .......................... MeregardIIkllfor~~esia Block.............................. 0.51nkn fOr KayloBlock................................. 0.33,IkllfOr~# felt paper............................. 0.25ilk!)for 3.~#galva~zed . ..................... Diaregdtlktlfor ~atited Scratch........................... 1.88Nkl$for mrd mat . .......... .................... 6.00

nfpl$flowup at 800~................................ 1.65‘fallflouup at ~0 F.............................. . 2.57!lfP,tf~”do~ at goof.............................*0.90!Ifellf~wh~ at 50°F.............................. 1.U

.

9 n ~oling Season W= Heating Sea~n

= “

123

Valws of nun”

Mweeite ~ok Coveringo

.

.

S = @otig Senaon W = HeattigSeaeon

Tnbh 23

Valwo of OIUI*

Wme site Mck Covefings

S - CoolingSeason W- HeatingSeason

.

t

.

S = 00oMng Seaeon U - Heattig 6eaeon

\

Table 23

Values of I’U’I

Mgnea ite Deck ~verlngs

9 - holing Seaaon M - Heating Season

Special Constructions

Construction details No. 250, 251 and 252 should not be considered

as suitable for insuktion and pertiin to anti-sweat treatment for carKo

holds, voids, store room, and similar s~cea “boundingon the w-ther or

eea water where no heating in provided. me inside surfaces coeff~cientB

are based on the following tempentures:

Cooling HeatingSeamon: Season:——

Compartments above waterline..................... 1100 20°

Com~rtmente below waterline..................... 900Adjoining ventihted smces ...................... 900 :::

Conntmction detiils

between fuel oil settling

----------------

No. 253 ~d 254 apply to vertical boundaries ,

ta~ ‘andholds. Since the flow of oil is

eporadic and of low vel~ity, the liquid la considered statiom~ and

it is therefore aseumed that the interior tank eurfme tem~nture is

the same M the tempenture of the liquid. Surface coefflclenta on the

hold side of the tink are heed on the follmi~ temperatures:

Cooling Season............ 90% .Heating Season............ 35%.

. -----------------

For inaukted deck constructiondetailsovertanke,see ~ble 23,

~nesia and ~nesite deck coverings.

Table 2h

Valuesof ‘lU’l

9poial OOnstrootiOne

m @nstnotion t Contitiontt t

u A D

Sohr ~tition ............ ---- 1.53 1.27Weatherfir to halde tir ---- ---- ----

9. ~~ide fir tO Sea Water...1::; 1.06 .92

~gide fir to Insidefir.. .71 .5729.

baide fir to WeatherU. 1.17 .98 .82Oran.Oork -t w. hside ,firto Sea Watir... L09 .93 .79

fiaide~r to hside Mr.. .75 .@ .L6

Sobr Satiation.......... ---- 1.63 1.33Weatherfir to baide tir. ---- ---- ----

9* hside ti to 9ea Water... L29 l:g .96~side Ur to hside &.. .92 .59

251.

hside Air to Weatherfir. 1.24 1.02 .85v. Weide Ati to Sea Water... l.u .96 .82

heiti M to Mlde fir.. .77 .62 .47

Sohr hdtation........... ---- L57 L 29Weathertir to ~side tir. ---- ---- ----9. fielde~r to sea water..●

’52* *

L 25 1.08 :;:Insidefir to belb Ur.. .91 .72

hside flr to WeatherMr. 1.21 Loo .8&u. tiaideh to Sea Water... 1.U .95 .81

haide Ur to hside ~.. ..76 .61 .L6

T

Stl. 3W Fhetigb3/bn D.F. s. Tank h Wide Ur........ -— .42 ---

253. T~ HoU

= W39

6M Fhstigw. Tankto hide W... ..... ---- .39 ---

1. ~~

gt~ ;;2. ~a

s. Tank to tilde ti ........ ----Wire Wenh.090 —

25~. g ‘~ ~350

3/h”tir SP09L3/Lu ~.F. n. Tad to hide m... ..... -— .089 -—

:,

S - tiltig Sea@on U “ Heatbg Seaeon

.

*

Table2U

Valuesof ‘Un

SPoial Constnctions

m tinstmctioni tintitionIt +u & n

9.

255.

u.

..

s.

256. -. .

u.

s.

257.

u.

s.

258.

u.

s.

259.

w.

S - boMng SOaaOn W - Heat@ Seaeon

Appnti I

11C,t~ot~~* f ~~

Varioua ~ee of @nstmotion.

1

,

.70

.Lo

.30

.m

.M

.0s

,..,

.80 80

.70 70

.& m

1

(t.o. ..b

: .~o 50Q,x>z

.Lo Lo

.30 30

.20 2U

.U M

.05 05

Mean Temperature ‘F.

.

.

3

.,

.

,.

.

b

,. ! ,,

*S.

The-1 Conduotitity of Mterials.

.

b

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11,.

12.

13.

14.

15.

16.

17.

18.

BIBLIOGRAPHY AND REFERENC~

Do&TlnE Fir Plpood AssociatIon, Tacoma 2, Washington, - Technical bta

BulJ.etin,Section 5, dated 1 November 1958.

U. S. ForestProductoLaboratory,~dison, Wi~cOnain,- TechnicalNotes

NO. 218 and 248.

RVACGuide196o,The berican Societyof Heatingand Ventilating

Engineera.

Buffalo Forge “Fan

.Jenningsand Lewis

E:ngineerlng”,5th

“Air Conditioning

Chemical Engineering SerieB - Wm. H.

Edition.

and Refrigeration”, Jrd Edition.

tiAdams - “Heat fiansmission”.....

F. W. Hutchingon - “IndustrialRest fiansfer”.,>,?.*A

Mx iJakoband G. A. Hawking - “Elements of Heat Transfer”, 3rd Edition. ;,f,

U. S. N. Bureau of Ships Design ~ta Sheet D~3~l-1, dated 27 July 1950.

U. S. N. Bureau of Ships Degign ~ta Sheet D~3901-1, dated 1 Dec. 1948.

Mtid Arnott - “Design and Construction of Steel Merchant ships”,

published by SN~ 1955.

Johns-kntille Corp., 22 East 40th Street, New York 16,. N. Y.

Owens-Corning Corporation, Industrial & Commercial Construction

Mterlals Div. 717 Fifth Ave., New York 22, N. Y.

The Wsonite Corporation, 111 West Washington St., Chicago 2, 111.

Selby, Battersby & Co., 5220 Whitby Ave., Phihdelphia 43, Pa.

me CelotexCorporation,120 SouthLaSalleStreet,Chicago3, 111.

CrOSsfield ProductsCorporation, 142 Valley Road, Roselle Park, N.J.

U. S. Coagt Guard, Equi~ent Lists - Itemg approved or accepted under

~rine Ing~ct ion and Navigation Laws (CG-190), April 2, 1962.

19. U. S. CoastGuard;Navigationand Ina~ction CircularNo. 6 - 54,

“~ical ClaSSA-60,A-30,A-15 and A-O RulMeads and Wcks”, dated

22 September, 1954.

20. U. S. Department of Co~erc e, National Sureau of Stand]rds report

#151,- “~ermal Resistanceof Air~~ces and FibrousInsulat~Ona

boundedby reflectivesurfaces.’~

,’

.L.

5U?fL~MENT

@

.,<.4 !,,,

,. ~o”NoED,.--’ $: ,8935 i..,-

0, ,“,.‘,,,..”

The Society of Naval Architects and Marine Engineers601 PAVONIA AVENUE, JERSEY CIV, NEW JERSEY, 07306.201 798-4600 ● FAX 201796-4975

April7,1998

Mr.B- WeismmAlanC.McCIW Assoc.Inc.2600SoutiGessnerSuite504Houston,~77063

DearMr.Weisman:

We acknowledgereceiptofyourletterofMarch 30,1998advisingoftheconfusionregardingthe

deftitionofthe“kvalue”for~ermd Conductivityaslisted on page 2 of T&R Bdletk4-7ThermalInsolationReport.

Thewording of the definitiondoesindicatethatthe“oneinchofthickness”ispartofthedeftitionwhichasyoupotitedoutisnotcorrect.The”k value”instandardheattransfercdcdationsreferstoastandard1inchticknessofmaterialandtheforrmdaisB~~WSq.Ft.loF.

Inasmuchastiebdletinisover30yearsoldandtherem nolongerprintedcopiesavailablewhenrequests are receivedforthisbdletincopiesaremadekm amastercopy.We havecomectedthemastercopy by placing tie words (one inch of thickness) in brackets to indicate it isa notation and not p- of the forrrtda. Attached is a copy of tie page as now included in themaster copy.

We tianyou for dling this confusion to our attention. .

CharlesW. W]lsonTechnidCoordinator

A Alan C.McCLURE ASSOCIATES, INC.

Naval Architects . Engineers

March 30, 1998

The Society of Naval Architects and Marine EngineersPublications Department601 Pavonia AvenueJersey City, NJ 07306

Dear Sirs,

I have discovered an error in the SNAME Technical and Research Publication No. 4-7, ThermalInsulation Report.

Page 2 of the report holds Definitions and Symbols for the subject of Heat Transfer. It is theunits msociated with the variable k, Thernrul Corrduciivi&, that is in error. The units are reportedto be BTU/HWSq. FI./ OF/one inch of (hickness. This expression could be written

BTU , but the standard units fork found in most references isBTU

ashrft20 Fin hr, ft,O F Ifyou

study the dimensional units in each, you will note that the first expression has three length values(fiA2*in) in the denominator. This is incompatible with the single length value in thedenominator of the second (and vastly more popular) expression. Clearly, something is omiss,

If I wanted to take standard k values for a unit foot thickness of a substance mrd convert them tovalues for a unit inch thickness of the same substance, the derivation would look like this:

This mea;s data provided within the report for unit inches of thickness ue to be divided by 12 toconvert them to the standard unit foot of thickness. This makes perfect sense because we aretalking about Conductivity. The smaller thickness (one inch) is capable of transmitting moreheat than the larger thickness (one foot) by a factor of 12, This has also been confirmed bychecking vatues in the report for such materials as oak, fiberglms, and water against numerous

other references.

T&R 4-7 Error 1

2600 SouthG,%,..,. Suite504. Houston.Texas77063-3270. (7 13) 789-1840. Fax: (7 13) 789.1347 . E.Mail:i“[email protected]”c.c.m

Alan C,McCLURE ASSOCIATES, INC.

One reference reported the units as BTUwhich lends some insight into the way they

hr~z.~’

were recorded in the SNAME T&R, Thiscould be expressed as BTUinhrfi20F

Dimensionally,

this puts one length unit in the numerator which could cancel one in the denominator and wouldbe compatible with the more popular expression. The last two expressions are both correct,hence either would be a suitable amendment to the T&R bulletin.

It would also be useful if you provided the following conversion table as a supplement:

wl— = 0.57779

BTU

rno c hr. ft.° F

1~ = 6.93349BTU

hr@2~

BTU1

1 BTU——

hr.fi2.~-~2hrfi0F

Your cooperation in amending this bulletin is greatly appreciated.

Best regards,AlanC.McClureAssociates,Inc.

.,,,. ,’ :

Brain WeismanSNAME 4584680

T&R 4-7 Error 2

D~INITIONS AND SY~OH——_ _

me following 18 a list of comonly use: standard terms and symbols.

Special terms and e~bols ueed in the text are defined where used.

A=

a=

aa =

B~ =

c=

f=

fi =

Bomdary area in square feet, This is the plane boundary area, not

including the surface area of the stiffeners.

Specific area indicated.

Air Space.

British Thermal Unit. The quantity of heat.required to raise the

temperature of one pound of water one degree Fahrenheit at or near

its m~imum density.

~emal Conductance of

given thickness. Thi9

.

structure or material,B~/~/Sq.Ft. /0F for

doee not includethe conductance of the

surface film c0efficient9 “fp” wd “fS“.

Total surface film coefficient = (hc + hr) B~/~/Sq.Ft ,/°F.

Inside surface film coefficient.

fo = Outside gurface film coefficient.

fp=

fe,=

h=

ho =

hc =

hr =

k=

L=

1=

Smface film coeffIcient on the plane aide of a deck or bul~ead.

Surface film coefficient on the stiffenerside of a deck or bulkhead.

Heat transfer coefficient, BW/HS/Sq.Ft ./°F.....

Overall heat transfer coefficient,~/~/Sq.Ft./%.

Heat transfer gurface film coefficientby convection, BN/~/Sq.Ft .j~ ,

Heat trangfer surface film coefficientby radiation, BTU/~/Sq.Ft ./°F.@#

~ermal Conductivity of mteriala, B~/~/Sq.Ft ./%/[one inch of

thicknegg.9Length of heat flow path = total depth of stiffener . lerigthof web +

length of f~nge.

Depth of the covered part of a stiffener.