21
Pairing Gaps and Neutron Star Cooling G. Taranto, M. Baldo, G.F. Burgio, H.-J. S., INFN Catania Motivation Cooling processes Pairing gaps Cooling scenarios Results PRC 70, 048802 (2004) PRL 95, 051101 (2005) PRC 75, 025802 (2007) PRC 89, 048801 (2014) MNRAS 456, 1451 (2016)

Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

  • Upload
    vantram

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Pairing Gaps and Neutron Star Cooling

G. Taranto, M. Baldo, G.F. Burgio, H.-J. S., INFN Catania

• Motivation

• Cooling processes

• Pairing gaps

• Cooling scenarios

• Results

PRC 70, 048802 (2004)

PRL 95, 051101 (2005)

PRC 75, 025802 (2007)

PRC 89, 048801 (2014)

MNRAS 456, 1451 (2016)

Page 2: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Neutron Star cooling:

• Objective: “Explain” the objects in the Temp. vs. Age plot:

320 330 340Age [yrs]

6.14

6.16

6.18

6.20

0 1 2 3 4 5 6 7

log Age [yrs]5

6

7

log

T [K

]

a) sp=1, sn=1, sκ=1

After ∼ 20s SN remnant becomes neutrino transparent

Isothermal after ® 100y, Tcore ≈ (10...100)Tsurface

Neutrino cooling for t ® 105yr, then photon cooling

Data for 19+1 isolated NS from

Beznogov & Yakovlev, MNRAS 447, 1598 (2015)

Klochkov et al., A&A 573, A53 (2015)

Fast cooling of Cas A NS (Disputed !):

Heinke & Ho, ApJ 719, L167 (2010)

Elshamouty et al., ApJ 777, 22 (2013)

Theoretical cooling simulations for fixed NS mass

M/M⊙ = 1.0,1.1, . . . ,2.0

• Major problems:

◦ Stellar atmosphere is unknown, distance not well known

→ Uncertain temperature

◦ Most NS masses are unknown

→ Verification of theoretical models currently impossible

Page 3: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

• Models can be falsified when unable to cover all data

• Theoretical input required:

◦ EOS for core, crust, atmosphere

→ composition of stellar matter

◦ Effective masses, Heat capacities and conductivities

◦ Cooling rates for different processes

◦ Pairing gaps for all channels

• We use standard cooling code NSCool of D. Page with

consistent BHF EOS, eff. masses, pairing gaps as input

(checked by independent code of P. Haensel)

• We assume purely nucleonic NS: no hyperons, no QM !

Page 4: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Cooling Processes:Yakovlev,Kaminker,Gnedin,Haensel, Phys. Rep. 354, 1 (2001)

• Neutrino emissivities without pairing [erg cm−3 s−1] :

◦ Direct Urca n→ p+ + ν ; p+ → n+ ν :

Q(DU) ≈ 4.0× 1027M11T69Θ(

kFp + kFe − kFn)

◦ Modified Urca N+N→ N+N+ +ν ; N+N+ → N+N+ν :

Q(Mn) ≈ 8.1× 1021M31T89αnβn

Q(Mp) ≈ 8.1× 1021M13T89αpβp

(

1− kFe/4kFp)

ΘMp

αp = αn = 1.13, βp = βn = 0.68: in-medium corrections of matrix elements

◦ Bremsstrahlung N+N→ N+N+ ν + ν :

Q(Bnn) ≈ 2.3× 1020M40T89αnnβnn(ρn/ρp)

1/3

Q(Bnp) ≈ 4.5× 1020M22T89αnpβnp

Q(Bpp) ≈ 2.3× 1020M04T89αppβpp

αnn = 0.59, αnp = 1.06, αpp = 0.11, βnn = 0.56, βnp = 0.66, βpp = 0.70

Page 5: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

• Effective mass prefactors:

Mj ≡

(

ρp

ρ0

)1/3(m∗n

mn

)(m∗p

mp

)j

,m∗

m=

k

m

[

de(k)

dk

]

−1

k=kF

BHF results:

0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

1

Mij

CDB + UIX

V18 + UIX

V18 + TBF

M11

(DU)

0 0.2 0.4 0.6

M31

(Mn)

0 0.2 0.4 0.6

M13

(Mp)

0 0.2 0.4 0.6

M40

(Bnn)

0 0.2 0.4 0.6

M22

(Bnp)

0 0.2 0.4 0.6 0.8

M04

(Bpp)

ρ [fm-3

]

M ~

ij

Page 6: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Effects of Pairing:

Yakovlev,Kaminker,Gnedin,Haensel, Phys. Rep. 354, 1 (2001)

• Damping of DU,MU,BNN reactions:

Q(DU) → Q(DU) × R(n,p) ; =Δ̄(T)

T; R() ≈ e−0

0 =Δ̄(T=0)

T= 1.746

TcT

• A new cooling process: Pair Breaking and Formation:

N→ N+ ν + ν :

Q(PBF) ≈ 3.5× 1021m∗

m

kF

mT79F()

Provides rapid cooling close to below

the critical temperature

Page 7: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Intermezzo:

• No pairing:

◦ If DU is active (p¦13%), it dominates all other processes

◦ Too fast cooling of most NS

• Yes pairing:

◦ All cooling processes are comparable and must be used

◦ Competition between blocking and PBF

◦ All gaps have to be known

Page 8: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Gaps in Neutron Star Matter:

X.-R. Zhou, H.-J. S., E.-G. Zhao, Feng Pan, J.P. Draayer; PRC 70, 048802 (2004)

0

1

2

3 Free s.p. spectrumV18

np

1S0

3PF2

0

1

2

3 BHF s.p. spectrumV18

∆ [M

eV]

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BHF s.p. spectrumV18 + UIX

ρB [fm-3]

EOS: BHF (V18 + UIX)

• Self-energy effects suppress gaps

• TBF suppress pp 1S0 but strongly

enhance 3PF2 gaps !

• No polarization corrections

included here

Page 9: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Neutron Star Profile: Particle Densities & Gaps:

EOS: BHF (V18 + UIX + NSC89) , M = 1.2 M⊙

without with

hyperons: hyperons:

0

20

40

60

80

ε,p

[MeV

fm-3

]

ε/10

p

0

0.2

0.4

ρ [fm

-3]

n

p

0

1

2

3

∆ [M

eV]

1S0

3PF2

p nFree s.p. spectrumV18

0

1

2

3

0 2 4 6 8 10 12

∆ [M

eV]

r [km]

BHF s.p. spectrumV18 + UIX

0

50

100

150

200

ε,p

[MeV

fm-3

]

ε/10

p

0

0.5

1

ρ [fm

-3]

n

pΣΛ

0

1

2

3

∆ [M

eV]

1S0

3PF2

p nFree s.p. spectrumV18

0

1

2

3

0 2 4 6 8 10 12

∆ [M

eV]

r [km]

BHF s.p. spectrumV18 + UIX

Polarization effects (including pn interaction) ?

Page 10: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Proton 1S0 Pairing in Neutron Stars:

M. Baldo, H.-J. S.; PRC 75, 025802 (2007)

• Strong in-medium effects on protons due to large neutron

background

• Consider complete set of medium effects: m*, Z, TBF,

Polarization:

Δ(k′) = −∑

k

Z(k)[V + VTBF + VPo](k′, k)

2√

Ms(k)2 + Δ(k)2Δ(k)

• Weak-coupling approximation:

Δ = cμe1/λ , λ = kFm∗Z2Veff

• Approximation for Landau parameters:

G0 = 0.7 ; F0 = −0.4,−0.6-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

F0

G

0kF [fm-1]

Ainsworth et al., PLB 222Bäckman et al., PLB 43Jackson et al., NPA 386Schulze et al., PLB 375Schwenk et al., NPA 713

Page 11: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

• Results:

0

1

2k F

[fm

-1] n

p

(a)

0.7

0.8

0.9

1

m∗ /m n

p

(b)

0.4

0.6

0.8

1

Z

n

p

(c)

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Free s.p., 2BF

BHF s.p., 2BF

BHF s.p., 2BF+3BF

(d)

∆ [M

eV]

ρB [fm-3]

0

0.2

0.4

0.6

0.8

2BF2BF2BF2BF2BF

m

m∗

m∗ ,Z,F0=-0.4

m∗ ,Z,F0=-0.6

2BF+3BF2BF+3BF2BF+3BF2BF+3BF2BF+3BF

0

1

2

3

0 0.2 0.4

∆ [M

eV]

ρB [fm-3]0 0.2 0.4

Reduction by m∗, Z, TBF; Enhancement by polarization!

Page 12: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

• Pairing gaps used for cooling simulation:

0.5

1

0 0.2 0.4 0.6 0.8 1

ρ [fm-3

]

0

0.5

1

p1S0*

1.0

1.2

1.4

1.6

1.8

p1S0*

2.0

1.6

n3P2*

BHF

0.6

[1015

g/cm3]

1.8

2.0

1.6

1.4

1.2

1.0

APR

n3P2*

p1S0 x1/2

n3P2

1.4

1

1.4

0.2

TC [M

eV]

p1S0 x1/2

n3P2

0.80.4 1.81.41.20.60.2 1.0

[MeV

]

0.6

0.2

1

DU onset:

ρ = 0.82 fm−3

p = 0.140

M/M⊙ = 2.03

ρ = 0.44 fm−3

p = 0.136

M/M⊙ = 1.10

We employ BCS and BCS+m∗ gaps

with global scaling factors s, s∗

Page 13: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

• Nuclear EOS and NS Structure:

Compare APR and BHF(V18+UIX) EOS :

BHF has large p and early DU onset

Mmax > 2M⊙ for both EOSs

DU thresholds: M/M⊙ = 1.10,2.03 (BHF,APR)

0.2 0.4 0.6 0.8 1 1.20

500

1000

1500

2000P

, ε [M

eV fm

-3]

0

0.1

0.2

APRBHF

0.2 0.4 0.6 0.8 1 1.28

10

12

14

R [K

m]

0.2 0.4 0.6 0.8 1 1.2

ρ, ρc [fm-3

]

0

0.5

1

1.5

2

M/M

O ·ε

P

a)

b)

c)

d)

µpx

Page 14: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Cooling Scenarios:

• Results: BCS gaps, no scaling:

BCS BCS∗

320 330 340Age [yrs]

6.14

6.16

6.18

6.20

0 1 2 3 4 5 6 7

log Age [yrs]5

6

7

log

T [K

]

a) sp=1, sn=1, sκ=1

0 1 2 3 4 5 6 7

log Age [yrs]5

6

7

log

T [K

]

b) sp*=1, sn*=1, sκ=1

◦ Cooling too fast, hot old NS not reproduced

◦ Cas A fast cooling not reproduced

◦ BCS/BCS∗: fast DU cooling blocked for M/M⊙ ® 1.5/1.2

Page 15: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

• Results: Global fit of all data:

No n3P2 cooling, only p1S0 BCS gap

0 1 2 3 4 5 6 7

log Age [yrs]5

6

7

log

T [K

]

a) sp=0.5, sn=0, sκ=1

0 1 2 3 4 5 6 7

log Age [yrs]5

6

7

log

T [K

]

b) sp=1, sn=0, sκ=1

◦ No n3P2 gap, otherwise PBF process cools too much

◦ Magnitude of p1S0 nearly arbitrary

◦ p1S0 gap must extend to large density to inhibit DU for

many sources

◦ Cas A fast cooling not possible

Page 16: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

• Results: Two ways to fit Cas A cooling:

PBF cooling Delayed cooling

320 330 340Age (yrs)

6.14

6.16

6.18

6.20

0 1 2 3 4 5 6 7

log Age [yrs]5

6

7

log

T [K

]

sp=2, sn=0.132, sκ=1

320 330 340Age (yrs)

6.14

6.16

6.18

6.20

0 1 2 3 4 5 6 7

log Age [yrs]5

6

7

log

T [K

]

a) sp*=1, sn*=0, sκ=0.135

Fine-tuned n3P2 PBF cooling

at current age/temperature

of Cas A: Δn3P2 ≈ 0.1MeV

Suppressed thermal conduc-

tivity and delayed heat prop-

agation

Difficult to fit ALL other sources in this case

Page 17: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Recent Progress on n3PF2 Pairing

• ApJ 817, 6 (2016): J.M. Dong et al.

Role of nucleonic Fermi surface depletion in neutron star

cooling

- No Polarization

• PRC 94, 025802 (2016): D. Ding et al.

Pairing in high-density neutron matter including short- and

long-range correlations

- PNM, No TBF

• PRC 95, 024302 (2017): C. Drischler et al.

Pairing in neutron matter: New uncertainty estimates and

three-body forces

- PNM, No Polarization

Page 18: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Hans-Josef Schulze INFN Catania

Summary:

• Quantitative knowledge of all pairing gaps is required

• n3P2 PBF cooling clashes with existence of hot old NS

Quantitative theoretical calculation still missing

• DU cooling possible if damped for most NS

→ p1S0 gap must extend to large density

• Rapid Cas A and cooling of all other objects are diffi-

cult to reconcile

• Need masses of cooling NS to verify models !

Page 19: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Hans-Josef Schulze INFN Catania

Summary:

• Quantitative knowledge of all pairing gaps is required

• n3P2 PBF cooling clashes with existence of hot old NS

Quantitative theoretical calculation still missing

• DU cooling possible if damped for most NS

→ p1S0 gap must extend to large density

• Rapid Cas A and cooling of all other objects are diffi-

cult to reconcile

• Need masses of cooling NS to verify models !

However:

• Purely nucleonic picture is too naive:

Quark matter, hyperons, etc. must be considered . . .

Page 20: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

Hyperon-Nucleon Pairing in Neutron Stars:

Xian-Rong Zhou, H.-J. S., Feng Pan, J.P. Draayer; PRL 95, 051101 (2005)

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1 2

3

4

5

6nΣ− 3SD1

0: NSC891-6: NSC97a-f

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

01-6

nΣ− 1S0

∆ [M

eV]

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

12

3

4

56nΛ 1S0

kF [fm-1]

• NY gaps in symmetric

hyperon-nucleon matter:

YY pairing unknown due to

unknown potentials

Nijmegen potentials predict

very large n− 3SD1 gaps !(no hard core, very attractive)

Page 21: Pairing Gaps and Neutron Star Cooling - ectstar.eu · Recent Progress on n3PF2 Pairing • ApJ 817, 6 (2016): J.M. Dong et al. Role of nucleonic Fermi surface depletion in neutron

� �

• n− 3SD1 pairing in neutron star matter:

0

0.1

0.2

x i = ρ

i/ρB

n/5

pΣ−

Λ

(a)

0

0.5

ρ n+ ρ

Σ [fm

-3]

(b)

0

0.5

α nΣ

(c)

0

10

20

∆ nΣ [M

eV]

nΣ− 3SD1

(d)

0

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

∆ NN [M

eV]

ρB [fm-3]

nn 3PF2pp 3PF2

(e)

with V18+UIX+NSC89 BHF EOS

Suppression of nn 3PF2 pairing!Suppression of direct Urca − cooling!

But, at high density many uncertainties:

◦ EOS, composition of matter ?

◦ NY potentials ?

◦ Medium effects on pairing ?

◦ Separation of paired/unpaired phases ?

Presently YN pairing cannot be excluded