27
Binding energy curve Fission

P3 Week 10 - Fusion

Embed Size (px)

Citation preview

Page 1: P3 Week 10 - Fusion

Binding  energy  curve  

Fission  

Page 2: P3 Week 10 - Fusion

Nuclear  0ission  •  Fission  happens  when  a  heavy  atomic  nucleus  splits  into  two  lighter  nuclei  

•  The  nucleus  is  deeply  divided  into  two  large  fission  fragments  of  roughly  equal  mass  

•  The  mass  decrease  (and  hence  the  energy  released,  Q)  is  appreciable  

•  Other  neutrons  are  emi?ed  in  the  process  (called  fission  neutrons)  

92235U + 0

1n→ 56144Ba+ 36

90Kr + 2 01n+Q

•  Chain  reac4on:  fission  neutrons  produce  further  fission  

Page 3: P3 Week 10 - Fusion

Nuclear  0ission  92235U + 0

1n→ 56144Ba+ 36

90Kr + 2 01n+Q

92235U + 0

1n→ 56142Ba+ 36

91Kr +301n+Q

92235U + 0

1n→ 55140Cs+ 37

93Rb+301n+Q

92235U + 0

1n→ 62160Sm+ 30

72Zn+ 401n+Q

Page 4: P3 Week 10 - Fusion

Example  •  EsCmate  the  energy  released  (in  Joules)  by  the  fission  of  1g  of  U-­‐235  according  to  the  equaCon  

atomic  masses:  

 Avogadro’s  number:  6.023  x  1023  

1u  =  931  MeV  1MeV  =  1.6  ×10-­‐13  J  

 

92235U + 0

1n→ 56144Ba+ 36

90Kr + 2 01n+Q

92235U = 235.04438u 56

144Ba =143.92279u 3690Kr = 89.92089 u

01n =1.00866 u

Page 5: P3 Week 10 - Fusion

Controlling  chain  reactions  •  Cri4cal  mass:  the  minimum  mass  of  fuel  required  to  produce  a  self-­‐sustaining  chain  reacCon  

•  Chain  reacCons  can  be  controlled  by  inserCng  absorber  (control)  rods  into  the  Uranium  

•  These  rods  contain  elements  such  as  Boron  or  Cadmium  which  can  absorb  many  neutrons  without  fissioning  themselves  

•  Absorber  rods  can  be  liXed  to  speed  up  chain  reacCons  •  or  can  be  lowered  to  decrease  the  reacCon  rate  or  stop  the  reacCons  

 

510B+ 0

1n→ 37Li+ 3

4He+ 2.8MeV

Page 6: P3 Week 10 - Fusion

Nuclear  reactors  •  First  nuclear  reactor  built  in  1942    •  Fuel  used  was  natural  Uranium  (contains  less  than  1%  U-­‐235)  •  Slow  neutrons  are  be?er  at  producing  fission  •  Many  nuclear  reactors  use  enriched  Uranium  •  the  presence  of  the  U-­‐235  isotope  has  been  arCficially  increased  

•  Control  rods  regulate  the  heat  output  of  the  reactor  

•  Water  is  used  to  prevent  overheaCng  

•  OverheaCng  would  result  in  a  Uranium  meltdown  

Page 7: P3 Week 10 - Fusion

Nuclear  reactors  •  The  reactor  works  by  turning  water  into  steam  •  The  steam  drives  a  turbine  which  spins  a  generator  to  produce  power  

•  Reactors  housed  in  thick  layer  of  concrete  which  acts  as  a  radiaCon  shield  

•  The  concrete  layer  lies  inside  a  steel  container  which  provides  extra  shielding  and  prevents  leakage  of  radioacCve  waste  

•  A  strong  outer  concrete  building  serves  as  a  final  layer  

Page 8: P3 Week 10 - Fusion

Charnobyl  disaster  (April  1986)  •  Despite  warnings  from  the  InternaConal  Atomic  Energy  Agency  that  the  protecCve  measures  were  not  strict  enough,  the  Soviet  Union  did  not  take  acCon  remedy  this  

•  There  were  no  sufficiently  secure  secondary  containment  faciliCes  

•  There  was  also  a  problem  with  the  design            of  the  control  rods  

Page 9: P3 Week 10 - Fusion

Fukushima  2011    •  Earthquake  and  resulCng  tsunami  seriously  damaged  the  nuclear  plant  

•  Water  was  drained  from  the  reactor  core  which  made  it  impossible  to  control  core  temperatures  

•  Resulted  in  a  parCal  meltdown  •  Tepco  admi?ed  for  the  first  Cme  on  October  12,  2012  that  it  had  failed  to  take  stronger  measures  to  prevent  disasters  for  fear  of  inviCng  lawsuits  or  protests  against  its  nuclear  plants  

•  In  2013  the  World  Health  OrganizaCon  indicated  that  the  residents  of  the  area  were  exposed  to  so  li?le  radiaCon  that  it  probably  won't  be  detectable.  They  indicated  that  a  Japanese  baby's  cancer  lifeCme  risk  would  increase  by  about  1%  

 

Page 10: P3 Week 10 - Fusion

Pros  and  Cons  of  nuclear  power  •  Pros:  •  doesn’t  depend  on  fossil  fuel  •  Does  not  emit  CO2  so  does  not  contribute  to  climate  change  •  fission  produces  a  million  Cmes  more  energy  per  unit  weight  than  fossil  fuel  alternaCves  

•  Cons:  •  Costly  to  construct  and  maintain  faciliCes  •  Once  fuel  is  used  it  is  sCll  radioacCve  (radioacCve  waste)  •  Waste  remains  radioacCve  for  thousands  of  years  

 

Page 11: P3 Week 10 - Fusion

Nuclear  fusion  •  Fusion  takes  place  when  two  lighter  nuclei  combine  to  form  a  heavier  nucleus  

Fusion  

•  Energy  is  released  in  the  process  •  Fusion  can  only  happen  at  very  high  energies  

•  atomic  masses  

 

12H + 1

2H→ 23He+ 0

1n+Q

12H = 2.015u 0

1n =1.009u 23He = 3.017u

Page 12: P3 Week 10 - Fusion

Fusion  inside  the  Sun  •  Solar  energy  is  produced  by  fusion  at  the  core  of  the  Sun  

•  Temperatures  of  ~108  K  are  reached  •  Atoms  are  stripped  of  electrons  (hot  plasma  state)  •  Nuclei  have  very  high  energies  and  can  overcome  Coulomb  forces  

•  Fusion  takes  place    •  Thermonuclear  reacCons:  

11p+ 1

1p→ 12H + +1

0β +ν + 0.4MeV

12H + 1

2H→ 23He+ 0

1n+3.7MeV

23He+ 2

3He→ 24He+ 21

1p+12.9MeV

Page 13: P3 Week 10 - Fusion

Example  What  is  the  minimum  speed  required  for  protons  to  achieve  fusion?  Assume  that  the  energy  required  is  0.4MeV.  Use  the  kineCc  theory  of  gases  (Nmv2/3=RT)  to  get  an  esCmate  of  the  temperature  required  to  achieve  such  speeds.    Use  the  following  informaCon  •  mass  of  proton  =  10-­‐27kg  •  1MeV  =  1.6  ×  10-­‐13J  •  mass  of  1  mole  of  protons  is  approximately  0.001kg  •  molar  gas  constant  R  =  8.3J  mol-­‐1  K-­‐1  

Page 14: P3 Week 10 - Fusion

Fusion  reactors  •  The  main  difficulty  with  gelng  fusion  reactors  to  work  is  achieving  the  enormous  temperatures  required  

•  D-­‐T  reacCon:  •  At  such  high  temperatures  Hydrogen  is  in  hot  plasma  form  •  The  plasma  is  confined  using  two  types  of  reactors:  •  MagneCc  confinement    

•  plasma  confined  inside  reactor            by  a  magneCc  field  •  (e.g.JET,  TFTR)  

12H + 1

3H→ 24He+ 0

1n+17.6MeV

JET  

Page 15: P3 Week 10 - Fusion

Fusion  reactors  •  The  main  difficulty  with  gelng  fusion  reactors  to  work  is  achieving  the  enormous  temperatures  required  

•  D-­‐T  reacCon:  •  At  such  high  temperatures  Hydrogen  is  in  hot  plasma  form  •  The  plasma  is  confined  using  two  types  of  reactors:  •  MagneCc  confinement    

•  plasma  confined  inside  reactor            by  a  magneCc  field  •  (e.g.TFTR)  

•  InerCal  confinement  reactors  •  heat  and  compress  confined  fuel  using  laser-­‐light  •  extreme  heaCng  up  and  compression  can  ignite  fusion  

12H + 1

3H→ 24He+ 0

1n+17.6MeV

Page 16: P3 Week 10 - Fusion

Example  Show  that  the  energy  released  in  the  D-­‐T  reacCon  is  17.6MeV  [Assume  1u=931MeV  and  use  the  following  atomic  masses:]    

12H = 2.01410u 0

1n =1.00867u24He = 4.00260u1

3H = 3.01605u

Page 17: P3 Week 10 - Fusion

Advantages  of  Fusion  power  •  No  carbon  emissions.  The  only  by-­‐products  of  fusion  reacCons  are  small  amounts  of  helium,  which  is  an  inert  gas  that  will  not  add  to  atmospheric  polluCon  

•  Abundant  fuels.  Deuterium  can  be  extracted  from  water  and  triCum  is  produced  from  lithium,  which  is  found  in  the  earth's  crust.  Fuel  supplies  will  therefore  last  for  millions  of  years  

•  Energy  efficiency.  One  kilogram  of  fusion  fuel  can  provide  the  same  amount  of  energy  as  10  million  kilograms  of  fossil  fuel  

•  No  long-­‐lived  radioac4ve  waste.  Only  plant  components  become  radioacCve  and  these  will  be  safe  to  recycle  or  dispose  of  convenConally  within  100  years  

•  Safety.  The  small  amounts  of  fuel  used  in  fusion  devices  (about  the  weight  of  a  postage  stamp  at  any  one  Cme)  means  that  a  large-­‐scale  nuclear  accident  is  not  possible  

•  Reliable  power.  Fusion  power  plants  should  provide  a  baseload  supply  of  large  amounts  of  electricity,  at  costs  that  are  esCmated  to  be  broadly  similar  to  other  energy  sources  

 

Page 18: P3 Week 10 - Fusion

Progress  in  fusion  research  •  The  experimental  faciliCes  have  achieved  sustainable  results  •  JET  has  produced  16  megawa?s  of  fusion  power  and  proved  the  technical  feasibility  of  fusion  using  deuterium  and  triCum  

•  The  next  step  is  proving  it  can  work  on  a  power  plant  scale  but  may  take  several  more  decades  

•  The  main  problems  are  the  extreme  condiCons  required  for  sustainable  reacCons  and  large  scale  plasma  confinement  

Page 19: P3 Week 10 - Fusion

The  A-­‐Bomb  •  Atomic  bombings  of  Hiroshima  (6  Aug  1945)  and  Nagasaki  (9  Aug  1945)  

•  90,000–166,000  people  died  in  Hiroshima    •  60,000–80,000  in  Nagasaki  •  Most  were  civilians  •  Hiroshima  –  was  it  necessary?  h?p://www.doug-­‐long.com/  

Hiroshima   Nagasaki    

Page 20: P3 Week 10 - Fusion

The  A-­‐Bomb  •  “Li?le  Boy”  (Hiroshima  bomb)  was  a  gun-­‐type  fission  bomb  made  using  U-­‐235    

•  “Fat  Man”  (Nagasaki  bomb)  was  an  implosion-­‐triggered  fission  type  bomb  using  Pu-­‐239  

•  Gun-­‐type:  •  Fuel  masses  subcriCcal  and  kept  separate  •  Brought  together  forcefully  à  supercriCcal  mass  •  If  brought  together  slowly,  the  iniCal  explosion  will  push  them  apart  and  the  explosion  will  fizzle  

li?le  boy   fat  man  

Page 21: P3 Week 10 - Fusion

The  A-­‐Bomb  •  “Li?le  Boy”  (Hiroshima  bomb)  was  a  gun-­‐type  fission  bomb  made  using  U-­‐235    

•  “Fat  Man”  (Nagasaki  bomb)  was  an  implosion-­‐triggered  fission  type  bomb  using  Pu-­‐239  

•  Implosion:  •  Fuel  mass  subcriCcal  and  kept  at  the  core  •  Surrounded  with  chemical  explosives  •  Chemical  explosion  compresses  core  à  core  supercriCcal  

li?le  boy   fat  man  

Page 22: P3 Week 10 - Fusion

Fusion  bombs  (H-­‐bomb)  •  fission  used  to  trigger  fusion  of  heavy  Hydrogen  •  fusion  releases  large  numbers  of  neutrons  •  these  can  be  used  to  make  a  more  violent  explosion  by  surrounding  the  bomb  with  a  layer  of  natural  Uranium  

•  fission  drives  fusion  which  drives  further  fission  •  about  1000  Cmes  more  destrucCve  than  A-­‐bombs  

•  Energy  released:  •  blast  and  shock  (50%)  •  thermal  radiaCon  (35%)  •  immediate  nuclear  radiaCon  (10%)  •  residual  nuclear  radiaCon  (15%)  

 

Page 23: P3 Week 10 - Fusion

EMP  generation  •  High-­‐alCtude  nuclear  explosions  will  generate  EMP  •  gamma-­‐rays  ionize  atoms  in  the  atmosphere  •  resulCng  high-­‐energy  free  electrons  spiral  down  the  magneCc  field  lines  of  the  earth  

•  give  rise  to  a  rapidly  rising  radiated  electromagneCc  field  called  an  electromagne4c  pulse  

•  induce  very  high  currents  in  electronic  components  •  loss  of  power  

Page 24: P3 Week 10 - Fusion

•  Oppenheimer:  •  aXer  WW2  strongly  lobbied  for  internaConal  control  of  nuclear  power  

•  used  influence  to  try  to  avert  nuclear  arms  race  with  Russia  

•  had  his  security  clearance  revoked  

“We  knew  the  world  would  not  be  the  same.  A  few  people  laughed,  a  few  people  cried.  Most  people  were  silent.  I  remembered  the  line  from  the  Hindu  scripture,  the  Bhagavad  Gita;  Vishnu  is  trying  to  persuade  the  Prince  that  he  should  do  his  duty  and,  to  impress  him,  takes  on  his  mulC-­‐armed  form  and  says,  'Now  I  am  become  Death,  the  destroyer  of  worlds.'  I  suppose  we  all  thought  that,  one  way  or  another.”  

Page 25: P3 Week 10 - Fusion

•  Bohr:  •  was  not  directly  involved  in  the  making  of  the  bomb  but  was  invited  as  an  advisor  

•  oXen  expressed  social  concern  about  such  weapons  and  an  eventual  nuclear  arms  race  

•  believed  atomic  secrets  should  be  shared  by  the  internaConal  scienCfic  community  

•  conCnued  to  work  for  internaConal  control  of  nuclear  weapons  unCl  his  death  in  1962  

Page 26: P3 Week 10 - Fusion

•  Einstein:  •  was  a  pacifist    •  supported  but  did  not  take  part  in  the  Mahna?an  project  

•  hoped  that  the  bomb  would  not  be  used  unless  absolutely  necessary  

•  gave  all  the  energies  not  spent  on  his  scienCfic  work  to  campaigns  for  peace  

'I  loathe  all  armies  and  any  kind  of  violence;  yet  I'm  firmly  convinced  that  at  present  these  hateful  weapons  offer  the  only  effecCve  protecCon.'  Should  Nazi  militarism  prevail,  'you  can  be  sure  that  the  last  remnants  of  personal  freedom  in  Europe  will  be  destroyed'.  

‘We  have  learned,  and  paid  an  awful  price  to  learn,  that  living  and  working  together  can  be  done  in  one  way  only  -­‐  under  law.  Unless  it  prevails,  and  unless  by  common  struggle  we  are  capable  of  new  ways  of  thinking,  mankind  is  doomed.’  

Page 27: P3 Week 10 - Fusion

To  Do  •  Read  chapter  30  [p.614-­‐634  Nuclear  Energy]  •  Assignment  wk10:  Prac4cal  DC3    •  Homework:  27.14,  29.5,  30.3,  30.7,  30.11,  31.7  •  Hand  it  in  no  later  than  4:00pm  next  Wednesday  -­‐  LATE  WORK  WILL  NOT  BE  ACCEPTED