102
P. Castorina Dipartimento di Fisica ed Astronomia Università di Catania-Italy 6-10 October 2014 ECT - Trento Event horizon and entropy in high energy hadroproduction QCD Hadronization and the Statistical Model Statistical and/or Entanglement hadronization?

P. Castorina Dipartimento di Fisica ed Astronomia Universit à di Catania-Italy

Embed Size (px)

DESCRIPTION

Event horizon and entropy in high energy hadroproduction. Statistical and/or Entanglement hadronization?. P. Castorina Dipartimento di Fisica ed Astronomia Universit à di Catania-Italy. QCD Hadronization and the Statistical Model. 6-10 October 2014 ECT - Trento. - PowerPoint PPT Presentation

Citation preview

P. CastorinaDipartimento di Fisica ed Astronomia

Università di Catania-Italy

6-10 October 2014 ECT - Trento

Event horizon and entropy in high energy hadroproduction

QCD Hadronization and the Statistical Model

Statistical and/or Entanglement hadronization?

Thermal hadron production: (open) questions

Event horizon and thermal spectrum

Unruh effect

Color event horizon and hadronization

Answering a là Unruh to the open questions

Conclusions

Mev15165

Becattini (2006)

MevT 15165

WHY ?

Freeze-out s/T^3 = 7

A. Bazazov et al. (HotQCD Collaboration), arXiv:1407.6387

Freeze-out E/N = 1.08 Gev

WHY ?

Questions

1) Why do elementary high energy collisionsshow a statistical behavior?

2) Why is strangeness production universally suppressedin elementary collisions?

3) Why (almost) no strangeness suppression in nuclear collisions?

4) Why hadron freeze-out for s/T^3 = 7 or E/N=1.08 Gev

Is there another non-kinetic mechanism providing acommon origin of the statistical features?

Conjecture

Physical vacuum Event horizon for colored constituents

Thermal hadron production Hawking-Unruh radiation in QCDP.C., D.Kharzeev and H.Satz -- D.Kharzeev and Y.Tuchin ( temperature)

F.Becattini, P.C., J.Manninen and H.Satz (strangeness suppression in e+e-)

P.C. and H.Satz (strangeness enhancement in heavy ion collisions)

P.C., A. Iorio and H.Satz ( entropy and freeze-out)

arXiv:1409.3104

Adv.High Energy Phys. 2014 (2014) 376982

Eur.Phys.J. C56 (2008) 493-510 

Eur.Phys.J. C52 (2007) 187-201  Nucl. Phys. A 753, 316 (2005)

Recall

M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Phys. Rev. Lett. 85 (2000) 5042

 arXiv:0710.5373 The Unruh effect and its applicationsLuis C. B. Crispino, Atsushi Higuchi, George E. A. Matsa

Rindlerobserver

QFT - Unruh (elementary)

G

R. Parentani, S. Massar . Phys.Rev. D55 (1997) 3603-3613

THE SCHWINGER MECHANISM, THE UNRUH EFFECT AND THE PRODUCTION OF ACCELERATED BLACK HOLES

Applications (elementary implementation)

R. Brout, R. Parentani, and Ph. Spindel, “Thermal properties of pairs produced by an electric field: A tunneling approach,” Nucl. Phys. B 353 (1991) 209.

Universal thermal behavior

Event Horizon

Uniform acceleration

In QCD ?

Confinement rV

QCD - Uniform acceleration

)2/(2 2

qmR

400

160

TOY MODEL

Full analysis

F.Becattini, P.C., J.Manninen and H.Satz (strangeness suppression in e+e-)

Eur.Phys.J. C56 (2008) 493-510 

F.Becattini, P.C., J.Manninen and H.Satz (strangeness suppression in e+e-)

String breaking and E/N = 1.08 Gev

Bekenstein-Hawking black-hole entropy

( scale of quantum gravity fluctuactions)

24r

AS 1) Valid for a Rindler horizon ( constant acceleration)?

2) What is the scale r?

r is the typical (short) scale of quantum fluctuaction

Lambiase, Iorio, Vitiello Annals of Physics 309 (2004) 151

M.Srednicki PRL 71(1993)666

H.Terashima PRD 61(2000) 104016QFT

L. Bombelli, R. K. Koul, J. H. Lee and R. D. Sorkin, Phys. Rev. D 34, 373 (1986).

String breaking and 7/ 3 Ts

physical meaning : entanglement Preliminary – work in progressP.C., A. Iorio and H.Satz

an interesting exampleChirco et al. PRD 90,044044,2014

BUT

and therefore

Unruh and Minkowsky Exactly as in the previous example

K

Ted Jacobson, Renaud Parentani, Horizon Entropy in Found.Phys. 33 (2003) 323-348

Statistical mechanics of causal horizon

The deep meaning of the result

based on

( at least for )0

is that the entanglement entropy density per unit horizon area is finite and universal .. In QFT

M.Srednicki PRL 71(1993)666

H.Terashima PRD 61(2000) 104016QFT

Lambiase, Iorio, Vitiello , Annals of Physics 309 (2004) 151

Tr

AS

2

4/1?

A possible understanding of the phenomenological result

7/ 3 Ts

is that it corresponds to the entanglement entropy through thecolor confinement horizon due to the string tension.

0

Entanglement hadronization

Problem of species?Entanglement explicit calculation

Preliminary – work in progressP.C., A. Iorio and H.Satz

P.C. and H.Satz  arXiv:1403.3541 Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions

(a first preliminary step)

0

)0()00( STT 1ssl NN

7.06.0)0()00( sSTT

0 heavy ions

TOY MODEL

The Wrobleski factor increases from 0.25 in elementary collisionsto 0.36 in the toy (pions and kaons) model.

Criteria for hadron freeze-out 0

Work in progress

Data from F. Becattini, J. Manninen, and M. Gazdzicki, “Energy and system size dependence of chemical freeze-out in relativistic nuclearcollisions,” Phys. Rev. C73 (2006) 044905,

For the Unruh mechanism explains the freeze-out criteriaE/N = 1.08 Gev and suggests a physical motivation for s/T^3 = 7

0

Fundamental Physics!234 sec/10170 cmaMevT

BH fmRKgM 14.0,1011 358 /10 mkg

31920 /1010 mkgNS

But there is more statistical/entanglement ?

24

1

r

AS

Hawking-Unruh radiation in a lab!

Competitors:

Gravity analogueLasers - Unruh, Schutzhold,…Hawking-Unruh effect in Graphene - Lambiase-Iorio, PLB716,2012,334and arxive 1308.0265.

Workshop on Unruh radiation – Bielefeld – February 2015

In string breaking

C. Barcelo, S. Liberati, and M. Visser, Living Rev. Rel.

T. Ohsaku, “Dynamical Chiral Symmetry Breaking and its Restoration for an Accelerated Observer,” Physics Letters B, Vol. 599, No. 1-2, 2004, pp. 102-110.

Symmetry Restoration by Acceleration Paolo Castorina, Marco FinocchiaroJournal of Modern Physics, 2012, 3, 1703-1708

Why 4/1/ s

But…

For hadron production in high energy collisions, causality requirements lead to the counterpart of the cosmological horizon problem: the production occurs in a number of causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) must be conserved locally in spatially restricted correlation clusters. This provides a theoretical basis for the observed suppression of strangeness production in elementary interactions (pp, e+e−). In contrast, the space-time superposition of many collisions in heavy ion interactions largely removes these causality constraints, resulting in an ideal hadronic resonance gas in full equilibrium.