18
11/16/2021 1 Rotational Motion Overview (Chapter 8, 9, 10) Chapters [Pure] Rotational Motion (8.1-4, 8.6-7): Rotation about a fixed Axis Angular Kinematic Variables ( Ō¦ , , Ō¦ ) ā€“ Axis of Rotation (8.1-2) Torque (8.3) Moment of Inertia (8.4-5) and Rotational Kinetic Energy Conservation of Energy including rotational motion (8.6) Conservation of Angular Momentum (8.7) Rolling Motion (9.1-9.5) = rotation + translation Understanding Rolling Motions (9.1-9.3) Conservation of Energy: rotation and translation (9.5) Newtonā€™s 2 nd Law: rotation and translation: acceleration (9.4) Equilibrium (10.1-10.3) Ī£ Ō¦ =0 and Ī£Ō¦ =0 (10.1, 10.2) Equilibrium Lab, Applications (10.3) Overview: Rotational Kinetic Energy ā€¢ Use conservation of energy to solve rotational motion problems. ā€¢ This requires knowing the Kinetic Energy in rotational motion. ā€¢ Moment of Inertia. ā€¢ Moment of Inertia depends on the axis of rotation. ā€¢ Moment of Inertial for rigid bodies. ā€¢ Moment of inertia for a rod ā€¢ Moment of inertial for a rectangle ā€¢ Moment of inertia for a cylinder ā€¢ Moment of inertia for a sphere ā€¢ Example Problems along the way 1 4

Overview: Rotational Kinetic Energy

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

11/16/2021

1

Rotational Motion Overview (Chapter 8, 9, 10)Chapters

[Pure] Rotational

Motion (8.1-4, 8.6-7):

Rotation about a fixed

Axis

Angular Kinematic Variables ( Ō¦šœƒ, šœ”, Ō¦š›¼) ā€“ Axis of Rotation (8.1-2)

Torque š‰ (8.3)

Moment of Inertia š¼ (8.4-5) and Rotational Kinetic Energy

Conservation of Energy including rotational motion (8.6)

Conservation of Angular Momentum šæ (8.7)

Rolling Motion (9.1-9.5)

= rotation + translation

Understanding Rolling Motions (9.1-9.3)

Conservation of Energy: rotation and translation (9.5)

Newtonā€™s 2nd Law: rotation and translation: acceleration (9.4)

Equilibrium (10.1-10.3) Ī£ Ō¦š¹ = 0 and Ī£Ō¦šœ = 0 (10.1, 10.2)

Equilibrium Lab, Applications (10.3)

Overview: Rotational Kinetic Energy

ā€¢ Use conservation of energy to solve rotational motion problems.ā€¢ This requires knowing the Kinetic Energy in rotational motion.ā€¢ Moment of Inertia.ā€¢ Moment of Inertia depends on the axis of rotation.

ā€¢ Moment of Inertial for rigid bodies.ā€¢ Moment of inertia for a rodā€¢ Moment of inertial for a rectangleā€¢ Moment of inertia for a cylinderā€¢ Moment of inertia for a sphere

ā€¢ Example Problems along the way

1

4

11/16/2021

2

šæ = 1.0 š‘š, š‘€ = 1 š‘˜š‘”.

Rotational KE for rod of length šæ, mass š‘€.

From the Rotational KE, we can find the Moment of Inertia about the axis of rotation.

5

7

11/16/2021

3

šæ

š‘š1

š‘š2

š‘š2

š‘£ = ?

ā€¢ A rod with mass š‘š1 = 4 š‘˜š‘” and length šæ = 1.0 š‘š is hung horizontally on the wall with the pivot at the centre of the rod.

ā€¢ A second mass š‘š2 = 0.2 š‘˜š‘” is attached to one end.

ā€¢ Starting horizontally at rest, the rod rotates due to the added mass. What is the speed of the mass when it reaches the bottom?

š‘š1

Overview: Rotational Kinetic Energy

ā€¢ Use conservation of energy to solve rotational motion problems.ā€¢ This requires knowing the Kinetic Energy in rotational motion.ā€¢ Moment of Inertia.ā€¢ Moment of Inertia depends on the axis of rotation.

ā€¢ Moment of Inertial for rigid bodies.ā€¢ Moment of inertia for a rodā€¢ Moment of inertial for a rectangleā€¢ Moment of inertia for a cylinderā€¢ Moment of inertia for a sphere

ā€¢ Example Problems along the way

9

11

11/16/2021

4

Moment of inertia not in table.

ā€¢ A rectangle has sides š‘Ž = 0.25 š‘š,š‘ = 0.75 š‘š with mass š‘€ = 2.0 š‘˜š‘”.

ā€¢ Given that the moment of inertia of a

rectangle is 1

12š‘€(š‘Ž2 + š‘2) about the

centre of a rectangle, what are the moment of inertia at point A?

Ɨ Ɨ A

š‘

š‘Ž

12

13

11/16/2021

5

Overview: Rotational Kinetic Energy

ā€¢ Use conservation of energy to solve rotational motion problems.ā€¢ This requires knowing the Kinetic Energy in rotational motion.ā€¢ Moment of Inertia.ā€¢ Moment of Inertia depends on the axis of rotation.

ā€¢ Moment of Inertial for rigid bodies.ā€¢ Moment of inertia for a rodā€¢ Moment of inertial for a rectangleā€¢ Moment of inertia for a cylinderā€¢ Moment of inertia for a sphere

ā€¢ Example Problems along the way

What is the moment of inertial of this thin walled hollow cylinder (mass š‘€, radius š‘…, length šæ)?

š¼š‘Žš‘„š‘–š‘  = š‘š1š‘Ÿ12 +š‘š2š‘Ÿ2

2 +š‘š3š‘Ÿ32 + ā€¦

A. š‘€š‘…2

B.1

2š‘€š‘…2

C.1

4š‘€š‘…2

D.1

8š‘€š‘…2

E. 1

12š‘€š‘…2

14

16

11/16/2021

6

š‘š1

š‘š2

Rotational KE example problem

ā€¢ Two masses, š‘š1 = 2 š‘˜š‘”,š‘š2 = 1 š‘˜š‘” are connected by a string with negligible weight.

ā€¢ The string is then put around a pulley with mass š‘€ = 6 š‘˜š‘” and radius š‘… = 0.5 š‘š.

ā€¢ The pulley is made like a bicycle wheel where the mass is concentrated on the rim only.

ā€¢ Initially, mass š‘š1is at rest at height ā„Ž = 2 š‘šwhile š‘š2 is resting on the ground.

ā€¢ When released, what is the speed of š‘š1 just before it hits the ground?

š‘€ = 6 š‘˜š‘”š‘… = 0.5 š‘š

š‘š1 = 2 š‘˜š‘”

š‘š2

= 1 š‘˜š‘”

š‘š1

š‘š2

Massless wheel for the moment (š‘€ = 0)

ā€¢ Ī”š¾šø =1

2š‘š1š‘£

2 +1

2š‘š2š‘£

2

ā€¢ What is āˆ’Ī”š‘ƒšø = š‘ƒšøš‘– āˆ’ š‘ƒšøš‘“?

A. š‘š1š‘”ā„Ž

B. š‘š2š‘”ā„Ž

C. š‘š1š‘”ā„Ž +š‘š2š‘”ā„Ž

D. š‘š1š‘”ā„Ž āˆ’š‘š2š‘”ā„Ž

Conservation of Energy Ī”š¾šø = āˆ’Ī”š‘ƒšøš‘€ = 0

š‘š1 = 2 š‘˜š‘”

š‘š2

= 1 š‘˜š‘”

18

19

11/16/2021

7

š‘š1

š‘š2

Massless wheel for the moment (š‘€ = 0)

ā€¢ Ī”š¾šø =1

2š‘š1š‘£

2 +1

2š‘š2š‘£

2

ā€¢ āˆ’Ī”š‘ƒšø = š‘ƒšøš‘– āˆ’ š‘ƒšøš‘“ = š‘š1š‘”ā„Ž āˆ’š‘š2š‘”ā„Ž

Conservation of Energy Ī”š¾šø = āˆ’Ī”š‘ƒšø

1

2š‘š1š‘£

2 +1

2š‘š2š‘£

2 =š‘š1š‘”ā„Ž āˆ’š‘š2š‘”ā„Ž

š‘€ = 0

š‘š1 = 2 š‘˜š‘”

š‘š2

= 1 š‘˜š‘”

š‘š1

š‘š2

Massless wheel for the moment (š‘€ = 6 š‘˜š‘”)

ā€¢ āˆ’Ī”š‘ƒšø = š‘ƒšøš‘– āˆ’ š‘ƒšøš‘“ = š‘š1š‘”ā„Ž āˆ’š‘š2š‘”ā„Ž

ā€¢ Ī”š¾šø =1

2š‘š1š‘£

2 +1

2š‘š2š‘£

2 + Ī”š¾šøš‘Ÿš‘œš‘”š‘Žš‘”š‘–š‘œš‘›

Conservation of Energy Ī”š¾šø = āˆ’Ī”š‘ƒšøš‘€ = 6 š‘˜š‘”š‘… = 0.5 š‘š

š‘š1 = 2 š‘˜š‘”

š‘š2

= 1 š‘˜š‘”

20

21

11/16/2021

8

What is the moment of inertial of this solid cylinder (mass š‘€, radius š‘…, length šæ)?

š¼ = š‘€š‘…2

š¼ = ?

Replace the pulley in the previous problem with a solid disk. What is the moment of inertial š¼ of a solid disk (mass š‘€, radius š‘…) ?

š‘š1

š‘š2

š‘š1

š‘š2

Previously š¼ =š‘€š‘…2

23

25

11/16/2021

9

Overview: Rotational Kinetic Energy

ā€¢ Use conservation of energy to solve rotational motion problems.ā€¢ This requires knowing the Kinetic Energy in rotational motion.ā€¢ Moment of Inertia.ā€¢ Moment of Inertia depends on the axis of rotation.

ā€¢ Moment of Inertial for rigid bodies.ā€¢ Moment of inertia for a rodā€¢ Moment of inertial for a rectangleā€¢ Moment of inertia for a cylinderā€¢ Moment of inertia for a sphere

ā€¢ Example Problems along the way

28

29

11/16/2021

10

Torque: concepts (magnitudes only) and mathematics (vectors)

30

31

11/16/2021

11

1. Torque ā€“ Concepts (magnitudes only)

We need a torque to start rotating the objectLinear Angular

KE 1

2š‘šš‘£2

1

2š¼šœ”2

displacement š‘„ šœƒ

velocity š‘£ šœ”

acceleration š‘Ž š›¼

Inertia š‘š š¼

Force Torque

š¹ šœ

32

33

11/16/2021

12

Definition of torque šœ

š‘Ÿš‘

š‘Ÿš‘Ž

Same force Ō¦š¹ applied at two different locations yield different torques

Easier to rotate the nut when the force is applied at š‘Ÿš‘ than at š‘Ÿš‘Ž

Applied force here is perpendicular to š‘Ÿš‘ and š‘Ÿš‘.

Magnitudes only:

Definition of torque šœ

Ō¦š‘Ÿ

šœƒŌ¦š¹

The radial component š¹ cos šœƒ does not rotate the wrench/nut. Only the tangential component of the force š¹ sin šœƒ does rotate it.

š¹ sin šœƒ

š¹ cos šœƒ

When Ō¦š¹ is not perpendicular to Ō¦š‘Ÿ

34

35

11/16/2021

13

Definition of torque šœ

Ō¦š‘Ÿ

šœƒŌ¦š¹

šœƒ

Keep the full magnitude of

vector Ō¦š¹, but take the perpendicular component (š‘ŸāŠ„) of the displacement vector Ō¦š‘Ÿ.

We need a torque to start rotating the objectLinear Angular

KE 1

2š‘šš‘£2

1

2š¼šœ”2

š‘„ šœƒ

š‘£ šœ”

š‘Ž š›¼

š‘š š¼

Force Torque

š¹

Newtonā€™s Law

š¹ = š‘šš‘Ž

Ō¦š‘Ÿ

šœƒ Ō¦š¹

š¹āŠ„ = š¹ sin šœƒ

36

37

11/16/2021

14

We need a torque to start rotating the object

1. Tangential acceleration š‘ŽāŠ„

š‘ŽāŠ„ = š‘Ÿš›¼

š›¼ is the angular accel.

2. š¹āŠ„ = š‘šš‘ŽāŠ„

Starting with šœ = š‘Ÿš¹āŠ„ which is correct?

A. šœ = š‘šš›¼

B. šœ = š‘šš‘Ÿš›¼

C. šœ = š‘šš‘Ÿ2š›¼

Ō¦š‘Ÿ

šœƒŌ¦š¹

š¹āŠ„ = š¹ sin šœƒ

š‘ŽāŠ„

šœ¶

š‘š

We need a torque to start rotating the objectLinear Angular

KE 1

2š‘šš‘£2

1

2š¼šœ”2

š‘„ šœƒ

š‘£ šœ”

š‘Ž š›¼

š‘š š¼

Force Torque

š¹

Newtonā€™s Law

š¹ = š‘šš‘Ž

Ō¦š‘Ÿ

šœƒ Ō¦š¹

š¹āŠ„ = š¹ sin šœƒ

šœ¶

39

41

11/16/2021

15

2. Torque ā€“ Vector Math

From šœ = š¼š›¼ to Ō¦šœ = š¼ Ō¦š›¼

We need a torque to start rotating the objectLinear Angular

KE 1

2š‘šš‘£2

1

2š¼šœ”2

š‘„ šœƒ

š‘£ šœ”

š‘Ž š›¼

š‘š š¼

Force Torque

š¹

Newtonā€™s Law

š¹ = š‘šš‘Ž

Ō¦š‘Ÿ

šœƒ Ō¦š¹

š¹āŠ„ = š¹ sin šœƒ

šœ¶

42

44

11/16/2021

16

šœƒ

š‘„

š‘¦

š‘§

ā€¢ Consider 1D rotation

ā€¢ Displacement šœƒ

ā€¢ Ang. Velocity Ļ‰ = Ī”šœƒ/Ī”š‘”

ā€¢ Ang. Accel. š›¼ = Ī”šœ”/Ī”š‘”

ā€¢ object rotates about

Rotational Motion

ā€¢ Consider 1D rotation

ā€¢ Displacement šœƒ

ā€¢ Ang. Velocity Ļ‰ = Ī”šœƒ/Ī”š‘”

ā€¢ Ang. Accel. š›¼ =Ī”šœ”

Ī”š‘”

ā€¢ object rotates about +š‘§ axis

ā€¢ They are all in the direction of the axis of rotation: in this example,

ā€¢ Ō¦šœƒ = šœƒš‘˜

ā€¢ šœ” = šœ”š‘˜

ā€¢ Ō¦š›¼ = š›¼š‘˜

Rotational Motion

šœƒ

š‘„

š‘¦

š‘§

Vector Ō¦šœ = š¼ Ō¦š›¼Magnitude: šœ = š¼š›¼

48

50

11/16/2021

17

We need a torque to start rotating the objectLinear Angular

KE 1

2š‘šš‘£2

1

2š¼šœ”2

š‘„ šœƒ

š‘£ šœ”

š‘Ž š›¼

š‘š š¼

Force Torque

š¹ šœ = š‘Ÿš¹ sinšœƒ

Newtonā€™s Law

Ō¦š¹ = š‘š Ō¦š‘Ž

Ō¦š‘Ÿ

šœƒ Ō¦š¹

š¹āŠ„ = š¹ sin šœƒ

šœ¶

We need a torque to start rotating the object

Ō¦š‘Ÿšœƒ Ō¦š¹

š¹āŠ„ = š¹ sin šœƒ

Recall

Axis of rotation:+š’›

Torque, angular accel, velocity, displacement are all in the + š’› direction.

š‰ = š’“š‘­ š¬š¢š§šœ½ can be rewritten as

š‘„

š‘¦

š‘§š‰ = š‘Ÿš¹āŠ„ = š’“š‘­š¬š¢š§šœ½

52

53

11/16/2021

18

We need a torque to start rotating the objectLinear Angular

KE 1

2š‘šš‘£2

1

2š¼šœ”2

š‘„ šœƒ

š‘£ šœ”

š‘Ž š›¼

š‘š š¼

Force Torque

Ō¦š¹

Newtonā€™s Law

Ō¦š¹ = š‘š Ō¦š‘Ž

Ō¦š‘Ÿ

šœƒ Ō¦š¹

š¹āŠ„ = š¹ sin šœƒ

55