21
Eden Figueroa Overview of US Quantum Networking Efforts

Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Eden Figueroa

Overview of US Quantum Networking Efforts 

Page 2: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Quantum communication 

Hefei‐QN Calgary QN

Tenerife QN Vienna QN

Quantum communication:Is the ability to transmit qubits or entanglement between two distant locations.

Chinese Space QN

Page 3: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Quantum Repeaters

‐ Good entanglement sources compatible with QMs.‐ QuantumMemories with good efficiency, fidelity and storage time.‐ Entanglement distribution using optical fibers.‐ All connections must preserve entanglement with high fidelity

Page 4: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

(Atomic ensembles: USTC China, Barcelona, Caltech)

Types of quantum light‐matter interfaces (QLMI)

(NV Diamond centers: TU Delft, Chicago/Argonne)

(SiV centers: MIT, Harvard, USA)

Type I Read‐out QLMI (Q‐registers)

Page 5: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Types of quantum light‐matter interfaces (QLMI)

(Room temperature ensembles: Stony Brook, Oxford)

Type II In‐out QLMI (Q‐memory buffer)

(Single‐atoms: MPQ, Munich)

(Rare‐earth doped crystals: MPQ, Munich)

Page 6: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Boston‐Area Quantum TestbedValidated for state‐of‐art quantum secure comm* [>1 Mbit/sec @16 dB, > 20 Mbits/s local]Quantum memory node (QR1) broke repeaterless bound

QR1QR1

LukinLukinLoncarLoncar

NarangNarang

Englund Englund 

PolyanskiyPolyanskiy

2019 2020

8 SNSPDsSPDC & modulated laser sourcesClock distribution 

QKD > 1 Mbit/sec (2019)

6*C. Lee et al, Opt. Express 27 (2019); D. Bunandar et al, PRX 8, 021009 (2018)Courtesy Dirk Englund

Page 7: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Quantum Repeaters Upgrade

43 km fiber43 km fiber

42 km fiber spool42 km fiber spool

QR1QR1

LukinLukin

NarangNarang

Englund ‐BerggrenEnglund ‐Berggren

PolianskiPolianski

2019 QR2*

* assuming ERC** assuming SnV centers

External funding

QR3*QR4**

2020

2021

2023

Quantum memory node (QR1) broke repeaterless boundERC year‐3 goal: >2 NSF‐ERC quantum repeaters operationalSoliciting separate funding for LL QRs by 2023

7Courtesy Dirk Englund

Page 8: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Available quantum technology in SBU quantum network 

Patent pending: PCT/US19/24601 (2019) Phys. Rev. Applied 8, 034023 (2017).

Phys. Rev. Applied 8, 064013  (2017).Scientific Reports 5, 7658 (2015).

Quantum memory buffers:• High‐Fidelity (~99%)• Storage efficiency (~50%)• Storage time (~100us)• Room‐Temperature

– Resonant to 87Rb absorption line– Single photons with a 2 MHz bandwidth– Entanglement production at 10^4/sec ratios.

Page 9: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Quantum Channel

Quantum memory

Photon catcher

Bob’s remote site

Quantum Network SBU: random polarization qubits and quantum cryptography 

‐ On average 1.6 photons per pulses before the memory

‐ QBER of ~3.0% for Z and X bases 

Phys. Rev. Applied 8, 064013  (2017)

Page 10: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

SBU room temperature quantum network

arXiv:1808.07015v2 (2019)

‐ Four matched EIT resonances.‐ Four simultaneous storage experiments.‐ Two polarization independent single photonlevel filters

Page 11: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Presentation Name - 11Author Initials MM/DD/YY

Marconi 2.0 – US-European MEO Dual-Span Ground-to-Ground Entanglement Swap Demonstration

MIT LL Firepond

MIT LL Fiber Network

ESA Optical Ground Station,

Tenerife

Medium-EarthOrbit (MEO)

Large-ApertureTerminal

10-GHz Entanglement

Source

• MEO satellite with two quantum terminals provides trans-Atlantic ground-to-ground entanglement swap

• Pathfinder Goals:

– Multi-span scalable quantum network demonstration

– Facilitates ground terminal and quantum technology partnering

• Multiple passes per day with trans-Atlantic ground terminal line-of-sight

– ~10-min session per pass, ground elevation angle >20o

– ~4K entanglement distribution and ~400 swap events per pass

Ground Stations

Quantum Satellite

Courtesy Scott Hamilton

Page 12: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

BNL QIST Laboratory January 2020

Laser equipment and experimental enclosures installed

Free‐space long distance quantum link in development Portable entanglement source in construction

Page 13: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

• Stage I: Intercampus network for MDI QKD Quantum‐secure keys and post quantum encryption for 

key sharing with Analysis on the Wire (AoW) nodes Collaboration BNL (lead), SBU, ORNL, and LANL. Funded by DOE CESER and SBU

Page 14: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

ECC

CEWIT

QIT I

Quantum Memory 

Entangled Source

Quantum Memoriesand Bell measurement 

Entangled Source

Quantum Memory 

@795nm 

@795nm 

QIT II

HST

Stage II: Quantum repeater prototype @ 795 nm Memory assisted entanglement swapping. Entanglement distribution beyond fibre losses. Funded by NSF, DOE ASCR, SBU and Simons Foundation

Page 15: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Quantum entanglement distribution between BNL and SBU

SBU Hospital North Tower Elevator Shaft

SBU (view from BNL)

701 Roof

BNL (view from SBU) Top of SBU HST

QuantumTransmitter

QuantumReceiver

Entanglement source

Entanglement detection

Page 16: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Free Space Link ~20km

SDCC535

701

ECC

CEWIT

HS TOWER

PHYSICS

Stage III: Free space expansion to BNL Long distance operation at 795 nm. Entanglement distribution between SBU and BNL. Funded by SBU and BNL PDs

Page 17: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

SDCC

535

Entangled Source

~60km ~50km 

~100km 

@795nm 

FC

FC

Garden City

Stage IV: Entanglement distribution at telecom wavelengths. Memory‐compatible telecom entanglement. Polarization compensation over long distances. Funded DOE ASCAR and BNL LDRD.

Entanglement source

+

Quantum memories/frequency conversion

Page 18: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

SDCC535

ECC

CEWIT

QIT I

~60km

Entangled Source

Quantum Memory 

Quantum Memory 

Entangled Source

Quantum Memoriesand Bell measurement 

Stage V: Quantum repeater prototype @ 1324 nm Memory assisted entanglement distribution > 170 km. First prototype of a long‐distance quantum repeater. Funded by DOE ASCR and DOE CESER.

Page 19: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Research questions I

•Deployable “plug‐tune & play” systems. •Miniaturized for real‐networks & outside of the laboratory storage.

‐ Increase the memory depth.‐ Multiplexing and routing to enhance the network rates.

Page 20: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

•Demonstrate quantum‐memory‐assisted entanglement swapping in a full quantum repeater network.

•Add quantum‐gate capabilities to the entanglement distribution networks.• Investigate error correction.

Research questions II

Page 21: Overview of US Quantum Networking Efforts · – ~4K entanglement distribution and ~400 swap events per pass Ground Stations Quantum Satellite Courtesy Scott Hamilton. BNL QIST Laboratory

Science Advances 5, eaav4651(2019)

•Increase entanglement generation rates.•Interface hybrid systems materials/light/atoms.

•Interface different quantum light‐matter systems.

Research questions III