18
Abstract (summary) TranslateAbstract This study looked at output levels produced by new generation personal music systems (PMS), at the level of eardrum by placing the probe microphone in the ear canal. Further, the effect of these PMS on hearing was evaluated by comparing the distortion product otoacoustic emissions and high frequency pure tone thresholds (from 3 kHz to 12 kHz) of individuals who use PMS to that of age matched controls who did not use PMS. The relationship between output sound pressure levels and hearing measures was also evaluated. In Phase I output SPLs produced by the PMS were measured in three different conditions - a) at volume control setting that was preferred by the subjects in quiet b) at volume control setting that was preferred by the subject in presence of 65 dB SPL bus noise c) at maximum volume control settings of the instrument. In Phase II pure tone hearing thresholds and DPOAEs were measured. About 30% of individuals in a group of 70 young adults listened to music above the safety limits (80 dBA for 8 hours) prescribed by Ministry of Environment and Forests, India. Addition of bus noise did not increase the preferred volume control settings of the subjects significantly. There were no significant differences between the experimental and control groups for mean pure tone threshold and for mean DPOAE amplitude comparisons. However, a positive correlation between hearing thresholds and music levels and a negative correlation between DPOAE measures and music levels were found. Full Text TranslateFull text Turn on search term navigation Introduction There are growing concerns over noise exposure via personal music systems (PMS) use by young adults. It is said that with the massive growth in popularity of portable MP3 players, exposure to high noise levels has increased, and millions of young people are potentially putting themselves at risk for permanent hearing loss every time they listen to their favorite music. As no evidence-based definition exists for hazardous soundlevels of music, as a substitute, standards for exposure to occupational noise have been proposed for use. [1] The ISO 1999 standard for occupational noise [2] defines a time-weighted average (TWA) level of 85 dBA for an 8 hour period per day as

Output Sound Pressure Levels of Personal Music Systems and Their Effect on Hearing

Embed Size (px)

DESCRIPTION

hearing loss

Citation preview

Abstract (summary)

TranslateAbstractThis study looked at outputlevelsproduced by new generationpersonalmusic systems (PMS), at thelevelof eardrum by placing the probe microphone in the ear canal. Further, the effect of these PMS on hearing was evaluated by comparing the distortion product otoacoustic emissions and high frequency pure tone thresholds (from3 kHz to 12 kHz) of individuals whousePMS to that of age matched controls who did notusePMS. The relationship between output sound pressurelevelsand hearing measures was also evaluated. In Phase I output SPLs produced by the PMS were measured in three different conditions - a) at volume control setting that was preferred by the subjects in quiet b) at volume control setting that was preferred by the subject in presence of 65 dB SPL busnoisec) at maximum volume control settings of the instrument. In Phase II pure tone hearing thresholds and DPOAEs were measured. About 30% of individuals in a group of 70 young adults listened to music above the safety limits (80 dBA for 8 hours) prescribed by Ministry of Environment and Forests, India. Addition of busnoisedid not increase the preferred volume control settings of the subjects significantly. There were no significant differences between the experimental and control groups for mean pure tone threshold and for mean DPOAE amplitude comparisons. However, a positive correlation between hearing thresholds and musiclevelsand a negative correlation between DPOAE measures and musiclevelswere found.

Full Text

TranslateFull text Turn on search term navigationIntroduction

There are growing concerns overnoise exposureviapersonalmusic systems (PMS)useby young adults. It is said that with the massive growth in popularity of portable MP3 players,exposureto highnoise levelshas increased, and millions of young people are potentially putting themselves at risk for permanent hearing loss every time they listen to their favorite music. As no evidence-based definition exists for hazardous soundlevelsof music, as a substitute, standards forexposureto occupationalnoisehave been proposed foruse. [1] The ISO 1999 standard for occupationalnoise[2] defines a time-weighted average (TWA)levelof 85 dBA for an 8 hour period per day as the maximum permissible dose of sound energy. The limit 85 dBA is not fully harmless, as a few percent of people may still incur a permanent hearing loss if exposed to it. The ISO standard recognizes that there is a tradeoff between theexposuretime and the soundlevel, which is quantified by a '3 dB exchange rule': Every 3 dB increase in theexposure levelmust be compensated by halving theexposuretime to keep the risk constant. This means that an 8 hourexposureto 85 dBA bears the same risk for hearing loss as 4 hours ofexposureto 88 dBA, or a 2 hourexposureto 91 dBA, and so on. In India, the Ministry of Environment and Forests [3] has proposed a TWAlevelof 80 dBA for an 8 hour period per day as the maximum permissibleexposure.

Early studies by Wood and Lipscomb [4] and Katz et al., [5] looked at the maximum outputlevelsproduced by thepersonalcassette players through headphones. These investigators reportedlevelsas high as 124 dBA and 110-128 dBA respectively for compact disc (CD) and cassette players. Based on these reports both the papers concluded that CD and cassette players produce soundlevelsthat are hazardous to hearing. However, these reported outputlevelswere measured at maximum volume control settings which do not represent the everydayusesettings. Moreover these measurements were made on a 9BS 9A coupler. Other researchers [6],[7] asked users to set the volume controllevelto their preferred setting and measured the outputlevels. Results showed that outputlevelswere substantially less than what is reported by Wood and Lipscomb [4] and Katz et al. , [5] but even so a significant percentage of people set the listeninglevelshigher than the permissiblelevelof 80 dBA. Fligor and Cox [6] recorded the outputlevelsof the different commercially available CD players in combination with a variety of earphone styles on a KEMAR. They concluded that outputlevelsvaried across different manufacturers of CD players and style of the earphone. But generally smaller insert earphones produced sound pressurelevelshigher than the permissible limits compared to bigger headphones. Outputlevels fromPMS have been reported to be as low as approximately 80 dBA [9] to as high as 121 dBA. [8] Airo et al., [10] measured the outputlevelsofpersonalcassette players in an acoustic coupler at maximum volume control settings, comfortable volume control settings in quiet and in the presence of backgroundnoise. They reported thatpersonalcassette players were able to produce high soundlevelsbut the typical listeninglevelschosen by the users were not alarming. The outputlevelson average exceeded 85 dBA when the backgroundnoise levelwas 72 dBA, potentially creating some hearing loss risk when cassette players are used in noisy conditions at work or among traffic. Hodgetts et al., [11] measured the preferred listeninglevelsfor a MP3 player in normal hearing adults. Using probe microphone measures, Hodgetts et al., [11] measured the dBA weighted sound pressurelevelsproduced by a commercially available MP3 player for different types of earphones (ear bud, over-the-ear, and over-the-ear withnoisereduction circuitry). Preferred listeninglevelsrangedfrom75-78 dBA for different types of earphones. Preferred listeninglevelswere higher for the ear bud style of earphones compared to the over-the-ear style. Furthermore, preferred listeninglevelswere increased by 6-10 dB when backgroundnoisewas introduced to the listening environment to simulate the 'real world' situation. Torre [12] measured the output SPL of PMS in the ear canal of 32 participants at four loudness categories: Low, medium, loud and very loud. Their results showed that mean output SPLs values were 62, 72, 88 and 98 dB SPL for low, medium, loud and very loud categories respectively. Based on these measurements they concluded that output SPLs produced by PMS at medium or loud volume control settings may not be hazardous as most of the subjects reported they listen to music at these volume control settings for about 1 to 3 hours a day.

Meyer-Bisch [13] found significantly poorer pure tone thresholds in people using PMS longer than 7 hr/week than in the matched control subjects. Lepage and Murray [14] measured the transient evoked otoacoustic emission in 700 individuals and found reduced amplitudes of these in individuals with a positive history ofnoise exposureor PMSuse. Recently, Montoya et al., [15] compared the amplitude, incidence and spectral content of transient and distortion product otoacoustic emissions in normal hearing MP3 player users to those of control group who were non-users of MP3 players. Results showed that subjects who had used MP3 players for greatest number of years and for more hours each week exhibited a reduction in incidence and amplitudes of both types of otoacoustic emissions and an increase in distortion product otoacoustic emission thresholds.

Previous research has shown that maximum outputlevelsproduced by cassettes and CD players are above the permissible limits. However, more recent research has shown that output SPLs of newer generation PMS like iPods, MP3 players at medium or loud volume control settings are within the permissible limits and may not be hazardous. However, there is a paucity of data regarding the outputlevelsand their effect on auditory system of new generation MP3 players and mobile phones MP3 systems. In developing countries like India, mobile phone ownership is growing rapidly. About six million new mobile subscriptions are added every month and three quarters of India's population will be covered by a mobile network by the end of 2008. Moreover, the studies mentioned above have been carried out in Western population and it is known that output SPL values as well as susceptibility tonoise-induced hearing loss depends on the race and ethnicity. [12],[16],[17] Hence, it is important to measure and document the output sound pressurelevelsand their effect on hearing of these new generation PMS including mobile phones in different racial/ethnic groups. This study specifically looked at outputlevelsproduced by newer generation PMS in an Asian-Indian population, when measured at thelevelof the eardrum by placing the probe microphone in the ear canal. Outputlevelswere measured in three conditions - a) at the volume control setting that was preferred by the subject in quiet b) at the volume control setting that was preferred by the subject in presence of busnoiseand c) at the maximum volume control settings of the instrument. The effect of this new generation PMS on hearing was evaluated by comparing the distortion product otoacoustic emissions and high frequency pure tone thresholds (from3 kHz to 12 kHz) of individuals whousePMS to that of age matched controls who did notusePMS. Furthermore, the relationship between output sound pressurelevelsand hearing measures was also evaluated.

Materials and Methods

Participants

Participants comprised two groups. The experimental group had 70 adults (35 males and 35 females; age range of 17-24 years; mean age 20.5 years) who reported listening to music regularly through their PMS. A detailed history regarding the PMS and itsusagewas collectedfromeach participant using a questionnaire [Appendix I] All the subjects in the experimental group had been using PMS for a period of over two years. The control group had 30 adults who never/very rarely listened to music through PMS. Participants in the control group had their hearing thresholds less than 15 dB HL at octave frequenciesfrom250 Hz to 8000 Hz. Subjects in both the groups showed no evidence of occluding cerumen or middle ear pathology on otoscopy and tympanometry. Furthermore, subjects in both groups did not report of any history of occupationalnoise exposureor ototoxic drugusage. Subjects were recruitedfromdifferent graduate schools in and around Mangalore, a city in south India. Written consent was obtainedfromall the subjects. The study was approved by the research review board of the Dr. MV Shetty College of Speech and Hearing.

Procedure

The study was conducted in two phases. In Phase I output sound pressurelevels(SPLs) produced by the PMS were measured in three different listening conditions - at volume control settings preferred by the subjects in quiet, volume control settings preferred by the subjects in the presence of background of 65 dB SPL busnoiseand at the maximum volume control setting of the PMS - using a probe microphone.

Output SPLs in the presence of background busnoisewas measured to simulate a real life listening situation. Busnoisewas chosen as the backgroundnoisesource as our preliminary survey showed that more than 90% of the participants listen to music while commuting to the college by bus. To simulate this "real world" listening condition we measured the SPL at a distance of 2 mfromthe bus engine (to represent the maximumnoisethat the commuter may be exposed), inside the bus, using a soundlevelmeter (Quest 1800) and a microphone (Quest 4180). Thenoisewas measured while the bus was running in fourth gear (approximately 1600 RPM) and travelling approximately at 40 kilometers/hour. These conditions represent the city ride to which listeners are generally exposed. Four soundlevelmeasurements were done under these conditions and the averagenoise levelproduced by the bus engine was 65 dB SPL. This sound source was then digitally recorded and used as the backgroundnoisesource in the experiment.Noisewas played back through sound field speakers connected to apersonalcomputer. The volume of the speakers was adjusted to produce a SPL of 65 dB at the position of the subject's head. The amplitude of thenoiseat the position of the subject's head was measured using soundlevelmeter (Quest 1800) and a microphone (Quest 4180). In Phase II pure tone hearing thresholds and DPOAEs were measured on these same subjects and were compared with age matched normal subjects who did notusea PMS.

Phase I: Measurement of output SPL of PMS

Only the experimental group participated in this phase of the study. Output SPLs produced by the PMS were measured in the subject's ear canal using a probe microphone. A commercially available real ear probe microphone measurement system (Siemens Unity Ver 2.7) was used for this purpose. Insertion depth of the probe was 28 mmfromthe tip of the tube to tragal notch. This insertion depth is the standard insertion depth used while doing real ear probe microphone measurements in adults. [18] All the measurements were made with the subject's own PMS and earphones. After placing the probe tube in the ear canal, the earphone was placed. Subjects were asked to play one of their frequently played songs. Output SPLs were measured in three different conditions

by asking the subjects to adjust the volume control to their preferred listening setting in quietby asking the subjects to adjust the volume control to their preferred listening setting in the presence of 65 dB SPL bus noiseby setting the volume control to maximumlevel. Position of the probe microphone was not changed between any of the measurements. All the measurements were done in a semi-acoustically treated room. Ambientnoisein the test environment ranged between 40-45 dB SPL during the measurements.

Output SPLs were measured at individual frequenciesfrom125 Hz to 8000 Hz in octave and mid octave intervals. These ear canal SPLs were converted to equivalent diffuse field SPLs to which an ear was exposed, by subtracting the transfer function of the open ear. [19] The transfer function of the open ear was obtained by calculating the difference between the reference location at the opening of the ear canal and the probe microphone SPL near the eardrum for a sweep frequency tone presented at 60 dB SPL. The output SPLs at individual frequencies were converted to dBA values by adding the A-weighting adjustment values. The overall SPL in dBA was then determined by logarithmically adding dBA values at each frequency.Fromthis data 8 hour equivalent continuous A-weightednoise exposure(L eq8h ) was calculated following the same procedures as Williams. [9] This was mathematically calculatedfromthe equation

L eq8h = L T + 10 log 10 [T/8]

where L eq8h is the 8 hour equivalent continuousnoise exposure, T =exposuretime in hours, L T =Levelofnoise exposureover the time period T.

Phase II: Pure tone audiometry and DPOAE

Pure tone audiometry

Pure tone audiometry was done using a calibrated audiometer (GSI 61 with TDH 50 head phones fitted with supra aural ear cushions). All the subjects were screened at 15 dB HL in octave frequencies between 250 Hz to 1 kHz. Pure tone thresholds were measured at octave and mid-octave frequenciesfrom2000 Hz to 12000 Hz using the modified version of Hughson and Westlake procedure. This approach was utilized since previous research has shown that frequencies above 2 kHz are more sensitive tonoise exposureand will get affected first. [20],[21] Both experimental and control groups participated in this experiment.

Distortion product otoacoustic emission

Both the experimental and control group participated in this experiment. A computer based DPOAE analyzer (GSI AUDERA) was used to record DPOAEs. DPOAEs were recorded for seven pairs of frequencies in which f2 was at 1031, 1594, 2098, 3152, 4184, 4816, 6340 and 7277 Hz. The f2:f1 ratio was 1.20. [22],[23] In this article, the DPOAE data is represented with reference to f2. The L1/L2 was 65/55 dB SPL. Data acquisition lasted for 30 s for every frequency irrespective of signal tonoiseratio. A frame was rejected if it exceeded the 30dB SPL rejection criterion or if L1 and L2 differed by more than 2 dBfromthe target values. These test acceptance criteria and test rejection criteria were selected because they are consistent with the values that are employed in clinical settings with this instrumentation. [24],[25],[26] Subjects sat in a comfortable chair and the OAE probe was adequately sealed in the external ear canal and otoacoustic emissions were recorded with the above mentioned parameters. An intrinsic real ear intensity calibration was used to determine the quality of the DPOAE probe seal before starting the DPOAE measurement. DPOAE amplitude and SNRs at each frequency were measured.

Both pure tone audiometry and the DPOAE testing were carried out in an audiometric testing room where the ambientnoisewas within the permissiblelevelsand the testing was done by a qualified audiologist with a bachelor's degree in audiology and speech language pathology. The order of Phase I and Phase II was counterbalanced among subjects to avoid any order effect and there was a gap of about 15 minutes between the two phases during which subjects completed the questionnaire. All the statistical analysis was performed using SPSS (version 13) software.

Results

On average, young adult subjects listened through PMS for a period of 1.5 hours a day (range: 10 min-4 hours). Most of them reported that they listened to music while commuting to college/hometown. Of the 70 subjects, 62 subjects used mobile phones to listen to music, 4 used iPods to listen to music and 4 used locally made MP3 players to listen to music. As the iPod or MP3 players were fewer, these subjects were not included in further statistical analysis. Therefore, the results pertain to mobile phone PMS only. None of the subjects used cassette players or CD players to listen to music. All the subjects used insert kind of headphones to listen to music. None of them reported any symptoms of temporary threshold shifts like blocking sensation, tinnitus after listening to music. Though the information regarding the different manufacturers and models was obtained, it was not used in data analysis as the main aim of the study was to see if young adults listen to music at potentially hazardouslevelsand not to compare the output produced by PMS of different manufacturers.

Phase I: Measurement of output SPL of PMS

PMS used by young adults mainly consisted of mobile phones, and very few used iPods and locally made MP3 players. [Figure 1] shows the mean L eq8h at preferred volume control settings for males and females for mobile phone users. An independent samples ' t -test' revealed no significance difference in mean L eq8h between males and females in all three listening conditions tested ( t = 1.43, 0.89 and 0.65 respectively for quiet, in presence of busnoiseand at maximum volume, p > 0.05). Since there were no statistically significant differences between mean output SPLs preferred by males and females datafromboth the genders were combined for all further analysis.

[Figure 2],[Figure 3],[Figure 4] illustrate the mean output SPLs at preferred listening settings in quiet, in the presence of 65 dB SPL busnoiseand at maximum volume control settings for mobile phones, iPods and locally made MP3 players respectively. The mean L eq8h were 73 dBA for mobile phones (range: 40 dBA to 93 dBA), 76 dB for iPods (range: 56 dBA to 86 dBA), and 79 dBA for locally made MP3 players (range: 70 dBA to 84 dBA), at subject preferred volume control settings in quiet. Listening in the presence of busnoisedid not increase the output SPLs significantly. A paired ' t -test' did not show a significant difference between means L eq8h produced by mobile phones in quiet and in the presence of busnoise( t = 1.71, p > 0.05). Statistical analysis was not carried out for the other types of PMS as the number of instrument users was limited. At maximum volume control settings the outputlevelsincreased compared to the subject preferred volume control setting. Paired ' t -test' revealed that L eq8h produced at maximum volume control settings were significantly more compared to other two listening conditions ( t = 12.8, 13.2, P eq8h at the preferred volume control settings obtained in the presence of 65 dB SPL busnoisefor individual subjects. As can be seenfromthe [Figure 5], a majority of the subjects (70%) listened to music at less than L eq8h of 80 dBA. Nineteen mobile phone users, 1 MP3 player listener and 1 iPod listener listened to music at higher than L eq8h of 80dBA.

Phase II: Pure tone audiometry and DPOAE

Pure tone audiometry

Based on the results of Phase I, subjects in the experimental group were divided into two groups: Individuals who used PMS at L eq8h of less than 80 dBA and individuals who used PMS at L eq8h of more than 80 dBA. Datafromall three types of PMS users are pooled as the main purpose was to see if listening to music through PMS causes damage to auditory system or not. ANOVA was done to find out the significance of difference between mean pure tone thresholds of individuals who used PMS at L eq8h of less than 80 dBA , individuals who used PMS at L eq8h of more than 80 dBA , and individuals who did notusePMS. ANOVA failed to show any significant main effect of subject groups on pure tone hearing thresholds in both right [F = 2.7 (2,98) p >.05] and left ear [F = 1.8 (2,98) p >.05]. Descriptive analysis showed that none of the subjects who used PMS had pure tone thresholds more than 25 dB HL in 3 kHz to 8 kHz region in both ears. [Figure 6] shows the average pure tone thresholds of individuals who used PMS at L eq8h of less than 80 dBA , individuals who used PMS at L eq8h of more than 80 dBA , and individuals who did notusePMS.

Distortion product otoacoustic emission

All the subjects in the experimental group showed normal DPOAEs amplitudes and signal tonoiseratios (re: Clinic normative values). ANOVA was done to find out the significance of difference between mean DPOAE amplitudes and SNR values between individuals who used PMS at L eq8h of less than 80 dBA , individuals who used PMS at L eq8h of more than 80 dBA , and individuals who did notusePMS. ANOVA did not show a main effect of subject groups on means of DPOAE amplitudes and SNR values at all the tested frequencies in both ears. [Figure 7] and [Figure 8] show DPOAE amplitudes and SNRs in different subject groups across different frequencies. Data is represented with reference to f2. Error bars show 1 SD variation.

Relationship between L eq8h and hearing measures

To evaluate the relationship between output SPLs and hearing thresholds Pearson's product moment correlation was carried out between subjects' pure tone thresholds as dependent variable and L eq8h measured in presence of busnoiseas the independent variable. Datafromall the PMS users were pooled for this analysis. The results are shown in [Table 1]. There was a significant positive correlation between hearing thresholds at 6000 Hz and exposed musiclevels, in both ears. Results of correlation analysis betweenexposure levelsand DPOAE measures are shown in [Table 2] and [Table 3]. There was a significant negative correlation between DPOAE amplitudes and dBA L eq8h at 6340 Hz in both ears and at 2098 Hz in right ear. It can be inferredfrom[Table 3] that there was a significant negative correlation between DPOAE SNR and dBA L eq8h at 4816 Hz, 6340 Hz and 7277 Hz in right ear and at 4816 Hz in left ear. These negative correlations indicate that DPOAE amplitudes and SNRs were lesser in individuals who tend to listen to music at higher outputlevels.

Discussion

The majority of the young adults studied here used their mobile phones to listen to music. Of 70 subjects 62 subjects used mobile phones to listen to music (88.6%), 4 used iPods to listen to music (5.7%) and 4 used local made MP3 players to listen to music (5.7%). On average, young adults listened to music through PMS for a period of 1.5 hours a day. Most of them reported that they listened to music when commuting to college/hometown. The mean dBA L eq8h at preferred volume control settings was 73 dBA for mobile phones, 76 dBA for iPods, and 79 dBA for local made MP3 players. These preferred listeninglevelsare similar to what participants selected as "sounds best to you" in the Hodgetts et al., [11] study or "medium/comfortable" in the Torre [12] study. Hodgetts et al., [11] reported that participants increased thelevelof the music approximately 6 to 10 dB when either streetnoiseor multitalker babble was added to the listening environment. But in the present experiments, with the addition of 65 dB SPL busnoise, participants did not increase the preferred outputlevels. This discrepancy between the results of the two studies may be due to intrinsic differences in the backgroundnoisesource used in each study. Busnoisewas utilized as a backgroundnoiseas this simulates the most realistic condition replicating the environment where the majority of our participants used their PMS in daily life. However, it is surprising that when 65 dB SPL busnoisewas added, subjects did not significantly raise the outputlevelsof the PMS. Most likely, this is due to the fact that all the subjects used insert earphones and these earphones may have attenuated the busnoisereaching the ear. As a retrospective experiment we measured the attenuation created by the earphones on ten subjects who had participated in the original experiment. [Figure 9] shows the mean attenuation provided by the earphones. As can be seenfromthe figure, insert ear phones provided maximum attenuation of about 23 dB around 3 kHz. Due to the attenuation of mid-frequency busnoise, young adults may not have increased the preferred volume control settings in the presence of busnoise.

The majority of the individuals listened to music at an over SPLs less than 80 dBA even in the presence of 65 dB SPL busnoise. No evidence based definition exists for hazardous soundlevelsof music. As a substitute, standards forexposureto occupationalnoisehave been proposed foruse. [11] In India, the Ministry of Environment and Forests [3] has proposed a time weighted averagelevelof 80 dBA for an 8 hour period per day as the maximum permissible limit. '5 dB exchange rule' has been proposed by the Ministry of Environment and Forests as a tradeoff betweenexposuretime and soundlevel. Referencing this criterion about 30% individuals in a group of 70 young adults listened to music above the safety limits prescribed by Ministry of Environment and Forests. This is an alarmingly large proportion as one in three individuals who listen to music through PMS may be putting themselves at risk for permanentnoiseinduced hearing loss if exposed for extended periods of time (years).

However, the results of pure tone audiometry and otoacoustic emissions showed that there are no statistically significant differences between pure tone hearing thresholds and amplitudes of DPOAEs of individuals whousePMSs at L eq8h of less than 80 dBA, , individuals who used PMS at L eq8h of more than 80 dBA and those who don't. Readers should be cautious about interpreting these results of the present study as

the measurement was done when subjects were listening to one of their favorite songs and the listeninglevelcannot be generalized to different kinds of music that individuals may be listening to during any particular day.all participants in the present study were young adults and were using PMS for a period of two years or more. These young adults are less likely to show the signs ofnoiseinduced hearing loss due to their limited length of listening time and because of their age.we measured the outputlevelsin the ear canals of young adults. These results cannot be generalized to children as outputlevelsproduced in their smaller ear canals may be significantly more than what is reported in this study. However, the results of correlation analysis betweenexposure levelsand audiological measures are interesting. A significant positive correlation between hearing thresholds and exposed musiclevelsat 6000 Hz in both the ears suggests that individuals who listened to music at highlevelstend to have higher pure tone hearing thresholds at 6000 Hz. A negative correlation between DPOAE measures at high frequencies andexposure levelssuggest that individuals who listened to music at higherlevelshad reduced DPOAE amplitudes and SNRs. It should be noted that all individuals who used PMS had "clinically normal" hearing thresholds, DPOAE amplitudes and SNRs and there was no group difference between these measures among individuals whousesPMSs at L eq8h of less than 80 dBA , individuals who used PMS at L eq8h of more than 80 dBA and those who don't. Miller et al., [27] reported that amplitudes of DPOAEs are more sensitive tonoiseinduced hearing loss than pure tone hearing thresholds. Our results show that listening to music through PMS at preferred volume control settings for a period of two years may not result in "clinically significant" elevation of hearing thresholds or reduction of DPOAE amplitudes and SNRs. The correlations between outputlevelsand auditory measures suggest that listening to music through PMS at higher intensities may cause subtle pre-clinical damage to the auditory system and over the years such behavior may be hazardous to hearing. However, these long-term effects need to be studied through long-term controlled experiments.

Acknowledgement

Authors would like to thank Dr. T.A. Subba Rao, Principal, Dr. M.V Shetty college of speech and hearing and management for all the support.

References1. World Health Organisation (WHO). 1999. Guidelines for communityNoise(edited by Berglundb., Lindvall T. and Schwela D.H.). Availablefrom: http://www.who.int/docstore/peh/noise/guidelines2.html

2. International Organization for Standardization, ISO 1999. Acoustics: Determination occupationalnoise exposureand estimation ofnoise- induced hearing impairement.Geneva: International Organization for Standardization.

3. Ministry of Environment and Forest. (2000) S. O. 123 (E), [14/2/2000]Noisepollution (Regulation control) Rules, 2000. Availablefromwww.envfor.nic.in/legis/legis.htm/#k (last accessed on 26 Sep 2008)

4. Wood WS, Lipscomb DM. Maximum available sound pressurelevels from stereocomponents. J Acoust Soc Am 1972;52:484-7.

5. Katz AE, Gertsman HL, Sanderson RG, Buchanan.Stereoear phones and hearing loss. N Engl J Med 1982;307:1460-1.

6. Catalano PJ, Levin SM.NoiseInduced Hearing Loss and Portable radios with headphones. Int J Pediatr Otorhinolaryngol 1985;9:59-67.

7. Lee PC, Senders CW, Gantz BJ, Otto SR. Transient sensory neural hearing loss after overuseof portable headphone cassette radios. Otolaryngol Head Neck Surg 1985;93:633-25.

8. Fligor BJ Cox LC. Outputlevelsof commercially available portable compact disc players and the potential risk to hearing. Ear Hear 2004;24:513-27.

9. Williams W.Noise exposure levels from personal stereo use. Int J Audiol 2005;44:231-6.

10. Airo E, Pekkarinen J, Olkinuora PL. Listening to Music with Earphones: An assessment ofNoise exposure. ACUSTICA, acta acustica 2001;82:885-94.

11. Hodgetts WE, Rieger JM, Szarko RA. The effects of listening environment and earphone style on preferred listeninglevelsof normal hearing adults using an MP3 player. Ear Hear 2007;28:290-7.

12. Torre P. Young adultsuseand outputlevelsettings ofpersonalmusic systems. Ear Hear 2008;29:791-9.

13. Meyer-Bisch, C. Epidemiological evaluation of hearing damage related to strongly amplified music (personalcassette players, Discotheques, Rock concert)-high-definition and metric survey on 1364 subjects. Audiol 1996;35:121-42.

14. Le page EL, Murray NM. Latent cochlear damagepersonal stereousers: A study based on click - evoked otoacoustic emissions. Med J Aust 1998;169:588-92.

15. Montoya FS, Ibarquen AM, Vences AR, del Rey AS, Fernandez JM. Evaluation of cochlear function in normal-hearing young adults exposed to MP3playernoiseby analyzing transient evoked otoacoustic emissions and distortion products. J Otolaryngol Head Neck Surg 2008;37:718-24.

16. Jerger J, Jerger S, Pepe P, Miller R. Race difference in susceptibility tonoise-induced hearing loss. Am J Otol 1986;7:425-9.

17. Ishii EK, Talbott EO. Race/ethnicity differences in the prevalence ofnoise-induced hearing loss in a group of metal fabricating workers. J Occup Environ Med 1998;40:661-6.

18. Hawkins D, Alvarez E, Houlihan J. Reliability of three types of probe tube microphone measurements. Hear Instrum 1991;42:14-6.

19. Berger EH. Availablefromhttp://www.e-a-r.com/pdf/hearingcons/FAQTFOE.pdf (last accessed on 03 Mar 2008).

20. Axelsson A, Lindgren F. Pop music and hearing. Ear Hear 1981;2:64-9.

21. Attias J, Horovitz G, El-Hatib N, Nageris, B. Detection and clinical diagnosis ofnoiseinduced hearing loss by otoacoustic emissions.NoiseHealth 2001;3:19-31.

22. Harris FP, Lonsbury - Martin BL, Stagner BB, Coats AC, Martin GK. Acoustic distortion products in humans: Systematic changes in amplitude as a function of f2/f1 ratio. J Acoust Soc Am 1989;85:220-9.

23. Gaskill, SA, Brown, AM. The behavior of the acoustic distortion product,2f1-f2,fromthe human ear and its relation to auditory sensitivity. J Acoust Soc Am 1990;88:821-39.

24. Grason-Stadler. Grason-Stadler GSI 60 DPOAE: Distortion product otoacoustic emission system user manual. Milford, NH:GSI 1996; Grason -Stadler.

25. Kim DO, Sun SM, Jung MD, Leonard G. A new method of measuring distortion product otoacoustic emissions using multiple tone pairs: Study of human adults. Ear Hearing 1997;18:277-85.

26. Painter J. Grason Stadler Incorprated (GSI) In: J. W. Hall editors. Handbook of otoacousstic emissions. San Digo, CA: Singular; 2000. p. 291-303.

27. Lapsley Miller JA, Marshall L, Heller LM, Hughes LM. Low-levelotoacoustic emissions may predict susceptibility tonoise-induced hearing loss. J Acoust Soc Am 2006;120:280-96.

AuthorAffiliationAjith Kumar: Dr. MV Shetty College of Speech and Hearing, Vidyanagar, Mangalore - 575 013

Kuruvilla Mathew: Dr. MV Shetty College of Speech and Hearing, Vidyanagar, Mangalore - 575 013

Swathy Alexander: Dr. MV Shetty College of Speech and Hearing, Vidyanagar, Mangalore - 575 013

Chitra Kiran: Dr. MV Shetty College of Speech and Hearing, Vidyanagar, Mangalore - 575 013

Word count:5401Copyright Medknow Publications & Media Pvt. Ltd. Jul 2009

Indexing (details)

CiteMeSH

Acoustic Impedance Tests,Adolescent,Adult,Audiometry,Female,Hearing Loss -- epidemiology,Humans,India -- epidemiology,Male,Otoacoustic Emissions, Spontaneous,Questionnaires,Risk Factors,Time Factors,Young Adult,Amplifiers, Electronic -- adverse effects(major),Environmental Exposure -- adverse effects(major),Hearing(major),Hearing Loss -- etiology(major),Noise -- adverse effects(major)Title

Output sound pressurelevelsofpersonalmusic systems and their effect on hearing

Author

Kumar, Ajith;Mathew, Kuruvilla;Alexander, Swathy;Kiran, ChitraPublication title

Noise & HealthVolume

11Issue

44Pages

132-40Number of pages

8Publication year

2009Publication date

Jul 2009Year

2009Publisher

Medknow Publications & Media Pvt. Ltd.Place of publication

MumbaiCountry of publication

IndiaPublication subject

Environmental Studies--Pollution,Occupational Health And Safety,Medical Sciences--OtorhinolaryngologyISSN

14631741Source type

Scholarly JournalsLanguage of publication

EnglishDocument type

Comparative StudyDOI

http://dx.doi.org/10.4103/1463-1741.53357Accession number

19602765ProQuest document ID

203787135Document URL

http://search.proquest.com/docview/203787135?accountid=49910Copyright

Copyright Medknow Publications & Media Pvt. Ltd. Jul 2009Last updated

2013-02-22Database

ProQuest Medical Library