8
1 © Fraunhofer IPMS Bernd Richter/ 2010 -10 Highly-efficient embedded organic light emitter for CMOS optoelectronics Bernd Richter , Uwe Vogel, Karsten Fehse, Rigo Herold, Thomas Presberger, Stephan Brenner, Lars Kroker Fraunhofer IPMS - Center for Organic Materials and Electronic Devices Dresden COMEDD © Fraunhofer IPMS Bernd Richter/ 2010 -10 Outline Introduction OLED-on-CMOS: Applications OLED Microdisplays Technology Conclusion © Fraunhofer IPMS Bernd Richter/ 2010 -10 transparent conductor organic layers metal cathode substrate Light emission + _ bottom-emitting top-emitting Light emission (silicon wafer) Introduction to organic LEDs - OLEDs Lighting Medium and large display TFT OLED-on-CMOS © Fraunhofer IPMS Bernd Richter/ 2010 -10 Introduction: OLED-on-CMOS (1) Top-emitting p-i-n OLED: highly-efficient OLED light source in/on CMOS based on small molecules (NOVALED AG) evaporated on Si-wafer sub-structuring by shadow mask >100μm all colors monochrome, white, NIR doped charge transport layers low operating voltage transparent top electrode extremely thin (~100...300nm) excellent current and power efficiency (low-voltage, low-power) fast response time (MHz) -5 -4 -3 -2 -1 0 1 2 3 4 5 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 1 10 2 10 3 10 4 10 5 orange emitter red emitter white emitter system Current density [mA/cm²] Voltage [V] Luminance [cd/m²] 5.7 11.6 14.1 Current efficiency [Cd/A] @100cd/m² 4.7 3.2 white 12.000 3.2 2.5 ora 3.1 2.4 red @1000c d/m² @100 cd/m² lifetime @1000c d/m² Voltage [V] (+) (-)

Outline Highly-efficient embedded organic light emitter ... Richter.pdf · Highly-efficient embedded organic light emitter for CMOS optoelectronics Bernd Richter , ... visual Input-/Output

Embed Size (px)

Citation preview

1

© Fraunhofer IPMS Bernd Richter/ 2010 -10

Highly-efficient embedded organic light emitter for CMOS optoelectronics

Bernd Richter, Uwe Vogel, Karsten Fehse, Rigo Herold, Thomas Presberger, Stephan Brenner, Lars Kroker

Fraunhofer IPMS - Center for Organic Materials and Electronic Devices Dresden COMEDD

© Fraunhofer IPMSBernd Richter/ 2010 -10

Outline

� Introduction

� OLED-on-CMOS: Applications

� OLED Microdisplays

� Technology

� Conclusion

© Fraunhofer IPMSBernd Richter/ 2010 -10

transparent conductor

organic layers

metal cathode

substrate

Light emission +_

bottom-emitting top-emitting

Light emission

(silicon wafer)

Introduction to organic LEDs - OLEDs

� Lighting

� Medium and large display ⇒ TFT

� OLED-on-CMOS

© Fraunhofer IPMSBernd Richter/ 2010 -10

Introduction: OLED-on-CMOS (1)

Top-emitting p-i-n OLED:

� highly-efficient OLED light sourcein/on CMOS

� based on small molecules(NOVALED AG)

� evaporated on Si-wafer

� sub-structuring by shadow mask >100µm

� all colors monochrome, white, NIR

� doped charge transport layers

� low operating voltage

� transparent top electrode

� extremely thin (~100...300nm)

� excellent current and

power efficiency(low-voltage, low-power)

� fast response time (MHz)-5 -4 -3 -2 -1 0 1 2 3 4 5

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

101

102

103

104

105

orange emitter

red emitter white emitter system

Cu

rren

t de

nsity [

mA

/cm

²]

Voltage [V]

Lu

min

an

ce

[c

d/m

²]

5.7

11.6

14.1

Current

efficiency[Cd/A]

@100cd/m²

4.73.2white

12.0003.22.5ora

3.12.4red

@1000cd/m²

@100cd/m²

lifetime

@1000c

d/m²

Voltage [V]

(+)

(-)

2

© Fraunhofer IPMSBernd Richter/ 2010 -10

Introduction: OLED-on-CMOS (2)

� CMOS top metal = OLED bottom electrode

� top metal definesOLED shape

� arbitrary shapes

� driving circuitry

underneath

Wafer

FOX

PMOS Photodiode

Metal 1

Metal 2

Metal 3

CMOS

OLED

TFE

CMOS cross-section with OLED on top

� CMOS integration of electronic features

� driving

� acqusition

� processing

� control

� Co-integration of CMOS-compatible sensors

� embedded photodetectors

� temperature

� magnetic (Hall)

� MEMS,...

© Fraunhofer IPMSBernd Richter/ 2010 -10

Example: OLED-on-CMOS testchip

1.3 mm

2 µm

4 µm

� no active circuit, hardwired pattern (3 metals)

� separate deposition of monochrome RGB-OLED (shadow mask)

� pixel sub-structuring: shape of CMOS top metal

~60 mm

© Fraunhofer IPMSBernd Richter/ 2010 -10

Outline

� Introduction

� OLED-on-CMOS: Applications

� OLED Microdisplays

� Technology

� Conclusion

© Fraunhofer IPMSBernd Richter/ 2010 -10

OLED-on-CMOS: Applicationssensors

� optical sensors

� fluorescence, color, flowmetry, photoplethysmography,...

� light barriers (reflective)

� embedded illumination for image sensors

� patterned illumination possible

� optical finger-print, lab-on-chip,...

� opto-coupler

microdisplays

� microdisplay

� HMD, mobile/micro-projection, electronic viewfinder,...

� bidirectional microdisplay(display + embedded image sensor)

� interactive HMD

� optical inspection,...

iiii ARARARAR

OLED CM OS DetektorOLED CM OS Detektor

3

© Fraunhofer IPMSBernd Richter/ 2010 -10

OLED-on-CMOS: Sensors

� CMOS photodetectors (PD) and embedded OLED illumination, excitation

� three types of optoelectronic sensors:

� reflection light barrier (top left)

� flow sensor (bottom left)

� color sensor (right)

� circuitry underneath OLED electrodes

10,5

3,5PD

PD

PD PD

PD

OLEDRed

OLEDBlue

OLEDGreen

OLEDNIRPDPD PD PD PDPD PDPD

OL ED1

OLED2

PD PD

OLEDPDOLED PD PD PDPD

© Fraunhofer IPMSBernd Richter/ 2010 -10

OLED-on-CMOS: Sensor applications

� Particle flow sensor

� OLED stripes for fluid illumination and 8 photodiodes

� light reflection depending on local fluid velocity and particle density

� analyzing photocurrents and correlation functions, the fluid particle velocity can be calculated

� Opto-coupler

OLED Photodiodes

Encapsulation

CMOS Chip

Capillary with flowing transparentfluid and reflecting particles

© Fraunhofer IPMSBernd Richter/ 2010 -10

Outline

� Introduction

� OLED-on-CMOS: Applications

� OLED Microdisplays

� Technology

� Conclusion

© Fraunhofer IPMSBernd Richter/ 2010 -10

time

co

mp

lexit

y

Monochrome

PM-Display

MulticolorPM-Display

Full colorPM-Display

Full colorAM-Display

Microdisplay See-throughMicrodisplay

MobileProjection

Display

MobileFlexible

Display

iiii ARARARAR

Mobile display driving forces:

� multimedia content

� information navigation by user interaction (touch screen,...)

� augmented-reality (AR)

Mobile Display Dilemma

4

© Fraunhofer IPMSBernd Richter/ 2010 -10

OLED microdisplay: Overview

line

dri

ver

data driver

video input, control

RGB pixel

data supply

OLED microdisplay

� Physically very small, but

� high information content (TV quality)

� low power consumption

� enlarged image viewed through magnifying optics

� Active-matrix substrate

� data is stored inside pixel: analog/digital

� sub-pixel size: {(4x4), 4x12, 8x8, 36x36} µm²

� OLED pixel current: pA...nA

� sub-structuring of display pixel withmonochrome colors not possible

� combination of white OLEDs with colour filter

� Applications

� projection (rear, front, micro)

� near-to-eye (NTE)

� electronic viewfinder

� head mounted

© Fraunhofer IPMSBernd Richter/ 2010 -10

OLED microdisplay: Pixel concept

� small pixel pitch (≤12um RGB)

� OLED: current driven pA...nA, Lum~ioled

� grayscale realization: analog / digital

Increased number

of transistors

- no D/A

conversion

- stable storage of bits

digital SRAM pixel cell

many transistors + DRAM refresh

necessary

- no D/A

conversion

- simple linearity

correction by PWM

digital DRAM pixel cell

pixel cell transistor matching is

important

shortprogramming

duration

voltage programmed

long programming

duration due to

small currents

pixel cell

transistor

matching is irrelevant

current programmed

(+subthreshold

scaling)

DisadvantageAdvantagePixel Cell Principle

„ZOOM“

iiii ARARARAR

an

alo

gd

igita

l

Dd

ata

display pixel

Md1

sa

cat

Md2Md3

Md4

OLED

Cd

em

vref

© Fraunhofer IPMSBernd Richter/ 2010 -10

OLED microdisplay: Hypoled

� full color VGA (640x480) OLED microdisplay

� pixel cell

� digital DRAM pixel cell

� luminance control by PWM

� sub-pixel: 4x12µm²

� 24 bit parallel video interface

� 50/60Hz frame rate

� configuration of color, contrast and gamma correction via I²C

� high brightness

� up to 10,000 nits for monochrome green (micro-projection)

� 1,000 nits for RGB color (HMD)

� 0.18µm CMOS foundry process

� core supply, digital I/O interface 1.8V

� negative OLED cathode voltage (max. -5.5V)

� active area 7.7x5.8mm²

� chip size 12x11mm²7.7mm

5.8

mm

© Fraunhofer IPMSBernd Richter/ 2010 -10

Hypoled : Applications

� head-mounted display (HMD)

� RGB micro-projector

MediaBox (DVB-T, DVB-H, WLAN)

5

© Fraunhofer IPMSBernd Richter/ 2010 -10

Bidirectional OLED microdisplay: Overview

OLED CMOS detector

CMOS wafer

CMOS circuit

encapsulation

micro-optics

"Bidirectional" functionality:

� OLED microdisplay + embedded image sensor

� nested display and camera pixel

� embedded CMOS photodiodes

� lower level than OLED

� side-by-side with active electronicsdevices

� local optical crosstalk possible

� emission and detection can be operated in parallel or sequentially

line d

river

data driver

video input, control

displaydata

OLED microdisplay

cam readout

line d

river

video output, control

camdata

embedded image sensor

bidirectional microdisplay

© Fraunhofer IPMSBernd Richter/ 2010 -10

Bidirectional OLED microdisplay: HMD appl.

53 km/h Radio

Navi

Me

Display off

-1°

30

60

� conventional, unidirectional microdisplay

� displays an image

� OLED-on-CMOS microdisplay

� bidirectional microdisplay

� displays an image and detects anotherimage on the same device

� OLED-on-CMOS microdisplay + embeddedimage sensor

� HMD application: aimed at tracking the eyemovement with respect to

� user's sight (consciously and unconsciously)

� user's (situation) awareness (unconsciously)

� gaze-based human-display-interaction

� visual Input-/Output-Device (I/O) for personal information management (PIM)

� interactive augmented-reality (AR) applications

© Fraunhofer IPMSBernd Richter/ 2010 -10

Bidirectional see-through HMD

Applications

Automotive

� mission-critical information

� navigation

� safety (gaze monitoring)

Mobile Communication

� telecom

� mobile multimedia

� tourist information

Industry

� mobile maintenance

Medicine

� surgery support

Security

� disaster management

� mobile surveillance

� mission control

Thermocouples

Part No. 467-854

More Information

Yes No ?

SMS by " BOSS" :(Wed, 05/02/14, 18:21)

Hi Paul,

how about our meet ing today?

Have you missed i t? Please

cal l back immediately!

Rgds, BOSS.

CALL DEL ESC

OT: 5:35

SPL: 60dB

BP : 40/105

F: 23mN

HR: 93

SPL

CT: 14:21

LAS MOB

f: 1kHz

© Fraunhofer IPMSBernd Richter/ 2010 -10

Bidirectional OLED microdisplay: 1st prototype “ZOOM”

OLED-Microdisplay

� Resolution monochrome QVGA (320 x 240)

� Grayscale 8 Bit, datainterface digital

� Pixel analog, pitch 36µm

� Peak luminance adj.: 100...20.000cd/m2

� Viewing area 11,5 x 8,6mm²

� Chipsize 18.7x16.4mm²

Image sensor

� Resolution 160x120 pixels (QQVGA)

� Photoactive area 8x8µm², linear readout

� Quickcapture I/F (w/ external ADC)

General

� Power Supply 3.3V

� OLED Supply-9..0V

� Configuration via I2C

� Samples in lab, eval. kit expected Q1/2011

6

© Fraunhofer IPMSBernd Richter/ 2010 -10

Bidirectional OLED microdisplay: ZOOM-HMD

� see-through HMD

� semitransparent mirror

� separate optical pathes for display (VIS) and camera (NIR) � filters

� PDA-like host with embedded computer

� embedded Linux

� image processing � eye-tracking

� user interfaces/interaction + app.

captured eye-scenevirtual image

© Fraunhofer IPMSBernd Richter/ 2010 -10

Bidirectional OLED microdisplay: "iSTAR"

Nested activematrix640x480 colored OLEDs

128x96 photodiodes

Column electronic

Readout electronic

Row

logic

Controllogic

Zeilenlogik

Bottom matrix (1280x40)

Row logic

Ro

w logic

Controllogic

Top matrix (1280x40)

Re

ado

ut ele

ctr

onic

Row logic

Pads

PD

Controllogic

Nested activematrix640x480 colored OLEDs

128x96 photodiodes

Column electronic

Readout electronic

Row

logic

Controllogic

Zeilenlogik

Bottom matrix (1280x40)

Row logic

Ro

w logic

Controllogic

Top matrix (1280x40)

Re

ado

ut ele

ctr

onic

Row logic

Pads

PDPD

Controllogic

iSTAR chip micro-photograph

13mm

11

mm

Display Nested camera Frame camera� full-color VGA 640x480

� Sub-pixel 8x8µm

� ≤1000 nits

� embedded/intersected camera

� 128x96 pixel

� frame camera

� top + bottom 1280x40

� microlenses

� interface display / camera

� parallel + sync signals

� configuration via I2C

� dimensions

� active area 10.2x7.7mm²

� chip size 13x11mm²

� volume-capable processes

� CMOS: 0.18µm (foundry)

� OLED: COMEDD pilot line

� first samples in lab, demo expected Q1/2011

© Fraunhofer IPMSBernd Richter/ 2010 -10

Outline

� Introduction

� OLED-on-Silicon: Sensor applications

� OLED Microdisplays

� Technology

� Conclusion

© Fraunhofer IPMSBernd Richter/ 2010 -10

IPMS-CMOSor external

CMOS foundry

CMOS-surfacemodification

(optional)

pin-OLEDPLED

deposition

thin film encapsulation

& colour filter

deposition

The whole process chain is available at COMEDD to

prepare OLED microdisplays.

dicing &assembly

OLED-on-CMOS: Manufacturing process flow

7

© Fraunhofer IPMSBernd Richter/ 2010 -10

SMALL MOLECULE pin-OLED DEPOSITION SYSTEM

SUNICEL PLUS200 @ IPMS

© Fraunhofer IPMSBernd Richter/ 2010 -10

Microdisplay components

CMOS-Wafer (200 mm)

Bond-pads

Display pixel covered with PLED or OLED

Transparent top-wafer (200 mm)

Encapsulation glue

Colour filter (RGB)

© Fraunhofer IPMSBernd Richter/ 2010 -10

Pre-Alignment of

CMOS to CF-wafer

Assembling in vacuum

Precise alignment of both wafer to

each other and UV-exposure of the encapsulation glue

Dicing and testing

Microdisplay production steps

© Fraunhofer IPMSBernd Richter/ 2010 -10

CMOSPixelpin-OLEDCathodeThin film encapsulationColour filter (optional)

Encapsulation glass

CMOS top metal (reverse currents

in OLEDs)

pin-OLED efficiency and lifetime

Oxygen and water barrier

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

El-

Inte

ns

ity

(n

orm

.)

Wavelength (nm)

CracksPinholes in TFE

Cathode

Pinholes in Cathode

Inorganic multilayer

Organic

MAIN RESEARCH TOPICS FOR OLED MICRODISPLAYS

8

© Fraunhofer IPMSBernd Richter/ 2010 -10

Roll-to-Roll

Substrate size

Substrate type

Cycle time

Pilot max. volume

Substrates/ year

Pilot max.

volume area

Prototype/R&D

Ready for

Pilot production

Prototype lineRigid substrates

Pilot line

Rigid / Flexible

substrates

Pilot line

OLED-on-CMOS

200 x 200 mm2

Glass

120 minutes

Ready

370 x 470 mm2

(Generation2)

150 or 200 mm

diameter300 mm

width

Glass/laminated foil Si/CMOS wafer Metal foil

3 minutes 60 minutes

80,000 6000

13,000 m2

Ready Ready 2010

2010 2010

COMEDD EQUIPMENT FOR OLED AND OPV

© Fraunhofer IPMSBernd Richter/ 2010 -10

Outline

� Introduction

� OLED-on-Silicon: Sensor applications

� OLED Microdisplays

� Technology

� Conclusion

© Fraunhofer IPMSBernd Richter/ 2010 -10

Conclusion

� p-i-n type OLED on adapted TiN/Al electrodes well suitable forOLED-on-CMOS

� <5.0V @ 1000cd/m² → CMOS w/o HV option for high brightness

� co-embedded light sources, photodetectors, signal processing

� optical cross-coupling effects to be avoided

� opto-sensor applications

� patterned illumination/excitationand image/response detection/analysis

� fluorescence, color, opto-coupler

� lab-on-chip

� bidirectional OLED microdisplay

� display and image sensor in a single device

� eye-tracking in near-to-eye applications

� interactive head-mounted displays

� optical surface inspection

photodetectors

Si CMOS chip

carrier PCB

OLED

objectsurface

OLED CMOS detectorCMOS substrate (wafer) CMOS circuit

encapsulat ion

organic-opto-micro-system

micro-optics

© Fraunhofer IPMSBernd Richter/ 2010 -10

Acknowledgement

� Work was in parts sponsored by

� European Commission within the HYPOLED project

� Federal Ministry for Education and Research of the German government "ZOOM"

� Fraunhofer Internal Programs “iSTAR”

� Thanks to our collaborative project partners: X-FAB; Fraunhofer IOF, IOSB, IGD.

� Thanks to many more contributors at IPMS and our students!

Contact

� Bernd Richter (Fraunhofer IPMS)

� phone:+49-351-8823-285

� email: [email protected]

iiii ARARARAR

See demo during break!

Thank you for your attention!