32
NATIONAL ACADEMY OF SCIENCES Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. OTTO MEYERHOF 1884—1951 A Biographical Memoir by DAVID NACHMANSON, SEVERO OCHOA AND FRITZ A. LIPMANN Biographical Memoir COPYRIGHT 1960 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C.

Otto Meyerhof - National Academy of · PDF fileOTTO MEYERHOF* April 12,1884-October 6, ~gy BY DAVID NACHMANSOHN, SEVER0 OCHOA, AND FRITZ A. LIPMANN w ITH THE DEATH of Otto Meyerhof

Embed Size (px)

Citation preview

N A T I O N A L A C A D E M Y O F S C I E N C E S

Any opinions expressed in this memoir are those of the author(s)and do not necessarily reflect the views of the

National Academy of Sciences.

O T T O M E Y E R H O F

1884—1951

A Biographical Memoir by

DAVID NACHMANSON, SEV ER O OC HOA A ND FR IT Z A .

LIPM A NN

Biographical Memoir

COPYRIGHT 1960NATIONAL ACADEMY OF SCIENCES

WASHINGTON D.C.

OTTO MEYERHOF*

April 12,1884-October 6, ~gy

B Y D A V I D NACHMANSOHN, S E V E R 0 O C H O A ,

A N D FRITZ A . L I P M A N N

w ITH THE DEATH of Otto Meyerhof on October 6, 1951, the world lost one of the most outstanding scientists of this cen-

tury. The revolutionary character of his thinking, the originality of his approach, and the brilliance of his experimental work had a profound influence upon the progress of physiology and biochem- istry-indeed, upon the progress of biology as a whole, and conse- quently upon the medical research of the past few decades.

The significance of Meyerhof's scientific work can not be appreci- ated without an understanding of the breadth and richness of his rather unique personality. To many biologists it may be surprising not only that Meyerhof graduated, in 1909, at the University of Hei- delberg as a doctor of medicine, but that his thesis dealt with a prob- lem in psychiatry. In fact, at that time he was mainly interested in psychology and philosophy. During this period Meyerhof was closely associated with a group led by Leonard Nelson in Gottingen, whose teaching largely followed Kant and Fries, although with some modi- fications. He had first come in contact with Nelson during his high school days. His serious concern with philosophy is further indicated by the fact that he was for many years editor of the Abhandlungen der Friesschen Schule, where Nelson and his group published.

Following his graduation he entered the medical clinic of Ludwig Krehl, an outstanding pioneer in promoting the introduction of

" Reprinted from Science, Vol. 115, April 4, 1952.

I54 B I O G R A P H I C A L MEMOIRS

physiological thoughts and methods in the approach to medicine. Krehl's book Pathologische Physiologie is considered by many to be a landmark in modern medicine. In Krehl's clinic Otto Meyerhof and Otto Warburg, who were to be the most prominent biochemists of our time, first met. This meeting, which had considerable influ- ence on the subsequent development of these two men and of bio- chemistry, was essential in stimulating Meyerhof's interest in what was to be his lifework. In the following years Meyerhof and War- burg worked repeatedly at the Marine Zoological Laboratory in Na- ples and collaborated in studies on the metabolism of sea-urchin eggs. In those days the Naples laboratory was a meeting place for biolo- gists from all parts of the world, as the Marine Biological Laboratory at Woods Hole is today.

An illuminating insight into Meyerhof's early approach to the study of life processes is given by his article "Zur Energetik der Zell- vorgange," delivered in 1913 as a lecture at the University of Kiel, which he had just joined as a Privatdocent. This paper clearly shows that his approach was essentially intellectual and philosophical. It re- veals also the extraordinary depth of his knowledge and his remark- able ability to integrate a variety of physical, chemical, and biological phenomena.

At the turn of the century there was considerable interest in the question of whether the heat evolved by the animal body could be accounted for by the energy liberated through combustion of food- stuffs. Meyerhof was not satisfied with a merely affirmative answer to this question; he wanted to know how the potential energy of foodstuffs is made available to the cell. He recognized that between the initial energy input, in the form of foodstuffs, and its final dissi- pation as heat a series of energy transformations may occur. These transformations may serve to maintain the living organisms in the living state, which he clearly recognized as a dynamic equilibrium. It is easy to imagine that these ideas, which became the basis of his lifework, would produce a profound impression in the whole scien- tific world. Jacques Loeb invited him to write a somewhat enlarged

OTTO M E Y E R H O F I55

version of the above-mentioned paper for his "Monographs on Ex- perimental Biology." It appeared in this country in 1924 under the title "The Chemical Dynamics of Life Processes." The ideas expressed in this essay are so much alive today that it is still highly recom- mended to biology students at Harvard as an introduction to the physicochemical approach to the study of life processes.

When Meyerhof approached the problem of the conversions of chemical energy in the living cell, he chose muscle as the experi- mental material. This choice was prompted by the recognition that muscle offered an excellent opportunity to correlate chemical trans- formations with the production of both heat and mechanical work.

When he started these investigations, the formation of lactic acid, demonstrated by Fletcher and Hopkins in 1906, was about all that was known of the chemical reactions associated with muscular con- traction. The source of this compound, the way in which its forma- tion provides energy, and the manner in which the energy is utilized were completely obscure. A. V. Hill's measurements of heat produc- tion by isolated frog muscle during activity and subsequent recovery had demonstrated, not only that the heat evolved was proportional to the work performed, but also that about half the total heat was ac- tually evolved during recovery. Meyerhof demonstrated that muscle glycogen is the precursor of the lactic acid formed in the absence of oxygen. He further showed that, in the presence of oxygen, some of the lactic acid formed during the anaerobic contraction was oxidized, but that not all the lactic acid underwent this fate. About one fifth to one fourth of it was oxidized to carbon dioxide and water, and the energy of this oxidation was used to reconvert the remaining four fifths or three fourths to glycogen. His discovery thus confirmed and extended Pasteur's hypothesis that fermentation (or glycolysis) is "la vie sans air" in that, to a certain extent, it substitutes for respira- tion. His observations actually proved Pasteur's assumption that less carbohydrate is consumed in the presence of oxygen than in its ab- sence. The depression of glycolysis by respiration has since been re- ferred to as the Pasteur-Meyerhof effect. Meyerhof's brilliant analysis

Is6 B I O G R A P H I C A L M E M O I R S

of the glycogen-lactic acid cycle and its relation to respiration ex- plained the course of the heat production and, for the first time, es- tablished the cyclic character of energy transformations in the living cell. For this accomplishment Meyerhof received the Nobel prize in physiology and medicine in 1923 (when he was only thirty-nine years old), together with his colleague and friend A. V. Hill.

If we look back on this period today, we realize that it was just a beginning for Meyerhof. In 1925 he succeeded in extracting the gly- colytic enzyme system (the system of catalysts responsible for the con- version of glycogen to lactic acid) from muscle, as Buchner and Har- den and Young had previously done with yeast. This accomplishment proved to be the turning point in the elucidation of the entire process of glycolysis. He had already recognized the biological importance of the work of Harden and his associates and of Neuberg on yeast fermentation. In a series of studies in 1917 and 1918 he discovered the ubiquitous presence of Harden's fermentation coenzyme (cozymase) in animal cells, and in a classical paper entitled "Ueber das Garung- scoferment im Tierkorper" he described his finding and discussed the significance of the coenzyme in cell metabolism. Here the beginnings of his ever-increasing conviction of the fundamental unity and simi- larity of metabolic processes throughout the living world can already be seen.

The clarification of the nature of energy transformations in muscle and of the basic mechanisms of glycolysis was enormously stimulated by the discovery of two phosphorylated compounds in muscle: phos- phocreatine (Fiske and SubbaRow, 1926; P. Eggleton and G. P. Eg- gleton, 1926) and adenosine triphosphate, now widely known as ATP, isolated simultaneously a few years later by Lohmann in Mey- erhof's laboratory and by Fiske and SubbaRow. One of Meyerhof's most important contributions was the discovery of the high-energy content of these compounds, which he found by measuring the heat produced when they are hydrolyzed with liberation of inorganic phosphate. This discovery revolutionized current concepts of muscu- lar contraction and cellular metabolism.

OTTO M E Y E R H O F I57

The enzymatic breakdown of phosphocreatine and ATP in muscle was soon recognized to yield energy for muscular contraction more directly than does the production of lactic acid. For this development a discovery by Lundsgaard was essential. Lundsgaard found that muscles poisoned with iodoacetic acid can contract, without produc- ing lactic acid, at the expense of phosphocreatine breakdown. Further observations in Meyerhof's laboratory, both on muscle extracts and on the intact muscle, demonstrated that the breakdown of ATP pre- cedes that of phosphocreatine and is the process that serves as the primary source of the energy for muscular contraction. The sequence of the various chemical events in contracting muscle was analyzed by Meyerhof and his associate in a most elegant way by employing sensitive physical methods (transmission of light, volume, and pH changes) that could be correlated with the different chemical reac- tions. These studies culminated in the conclusion that both lactic acid production and phosphocreatine breakdown participate indi- rectly in muscular contraction by making possible the resynthesis of the ATP utilized during muscular activity. These investigations are a classical example of the successful use of physical and chemical methods in the analysis of cellular function.

Meyerhof's conviction that the same fundamental mechanisms are used repeatedly in nature persistently led him to study the occurrence of important reaction patterns in various phyla. His interest in coni- parative biochemistry led to the discovery of phosphoarginine in the muscle of invertebrates, where it replaces phosphocreatine and per- forms the same function.

Although phosphocreatine and phosphoarginine were found to participate exclusively in the metabolism of muscle, ATP is now known to participate widely in reactions involving energy transfer in all cells: its energy can be converted to mechanical, osmotic, and electrical work, as well as into light energy, and can be used to pro- mote a number of synthetic reactions not only in carbohydrate me- tabolism but in nearly all biosynthetic processes. The discovery of ATP thus was the key that opened the gates to the understanding of

1 5 ~ B I O G R A P H I C A L M E M O I R S

the conversion mechanisms of metabolic energy. The reconstruction in vitro of the complicated chain of reactions of glycolysis and alco- holic fermentation, in which ATP plays an essential role, is one of the most outstanding achievements of modern biochemistry. Meyer- hof's name is inseparably associated with this development, along with the names of Harden, Young, Robison, Neuberg, Parnas, Emb- den, Warburg, D. M. Needham, and the Coris, among others.

In discussing the mechanism of resynthesis of ATP through the oxidation-reduction reaction of glycolysis, Meyerhof created the ex- pression "energetic coupling" between oxidation and phosphoryla- tion. The mechanism of the coupling was eventually elucidated through the work of Warburg, who demonstrated the generation of carboxyl-phosphate in the process of oxido-reduction.

Today this step-by-step development of the intermediary reactions of the glycolytic cycle stands out as one of the greatest of Meyerhof's accomplishments. Starting with the analysis of the chemical changes associated with muscular contraction, and going deeper and deeper into the analysis of the basic mechanisms involved, he eventually ob- tained the answer to the question he had raised in his youth when he lectured on the dynamics of life processes. He showed that meta- bolic energy passes through a series of transformations that make it available for the energy-requiring processes of the cell. Many types of cells can obtain the necessary energy exclusively through glycoly- sis or fermentation, whereas other cells can, in addition, use respira- tion as a more efficient source of metabolic energy. As is now known, the utilization of metabolic energy through respiration or through glycolysis occurs in essentially similar ways. Thus the analysis of the glycolytic cycle was the clue to the understanding of the fundamental mechanisms of energy generation in all living cells.

In the midst of his most active and creative period, political events forced Meyerhof to leave Germany in 1938. During the preceding twenty years his laboratory facilities had constantly improved. In Kiel, where he had been Professor Extraordinarius since 1918, he es- tablished a warm and close relationship with Rudolf Hober, one of

OTTO M E Y E R H O F I59

the most prominent general physiologists in Germany. This associa- tion was certainly fruitful for Meyerhof's scientific development. His facilities at Kiel were rather limited, however. In 1924 he moved to the Kaiser-Wilhelm Institut fiir Biologie in Berlin-Dahlem, where he became head of a division.

Dahlem was at that time one of the greatest scientific centers in the world. A group of extraordinary men was gathered there in the vari- ous Kaiser-Wilhelm Institutes. Meyerhof found his old friend Otto Warburg in the Biology Institute. Carl Neuberg was at the Institute of Biochemistry. Among other names of world renown may be mentioned Fritz Haber and his associates Ladenburg, Polanyi, and Freundlich, at the Institute of Physical Chemistry; and Otto Hahn at the Institute of Chemistry. In many of the seminars held at Haber's institute one could frequently find several Nobel prize winners join- ing in discussion. Dahlem's stimulating atmosphere and the close contact with these outstanding personalities had a profound influ- ence on Otto Meyerhof.

The facilities that Meyerhof had at Dahlem were not yet adequate for the wide scope of his interests. Therefore, in 1929, when he had the opportunity to join a new institute that he himself could design and plan with all the necessary facilities, he accepted an offer to go to Heidelberg. The Heidelberg Institute was one of the finest of its kind and was ideally suited for his varied research activities. Here he again came in contact with his old teacher Krehl, who was director of the Department of Medicine, as well as the administrative head of the institute.

It is not difficult to realize how hard it must have been for Meyer- hof to leave his wonderful institute and his staff of excellent and devoted collaborators. He went first to Paris, where he was warmly welcomed and well received. Through the combined efforts of the late Jean Perrin, RenC Wurmser, and Henri Laugier, he was ap- pointed director of research at the Institut de Biologie Physico- Chimique. With his untiring energy he immediately started to build up his laboratory under rather difficult conditions. Nevertheless, his

I 60 B I O G R A P H I C A L MEMOIRS

productivity continued, as several important papers on the oxidation- reduction phase of glycolysis and the properties of the triose phos- phates, as well as the demonstration that phosphorylation is neces- sary for the biological breakdown of carbohydrate in all cells, bear witness. As he expressed it later in a review article, nonphospho- rylating glycolysis is nonexistent except in the imagination of a few people.

When the Nazis invaded France, he and his wife, Hedwig, had to flee under most diflicult and trying circumstances. They took refuge in the south of France and eventually, with the help of American friends, the Rockefeller Foundation, and the active interest and ef- forts of A. N. Richards and D. W. Wilson, they managed to reach the United States at the end of 1940. Meyerhof was appointed re- search professor of physiological chemistry at the School of Medicine of the University of Pennsylvania, a position he held until his death.

Hardship and suffering, of which the Meyerhofs had no small share, failed to undermine his spirit. The laboratory at Philadelphia was not a large one, but he continued to work actively and produc- tively, as shown by the number and importance of his publications during the past few years. More than 50 papers appeared during this period, bringing the total of his publications to about 400. This amaz- ing productivity is all the more remarkable if one considers that his health was undermined by a severe heart attack suffered in 1944 at Woods Hole, where he spent most of his summers following his ar- rival in this country. Through the devoted care of his wife he was able to surmount his difficulties and to continue his activities with undiminished energy, until a second heart attack led to his death, which came suddenly and without suffering in the midst of creative work and the preparation of various projects for the future.

During the past few years Meyerhof had discovered the mechanism by which hexose disphosphate accumulates during the fermentation of glucose by yeast extracts (Harden-Young reaction). He demon- strated that this was due to the absence of the enzyme adenosine tri- phosphatase (ATP-ase), which dephosphorylates ATP. On addition

OTTO M E Y E R H O F 161

of ATP-ase the yield extracts fermented glucose to alcohol and car- bon dioxide in the same way as living cells. Incidentally, he also succeeded in partially separating muscle ATP-ase from myosin and obtained the enzyme in soluble form. Concentrating his interest on observations made by Axelrod and his collaborators, he demon- strated that transphosphorylation from substances such as glucose-I- phosphate, phosphocreatine, or acetyl phosphate, to acceptors such as glycerol or sugars, is catalyzed by phosphatases in the absence of ATP. Such transphosphorylation seems to go ~erferably from higher to lower energy phosphates. His measurements of the equilibrium constants of the hydrolysis and synthesis of phosphate esters and of the conversion of phosphopyruvate and ADP to pyruvate and ATP permitted an accurate calculation of the energy contained in some of these compounds. Quite recently, still intensely interested in the en- ergy content of key metabolic intermediates-so important for an understanding of the mechanisms underlying the biological utili- zation of metabolic energy-he measured the heat produced on hydrolysis of various compounds, thus rechecking on some of his old measurements and adding new important data to our knowledge in this field.

The impact of Meyerhof's personality and of his work is perhaps best illustrated by the great number of scientists who received inspi- ration and training in his laboratory. His pupils came from all parts of the world; many of them have not only developed his ideas further, but have opened up new fields of investigation and created, in their turn, schools which have been referred to as the "second Meyerhof generation." An impressive demonstration of his influence was the tribute paid to him by his pupils and friends on his sixty-fifth birthday. He was given a book entitled Metabolism and Function, comprising papers by many of this generation's most brilliant sci- entists in physiology and biochemistry. This was an expression not only of admiration and respect, but also of the ties of affection by which his pupils and colleagues felt bound to one in whom they saw an understanding and devoted friend. Many honors were bestowed

162 B I O G R A P H I C A L MEMOIRS

upon him by his colleagues and by scientific societies, such as the Na- tional Academy of Sciences" (U.S.), the Royal Society of London, the Harvey Society, and many others.

At a symposium on phosphorus metabolism held at Johns Hopkins University in June, 1951, which, as Bentley Glass pointed out, dealt with virtually every aspect of the chemistry of life, Meyerhof made a masterly introduction, which he closed with the following words: "Just as the role of iron in biological reactions is now made com- pletely understandable by the work of Otto Warburg as being neces- sary for the catalysis of oxygen transfer, so the role of phosphate com- pounds in the organisms is made understandable by their importance for energy transfer." It may be added that the work of Otto Meyerhof made this understanding possible.

Meyerho£ was one of the greatest thinkers among the biologists of our time. He repeatedly raised the question of the philosophical basis and background of physiology and the relation of life phenom- ena to physics and chemistry. He staunchly supported the view that the laws of physics and chemistry must be applicable to the forces acting in the living organism. He was convinced that many of the manifestations of life will eventually become understandable in phys- icochemical terms, and he fought vigorously against vitalistic and neovitalistic views. It is in this light that one must consider Meyer- hof's views on Goethe's scientific writings, especially his theory of colors. In a critical essay presented at the Goethe bicentennial cele- bration of the Rudolf Virchow Society in New York a few years ago, Meyerhof accepted Goethe's contributions in the descriptive field; but when Goethe contradicted the views of Newton, he came in con- flict with the laws of physics because his method of approach was not adequate. As Meyerhof emphasized, however, the scientific analysis of nature was not Goethe's real goal. It was the search for the deeper meaning of creation-"die Ahnzlng des Ewigen im Endlichen," to use the words of Fries. In Meyerhof's basic philosophical attitude,

* Elected to membership in 1949.

OTTO MEYERHOF 163

physics and chemistry are only one aspect of the world in which we live. Deeply influenced by the transcendental idealism of Kant and Fries, he was constantly aware of other aspects belonging to a cate- gory that cannot be analyzed by physicochemical methods. He felt that, in the last analysis, the whole of scientific truth becomes rela- tive to other values which refer no longer to things that may be rec- ognized by our senses, but to what is beyond those things-the mean- ing of the world.

Meyerhof had a genuine enthusiasm for art, poetry, and literature and a deep interest in archaeology and history. His knowledge in these fields surprised even highly specialized experts. Very few people know that he liked to write poetry. His poems, which are of great intellectual depth and exquisite beauty, reflect a keenly sensi- tive spirit. His philosophical background, the tremendous range of his knowledge, the remarkable gift of integrating a great variety of phenomena, the originality of his ideas, and the elegance of his methods-all these factors contributed to making his work out- standing and may account for the extraordinarily wide scope of his achievements. The combination of a great scientist and a great man made him a real leader and one of the most distinguished representatives of modern science.

164 B I O G R A P H I C A L M E M O I R S

KEY T O A B B R E V I A T I O N S

Akad. Wiss.=Akademie der Wissenschaften Amer. Brewer = American Brewer Amer. J. Med. Sci. = American Journal of Medical Sciences Amer. Sci. = American Scientist Ann. Inst. Pasteur = Annales de 1'Institut Pasteur Ann. N. Y. Acad. Sci.=Annals of the New York Academy of Sciences Arch. Biochem. = Archives of Biochemistry Arch. Biochem. Biophys.=Archives of Biochemistry and Biophysics (This is

the same journal as the preceding. The name was changed.) Arch. ges. Physiol.=Archiv fiir geschichte der Physiologie Arch. sci. Biol., Napoli=Archivio di Scienze Biologiche, Naples Ber. dtsch. chem. Ges.=Berichte der Deutsch Chemische Gesellschaft Biochem. Z. = Biochemische Zeitschrift Biochim. et Biophys. Acta=Biochimica et Biophysica Acta Biol. Symp. = Biological Symposia Bull. Soc. Chim. Biol.=Bulletin de la Socitte de Chimie Biologique Bull. Soc. Philom. Paris =Bulletin de la SociCtC Philomathique, Paris Canad. J. Med. Sci. = Candian Journal of Medical Science Chem. Z. = Chemisches Zentralblatt Coll. Net= Collecting Net C. R. Soc. Biol. Paris=Compte rendu hebdomadaire des sCances et memoires

de la Sociit-5 de Biologie, Paris Curr. Sci. = Current Science Ergeb. Enzymforsch.=Ergebnisse Enzymforschung Ergeb. Physiol. = Ergebnisse der Physiologie biologischen Chemie und ex-

perimentellen Pharmakologie Fed. Proc. = Federation Proceedings Fortschr. dtsch. Wiss.=Fortschritt der Deutschen Wissenschaften Handb. biol. Arb. Meth.=Handbuch der Biologischen Arbeitsmethoden Handb. d. norm. u. path. Physiol.=Handbuch der normalen und patholo-

gischen Physiologie Handb. Phys.=Handbook of Physics Helv. chim. Acta=Helvetica Chimica Acta Int. Chem. Cong. (Madrid) =International Chemical Congress, Madrid Internat. Z. phys. chem. Biol.=Internationale Zeitschrift fiir physikalisch-

chemische Biologie Int. intern. chim. Solvay, 5th Conseil=Institut international de chimie, Instituts

Solvay, Brussels, Conseil de chimie J. Biol. Chem.= Journal of Biological Chcinistry J. Gen. Physiol.= Journal of General Physiology J. Microbiol. Serology = Journal of Microbiology and Serology

OTTO M E Y E R H O F

J. Physiol. = Journal of Physiology Klin. Wschr. = Klinische Wochenschrift Med. Klinik = Medizinische Klinik New Eng. J. Med. =New England Journal of Medicine N. Y. Acad. Med.=New York Academy of Medicine Pflug. Arch. ges. Physiol.=Pfliigers Archiv fiir die gesamte Physiologie Proc. Physiol. Soc.=Proceedings of the Physiological Society Proc. Rudolf Virchow Med. Sci.=Proceedings of the Rudolph Virchow Medi-

cal Society in the City of New York Sci. Amer. = Scientific American Sonderabdruck aus Ber. ges. Physiol.=Sonderabdruck aus Berichte uber die

gesamte Physiologie Z. physio1.-Chem.=Zeitschrift fur physiologische Chemie

B I B L I O G R A P H Y *

Beitraege zur psychologischen Theorie der Geistesstoerungen. Abhand- lungen der Fries'schen Schule, 3:gg-332. Gottingen: Vandenhoeck & Ruprecht.

~ b e r Goethe's Methode der Naturforschung. Abhandlungen der Fries'- schen Schule, 3:383-437. Gottingen: Vandenhoeck & Ruprecht.

Erkenntnistheorie und Vernunftkritik. Das Kant-Friessche Problem. Zeitschrift fiir Philosophie und philosophische Kritik, 1 3 6 : ~ ~ .

Untersuchungen uber die Warmetonung der vitalen Oxydationsvorgange in Eiern 1-111. Biochem. Z., 3 5 ~ 4 6 .

Uber Warmetonungen chemischer Prozesse in lebenden Zellen. (Versuche an Blutzellen.) Pfliig. Arch. ges. Physiol., 146:159.

With 0. Warburg Uber Atmung in abgetoteten Zellen und in Zell- fragmenten. Pflug. Arch. ges. Physiol., 148:295.

Uber den Energiewechsel von Bakterien. Sitz. Ber. Heidelberg. Akad. Wiss. I, Abhdlg.

* Grateful acknowledgment is made to the Royal Society for permission to reprint an edited version of the bibliography prepared by Sir Rudolph A. Peters for the Obituary Notices of Fellows of the Royal Society.

166 B I O G R A P H I C A L M E M O I R S

Uber Scheinbare Atmung abgetoteter Zellen durch Farbstoffreduktion. Pfliig. Arch. ges. Physiol., 149:250.

Uber Hemmung von Fermentreaktionen durch indifferente Narkotika. Habilitationsschrift. Kiel, 1913.

Zur Energetik der Zellvorgaenge (Vortrag.) Gottingen: Vandenhoeck & Ruprecht.

~ b e r Hemmung von Fermentreaktionen durch indifferente Narkotika. Pfliig. Arch. ges. Physiol., 157:251,

Uber Hemmung der Wasserstoffsuperoxydzersetzung des kolloidalen Platins durch indifferente Narkotika. Pfliig. Arch. ges. Physiol., 157:307.

Bemerkung zu der Arbeit von George H. Chapman. Internat. Z. phys. chem. Biol., 11, 4, 394.

1916

Untersuchungen iiber den Atmungvorgang nitrifizierender Bakterien. I. Die Atmung des Nitratbildners. Pfliig. Arch. ges. Physiol., 164 :353.

Untersuchungen iiber den Atmungvorgang nitrifizierender Bakterien. 11. Beeinflussungen der Atmung des Nitratbildners durch chemische Sub- stanzen. Pfliig. Arch. ges. Physiol., 165 :229.

1917

Untersuchungen iiber den Atmungvorgang nitrifizierender Bakterien. 111. Die Atmung des Nitratbildners und ihre Beeinflussung durch chemische Substanzen. Pfliig. Arch. ges. Physiol., 166:240.

Notiz iiber Eiweissfallungen durch Narkotika. Biochem. Z., 86:325. Untersuchungen zur Atmung getoteter Zellen. 11. Der Oxydationsvorgang

in getoteter Hefe und Hefeextrakt. Pfliig. Arch. ges. Physiol., 170:367. Uber das Vorkommen des Cofermentes der alkoholischen Hefegarung im

Muskelgewebe und seine mutmaszliche Bedeutung im Atmungsmecha- nismus. Z. physio1.-Chem., IOI :165.

OTTO M E Y E R H O F 167

Untersuchungen zur Atmung getoteter Zellen. 111. Die Atmungserregung in gewaschener Acetonhefe und dem Ultrafiltrationsriickstand von Hefemazerationssaft. Pfliig. Arch. ges. Physiol., 170:428.

Uber das Garungscoferment im Tierkorper. 11. Z. physiol-Chem., 102:r. Zur Kinetik der zellfreien Garung. Z. physio1.-Chem., 102:185. Neuere Untersuchungen uber die Beziehungen zwischen Atmung und

Garung. Med. Klinik, 14 :436.

1919 Uber den Zusammenhang von Atmung und Garung. Naturwissen-

schaften, 7 :q3. Uber die Atmung der Froschmuskulatur. Pfliig. Arch. ges. Physiol.,

175 :20.

Zur Verbrennung der Milchsaure in der Erholungsperiode des Muskels. Pfliig. Arch ges. Physiol., 175:88.

I 920

Uber die Energieumwandlungen im arbeitenden Muskel. Med. Klinik, Nr. 17.

Uber die Rolle der Milchsaure in der Energetik des Muskels. Naturwissen- schaften, 8 :696.

Die Energieumwandlungen in Muskel. ~ b e r die Beziehungen der Milchsaure zur Wkmebildung und Arbeitsleistung des Muskels in der Anaerobiose. Pfliig. Arch. ges. Physiol., 182 :2p.

Das Schicksal der Milchs5u-e in der Erholungsperiode des Muskels. Pfliig. Arch. ges. Physiol., 1823284.

Kohlenhydrat und Milchsaureumsatz in Froschmuskel. Pflug. Arch. ges. Physiol., 185 :II.

~ b e r das Schicksal der Milchsaure in der Erholungsperiode des Muskels und die Energetik des Kontraktionsvorganges. Sonderabdruck aus Ber. ges. Physiol., 1 1 , ~ .

1921

Uber die Milchsaurebildung in der zerschnittenen Muskulatur. Pfliig. Arch. ges. Physiol., 188:114.

Die Energieumwandlungen im Muskel. V. Milchsaurebildung und mech- anische Arbeit. Pfliig. Arch. ges. Physiol., 191 :128.

I 68 B I O G R A P H I C A L M E M O I R S

Die Energieumwandlungen im Muskel. VI. Uber den Ursprung der Kontraktionswarme. Pflug. Arch. ges. Physiol., I95:22.

Die Verbrennungswarme der Milchsiiure. Biochem. Z., 12g:5g4. Uber die Energetik des Muskels. Klin. Wschr., I :230.

I923 The Physico-chemical Mechanism of Cell Respiration. Lancet, I :322. Uber ein neues autoxydables System der Zelle (Die Rolle der Sulfhydril-

gruppe als Sauerstoff ubertrager) . Pfliig. Arch. ges. Physiol., 1g9:531. fiber Blausaurehemmung in autoxydablen Sulfhydrilsystemen. Pflug.

Arch. ges. Ph~siol., 200:1.

With H. Weber. Beitrage zu den Oxydationsvorgangen am Kohlemodell. Biochem. Z., 135 :558.

Die chemischen und energetischen Verhiiltnisse bei der Muskelarebeit. Ergeb. Physiol., 22 :328.

Remarks on Hirsch-Kauffmann's paper "Lactic Acid Determination in Animal Organs." Z. physio1.-Chem., 141 :316.

With K. Matsuoka. Uber den Mechanismus der Fr~ktoseox~dation in Phosphatlosungen. Biochem. Z., I ~ O : I .

With R. Meier. Die Verbrennungswarme des Glykogens. Biochem. Z., 150 233.

Uber die Milchsaurebildung bei Muskelkontrakturen. Klin. Wschr., 3:392. Die ~nergieumwandlungen im Muskel. (Nobelvorlesung, Stockholm.)

Naturwissenschaften, 12 :I%. Probleme der Mu~kelph~siologie. Naturwissenschaften, 12 :I 137. Die Energie~mwandlun~en im Muskel. VII. Weitere Untersuchungen

iiber den Ursprung der Kontraktionswarme. Pfliig. Arch. ges. Physiol., 204 :295.

With R. Meier. Uber den Milchsaure-Stoffweschel im lebenden Tier. Pfliig. Arch. ges. Physiol., 204:448.

With H. E. Himwich. Beitrage zum Kohlehydratstoffwechsel des Warm- bliitermuskels, insbesondere nach einseitiger Fetternahrung. Pflug. Arch. ges. Physiol., 205 :415.

Atmung und Anaerobiose des Muskels. Thermodynamik des Muskels. Theorie der Muskelarbeit. Handb. d. norm. u. path. Physiol., 8, I, I.

Teil. 476. Nochmals zur Milchsaurebildung bei der chemischen Contractur des

Muskels. Klin. Wschr., Nr. 32:1445.

OTTO M E Y E R H O F 169

Neue Fortschritte der zellphysiologischen Forschung. Karlsbader aerzt- liche Vortraege, 6 :z47-62.

Mikrokalorimetrie (Warmebildung von Zellen, niederen Organismen und kleinen Organen). Handb. biol. Arb. Meth., 10:755.

With P. Finkle. Uber die Beziehungen des Sauerstofls zur bakteriellen Milchsauregarung. Chem. Z., 12 :157.

With K. Lohmann and R. Meier. Uber die Synthese des Kohlehydrats im Muskel. Biochem. Z., 157:45g.

Uber die Energiequelle bei der Muskelarbeit. Biochem. Z., 158:218. Beobachtungen iiber die Methylglyoxalase. Biochem. Z., 159 :4p. Uber den Einfluss des Sauerstoffs auf die alkoholische Garung der Hefe.

Biochem. Z., 162:43. Uber den Zusammenhang der SpaltungsvorgZnge mit der Atmung in der

Zelle. Ber. dtsch. chem. Ges., 58:991. Uber die Synthese des Kohlehydrats im Muskel. Klin. Wschr., 4:341. Chemical Dynamics of Life Phenomena. Monographs Exper. Biol., Phila-

delphia and London: Lippincott Co. With K. Lohmann. ~ b e r den zeitlichen Zusammenhang von Kontraktion

und Milchsaurebildung im Muskel. Pflug. Arch. ges. Physiol., 210 :7go. Ober den Einfluss des Sauerstoffs auf die alkoholische Garung der Hefe.

Naturwissenschaften, 13 :980.

Thermodynamik des Lebensprozesses. Handb. Phys., 11 :238. With K. Lohmann. Uber den Unterschied von links-und rechts-Milch-

saure im Organismus. Naturwissenschaften, 14:437. With K. Lohmann. Uber die Vorgange bei der Muskelermiidung. Bio-

chem. Z., 168:128. With K. Lohmann. ~ b e r Atmung und Kohlehydratumsatz tierischer

Gewebe. I. Biochem. Z., 171 :381. With K. Lohmann. ~ b e r Atmung und Kohlehydratumsatz tierischer

Gewebe. 111. Uber den Unterschied von d- and 1-Milchsaure fur Atmung und K~hleh~dratsynthese im Organismums. Biochem. Z., 171 :421.

Uber die enzymatische Milchsaurebilung im Muskelextrakt. I. Biochem. Z., 178 :395.

Uber die enzymatische Milchsaurebildung im Muskelextrakt. 11. Die Spaltung der Polysaccharide und der Hexosediphosphorsaure. Biochem. Z., 178:462.

I7O B I O G R A P H I C A L M E M O I R S

Uber die Dissoziationskonstanten der Hexosediphosphorsaure und Glyc- erinphosphorsaure. Naturwissenschaften, 14:757.

With J. Suranyi. Uber die Dissoziationskonstante der Hexosediphosphor- saure und Glycerinphosphorsaure. Biochem. Z., 178:427.

Uber die Abtrennung des milchsaurebildenden Ferments von Muskel und einige seiner Eigenschaften. Naturwissenschaften, 14 :196.

Uber die enzymatische Spaltung des Traubenzuckers und anderer Hexosen im Muskelextrakt. I. Naturwissenschaften, 14:756.

With J. Suranyi. Uber die Dissoziationskonstanten der Hexosediphosphor- saure. Naturwissenschaften, 14:757.

Uber die Isolierung des glyknlytischen Ferments aus dem Muskel und den Mechanismus der Milchsaurebildung in Losung. Naturwissenschaften, I4 :I 175.

With K. Lohmann. Uber die Charakterisierung der Hexosemonophosphor- sauren und ihr Verhalten bei der zellfreien Garung. Naturwissen- schaften, 14 :1277.

Uber die enzymatische Milchsaurebildung in Muskelextrakt. 111. Die Milchsaurebildung aus den garfahigen Hexosen. Biochem. Z., 183:176.

With K. Lohmann. Uber die enzymatische Milchsa~rebildun~ im Muskel- extrakt. IV. Die Spaltung der Hexosemonophosphorsauren. Biochem. Z., 185:113.

With J. Suranyi. Uber die Warmetonungen der chemische Reaktions- phasen im Muskel. Biochem. Z., 191 :106.

With R. W. Gerard. Untersuchungen iiber den Stoffwechsel des Nerven. 111. Chemismus und Intermediarprozesse. Biochem. Z., 191 :I25.

With R. W. Gerard. Uber die mit der Nervenerregung verkniipften chemischen Vorgange. Naturwissenschaften, 15:538.

With K. Lohmann. Uber den Ursprung der Kontraktionswarme. Natur- wissenschaften, 15 :670, 768.

Recent Investigations on the Aerobic and Anaerobic Metabolism of Carbo- hydrates. J. Gen. Physiol., 8:531.

With K. Meyer. The Purification of the Lactic-Acid-forming Enzyme of Muscle. Proc. Physiol. Soc.; J. Physiol., 64:xvi.

With W. Schulz. Uber das Verhaltnis von Milch~aurebildun~ und Sauerstoffverbrauch bei der Muskelkontraktion. Pfliig. Arch. ges. Phys- iol,. 217:547.

Uber die Energetik der Muskelkontraktion. Klin. Wschr., 6:26.

OTTO M E Y E R H O F I7I

With L. Genevois. Uber Atmung und Garung in grunen Pflanzen. Bio- chem. Z., 186:461.

Uber die Verbreitung der Argininphosphorsaure in der Muskulatur des Wirbellosen. Arch. sci. Biol., Napoli, 12536.

Comments on the paper of the same title by G. Embden and E. Lehnartz, and reply to Embden and Lehnartz. ~ b e r den zeitlichen Verlauf der Milchsaurebildung bei der Muskelkontraktion. Z. physiol-Chem., 178: 306.

With K, Lohmann. Uber die naturlichen Guanidinophosphorsauren (Phosphagene) in der quergestreiften Muskulatur. I. Das physiologische Verhalten der Phosphagene. Biochem. Z., 196:22.

With K. Lohmann. Uber die natiirlichen Guanidinophosphorsauren (Phosphagene) in der quergestreiften Muskulatur. 11. Die physikalisch- chemischen Eigenschaften der Guanidinophosphorsauren. Biochem. Z., 196:49.

With K. Lohmann. Notiz iiber die Extraktion von eisenhaltigem Pyro- phosphat aus der Muskulatur. Biochem. Z., 203:208.

With K. Lohmann. Uber eine neue Aminophosphorsaure. Naturwissen- schaften, 16:47.

Zum GedKhtnis des Philosophen Leonard Nelson. Naturwissenschaften, 16:137-42.

With D. Nachmansohn. Neue Beobachtungen uber den Umsatz des "Phosphagens" im Muskel. Naturwissenschaften, 16:726.

With D. Burk. Uber die Fixation des Luftstickstoffs durch Azotobakter. Z. physio1.-Chem., 139 :117.

Sur la fermentation de la dioxyacetone. Communication prCsentke au Congr. Internation. de la Vigne et du Pin Maritime. Bordeaux.

With W. Schulz. Uber die Atmung des marklosen Nerven. Biochem. Z., 206:158.

With F. 0. Schmitt. Uber den respiratorischen Quotienten des Nerven bei Ruhe und Tatigkeit. Biochem. Z., 208:445.

Uber den Tatigkeitsstoffwechsel des Nerven. Klin. Wschr., 8:6. Uber die Bedeutung der Guanidinophosphorsauren ("Phosphagene") fur

die Muskelfunktion. Naturwissenschaften, 17:283.

172 B I O G R A P H I C A L M E M O I R S

With D. Nachmansohn. Uber die Synthese der Kreatinphosphorsaure im lebenden Muskel. Biochem. Z., 222:1.

Die chemischen Vorgange im Muskel und ihr Zusammenhang mit Ar- beitsleistung und Warmebildung. Band. 22, Monographic aus der Physiologie der Pflanzen und der Tiere. Berlin: Hirschwaldsche Buch- handlung.

~ n d e r u n g des osmotischen Drucks des Muskels bei Ermiidung und Starre. Biochem. Z., 226:1.

With K. Iwasaki. Uber Beeinflussung der Garungsgrosse und des Oxyda- tionsquotienten der Hefe. Biochem. Z., 226:16.

With F. Lipmann. Uber die Reaktionsanderung des tatigen Muskels. Biochem. Z., 227 84.

With W. Schulz. Uber Reiz- und Erregungsstoffwechsel des Nerven. Biochem. Z., 228 :I.

The Chemistry of Muscular Contraction. Lancet, 2:1415. With F. Lipmann, Uber die Reaktionsanderung des tatigen Muskels im

Zusammenhang mit dem Umsatz der Kreatinphosphorsaure ("Phos- phagen") . Naturwissenschaften, 18 :330.

With K. Lohmann. Zerfallt Lactacidogen (Hexosemonophosphors~ure) bei der Muskelkontraktion ? Biochem. Z., 227 :39.

With E. Lundsgaard and H. Blaschko. Uber die Energetik der Muskel- kontraktion bei aufgehobener Milchsaurebildung. Naturwissenschaften, I 8 :787.

With R. McCullagh and W. Schulz. Neue Versuche uber den kalorischen Quotienten der Milchsiure im Muskel. Pfliig. Arch. ges. Physiol., 224: 230.

With F. Lipmann. Change of Hydrogen Ion Concentration during Ac- tivity of Muscle. Proc. Physiol. Soc.; J. Physiol., 69:xxi.

Die Ausnutzung der chemischen Energie fur die Arbeit des Muskels. Fortschr. dtsch. Wiss., 6:239.

With W. Schulz. Uber das Verhaltnis von Milchsaurebildung und Krea- tinphosphorsaurespaltung bei der anaeroben Tatigkeit des Muskels. Biochem. Z., 236:54.

With E. Lundsgaard and H. Blaschko. Uber die Energetik der Muskelkon- traktion bei aufgehobener Milchsaurebildung. Biochem. Z., 236:326.

OTTO MEYERHOF I73

With E. Boyland. Uber den Atmungsvorgang jodessigsaurevergifteter Muskeln. Biochem. Z., 237:406.

Uber den K~hlenh~dratverbrauch bei der aeroben Tatigkeit des Kalt- bliitermuskels. Biochem. Z., 237 :427.

With K. Lohmann and K. Meyer. Uber das Koferment der Milchsaure- bildung im Muskel. Biochem. Z., 237:437.

With A. Grollman. Weitere Versuche iiber den Zusammenhang zwischen chemischen Umsatz und osmotischer Druckzunahme im Muskel. Bio- chem. Z., 241 :23.

Uber das osmotische Gleichgewicht zwischen Dotter und Eiklar im Hiihnerei. Biochem. Z., 242:243.

With K. Lohmann. Uber die Energetik der anaeroben Phosphagensyn- these ("Kreatinphosphorsaure") im Muskelextrakt. Naturwissenschaf- ten, 1g:575.

Neuere Versuche zur Energetik der Muskelkontraktion. Naturwissen- - schaften, 19 :923.

Der zeitliche Verlauf der Milchsaurebildung des Muskels. Klin. Wschr., 10:214.

Darstellung der Adenylpyrophosphorsaure aus Muskulatur. Biochem. Z., 233 :460.

1932 Uber die Abtrennung des Milchsaurebildenden Ferments aus Erythro-

cyten. Biochem. Z., 246:249. With W. Mohle and W. Schulz. Uber die Reaktionsanderung des Muskels

im Zusammenhang mit Spannungs-Entwicklung und chemischen Um- satz. Biochem. Z., 246:285.

With W. Schulz. Uber die Abhangigkeit der Atmung des Azotobakter vom Sauerstoffdruck. Biochem. Z., 250:35.

With K. Lohmann. ~ b e r energetische Wechselbeziehungen zwischen dem Umsatz der Phosphorsaureester im Muskelextrakt. Biochem. Z., 253:431.

With K. Lohmann. Uber das Co-Fermentsystem der Milchsaurebildung. Naturwissenschaften, 20 :387.

Uber die Volumenschwankung bei der Muskelkontraktion. Naturwis- senschaften, 20 :977.

I933 With C. L. Gemmill and G. Benetato. Uber den isometrischen Koeffizien-

ten des Sauerstoffs und jodessigsaurevergifteter Muskeln. Biochem. Z., 258 :371.

I74 B I O G R A P H I C A L M E M O I R S

With D. McEachern. Uber anaerobe Bildung und Schwund von Brenz- traubensaure in der Muskulatur. Biochem. Z., 260:417.

With H. Mohle. Uber die Volumenschwankung des Muskels im Zusam- menhang mit dem Chemismus der Kontraktion. I. Mitteilung, Metho- den. Biochem. Z., 260 :454.

With H. Mohle. 11. Mitteilung. Die Volumenschwankung bei verschie- denen Kontraktionsformen. Biochem. Z., 260:469.

With H. Mohle. 111. Uber die Volumenanderung bei chemischen Vor- gangen im Muskel. Biochem. Z., 261:252.

With W. Kiessling. Uber das Auftreten und den Umsatz der a-Glycerin- phosphorsaure bei der enzymatischen Kohlenhydratspaltung. Biochem. Z., 264:40.

With W. Kiessling. Uber die pho~phor~lierten Zwischenprodukte und die letzten Phasen der alkoholischen Garung. Biochem. Z., 267:313.

With W. Kiessling. Zwischenprodukte des Kohlenhydratumsatzes im Muskelextrakt. Naturwissenschaften, 21 :2q .

Intermediate Products and the Last Stages of Carbohydrate Breakdown in the Metabolism of Muscle and in Alcoholic Fermentation. Nature, Land., 132:337, 373.

With H. Hartmann. Die Volumenschwankung des Muskels in Parallel- ismus mit den chemischem Vorgangen der Kontraktion. Naturwissen- schaften, 21 :661.

Uber die neuesten Fortschritte der Lehre von der Muskelkontraktion. Scientia, 53 :321.

Chimie de la contraction musculaire. (Translation.) Paris: Hermann & Cie. 402 pp.

Betrachtungen iiber die naturphilosophischen Grundlagen der Physiologie. Abhandlungen der Fries'schen Schule (N.F.), 6:36.

Dihydroxyacetone Phosphoric Acid as an Intermediate Product in the Cleavage of Phosphorylated Sugars. IX Int. Cong. Chem. (Madrid),

5 :347-52. With K. Lohmann. Uber den Nachweis von Triosephosphorsaure als

Zwischenprodukt bei der enzymatischen Kohlenhydratspaltung. Natur- wissenschaften, 22x34.

With K. Lohmann. ~ b e r die enzymatische Gleichgewichtsreaktion zwis- chen Hexosephosphorsaure and Dioxyacetonphosphorsaure. Naturwis- senschaften, 22 :220.

O T T O M E Y B R H O F I75

Betrachtungen uber die nat~r~hilosophischen Grundlagen der Physiologic. Naturwissenschaften, 22 :311.

With K. Lohmann. ~ b e r die enzymatische Gleichgewichtsreaktion zwis- chen Hexosediphosphorsaure und Dioxyacetonphosphorsaure. Biochem. Z., 271 89.

With K. Lohmann. Uber eine freiwillige enzymatische Spaltung mit negativer Warmetonung. Naturwissenschaften, 22:452.

With K. Lohmann. Uber die enzymatrsche Umwandlung von Phospho- glycerinsaure in Brenztraubensaure und Phosphorsaure. Biochem. Z., 273 :60.

With K. Lohmann. Uber die enzymatische Gleichgewichtsreaktion zwis- chen Hexosediphosphorsaure und Dioxyacetonphosphorsaure. 11. Die negative Warmetonung des enzymatischen Spaltung. Biochem. Z.,

273 :73. Beobachtungen zur Kinetik der zellfreilen Garung. Biochem. Z., 273 80.

With H. Hartmann. ~ b e r die Volumenschwankung bei der Muskelkon- traktion. Pflug. Arch. ges. Physiol., 234:722.

With K. Lohmann. Ober die enzymatiache Gleichgewichtsreaktion zwis- chen Hexosediphosphorsaure und Diioxyaceton-Phosphorsaure. 111. Uber Abfangen der Triosephosphorsaure mit Bisulfit und die Verbreitung des Ferments Zymohexase in den vei-schiedenen Zellarten. Biochem. Z., 273 :413.

With W. Kiessling. Uber ein neues phosphorliertes Intermediarprodukt der Kohlenhydratspaltung und sein enzymatisches Gleichgewicht. Naturwissenschaften, 225338.

Sur les processus intermkdiaires dans la dkgradation des glucides (Forma- tion d'acide lactique et fermentation alcoolique). Ann. Inst. Pasteur, 53 :565-

Sur les rapports entre les processus chirniques et physiques dans la contrac- tion musculaire. Ann. Inst. Pasteur, 153 :565.

With W. Schulz. Ober die Reduktion von Stickoxyd durch Oxydations- fermente. Biochem. Z., 275x47.

1935;

Respiration of Muscles in Its Relation with the Metabolism of Scission. Int. intern. chim. Solvay, 5th Conseil.

With K. Lohmann. Uber die enzymat:ische Gleichgewichtsreaktion zwis- chen Hexosediphosphorsaure und 1)ioxyacetonphosphorsaure. IV. Bio- chem. Z., 275:430.

176 B I O G R A P H I C A L M E M O I R S

With W. Kiessling. ~ b e r die Isolierung der isomeren Phosphoglycerin- sauren (Glycerinsaure-2-Phosphorsaure und Glycerinsaure-3-Phosphor- saure) aus GLansatzen und ihr enzymatisches Gleichgewicht. Biochem. Z., 276:239.

Uber die Kinetik der umkehrbaren Reaktion zwischen Hexosediphos- phorsaure und Di~x~acetonphosphorsaure. Biochem. Z., 277:77.

Uber die Intermediarvorgange bei der biologischen Kohlehydratspaltung. Ergeb. Enzymforsch., 4:208.

With H. Lehmann. Uber die Synthese der Kreatinphosphorsaure durch Umesterung der Phosphobrenztraubensaure. Naturwissenschaften, 23:

337. Uber umkehrbare Reaktionen im Verlauf der biologischen Zuckerspal-

tung. Naturwissenschaften, 23 qgo. With W. Kiessling. Uber die Geschwindigkeit der zymatischen Zucker-

garung und den Ursprung der I. Harden-Young'schen Garungsgleich- ung. Naturwissenschaften, 23501.

With W. Kiessling. Uber die enzymatische Urnwandlung der Glycerin- aldehydphosphors~ure in Dioxyacetonphosphorsaure. Biochem. Z., 279:

40. With W. Kiessling. Ober den enzymatischen Umsatz der synthetischen

Phosphobrenztraubensaure (enol-Brenztraubensaure-phosphorsaure) . Biochem. Z., 280:gg.

Neuere Untersuchunge iiber die Reaktionskette der alkoholischen Girung. Helv. chim. Acta, 18:1o30.

With W. Kiessling. Die Umesterungsreaktion der Phosphobrenztrauben- siure bei der alkoholischen Zuckergarung. Biochem. Z., 281 :249.

With W. Schulz. Uber die Energieverhdtnisse bei der enzymatischen Milchsaurebildung und der Synthese der Phosphagene. Biochem. Z., 281 :292.

With P. Schuster. Uber das Vorkommen der Adenin-Nucleotide in den Geweben. 11. Mitt., Herzmuskulatur. Biochem. Z., 282 :1o4.

~ b e r die Wirkungsweise der Hexokinase. Naturwissenschaften, 23:850. With W. Mohle. Uber den reversiblen Anteil der Volumenkonstriktion

des Muskels. Pflug. Arch. ges. Physiol., 236:533. With W. Kiessling. Ober den Hauptweg der Milch~aurebildun~ in der

Muskulatur. Biochem. Z., 28293.

OTTO M E Y E R H O F I77

25 Jahre Kaiser Wilhelm-Gesellschaft zur Forderung der Wissenschaften Bd. 11. Die Naturwissenschaften. Institut fur Physiologie S.373. Berlin: Springer.

With W. Mohle. Uber die Vo1umenschw:~nkung des Muskels als Ausdruck der chemischen Vorgange. Biochem. 2!., 284:1.

Neue Versuche uber den Mechanismus der enzymatischen Kohlehydrat- spaltung (Milchsaurebildung und allioholische Garung.) Curr. Sci., 4 :669.

Uber die Dioxyacetonphosphorsaure als Zwischenprodukt bei der Auf- spaltung des phosphorylierten Zuckers. IX Int. Congr. Chem. (1934),

5 :374. With W. Kiessling. Uber die Wirkung des Arseniats auf die Garung.

Naturwissenschaften, 24:161. With K. Lohmann and P.-schuster. Uber die Aldolase, ein Kohlenstoff-

verknupfendes Ferment. I. Mitt. Aldolkondensation von Dioxyaceton- phosphors2ure mit Acetaldehyd. Biochem. Z., 286:301. 11. Mitt. Aldol- kondensation von Dioxyacetonphosphorsaure mit Glycerinaldehyd. Bio- chem. Z., 286:319.

With W. Kiessling. Uber Cozymasepyrophosphat. Naturwissenschaften,

24 :557- With W. Schulz. Uber die quantitative Bestimmung der Hexosen durch

Garung. Biochem. Z., 287:206. Neuere Versuch uber zellfreie alkoholische Garung. Naturwissenschaften,

24 :689. With P. Ohlmeyer. Uber die Unersetzbarkeit der Cozymase fiir die en-

zymatische Milchsaurebildung. Naturwissenschaften, 24:741. With W. Schulz. Uber die W2rmetGnung der Aldolkondensation der

Hexose-I-phosphorsaure. Biochem. Z., 289537.

With K. Lohmann. A Newly Discovered Intermediate Product and a New Scheme for Alcoholic Fermentation. IX Int. Chem. Cong. (Madrid), 5 :253.

With P. Ohlmeyer and W. Mohle. Die Cozymase als Ampholyt. Natur- wissenschaften, 25 :172.

With P. Ohlmeyer. Uber die Rolle der Co-Zymase bei der Milchsaure- bildung im Muskelextrakt. Biochem. Z., 290:334'.

1 7 ~ B I O G R A P H I C A L M E M O I R S

Uber die Synthese der Kreatinphosphorsaure im Muskel und die "Reak- tionsform" des Zuckers. Naturwissenschaften, 25:443.

With W. Kiessling and W. Schulz. Uber die Reaktionsgleichungen der alkoholischen Garung. Biochem. Z., 292:25.

With W. Schulz and P. Schuster. Uber die enzymatische Synthese der Kreatinphosphorsaure und die biologische "Reaktionsform" des Zuck- ers. Biochem. Z., 293 :3og.

With W. Mohle. Kataphoretische Studien am Enzymsystem des Kohlen- hydratabbaus. Biochem. Z., zg4:qg.

Uber die Inrermdiarvorgange der enzymatischen Kohlehydratspaltung. Ergeb. Physiol., 3g:1o.

1938

Sur la phosphorylation intermkdiare au cours de la glycolyse dans l'extrait ckrtbral. Bull. Soc. Chim. Biol., 20:1335.

With W. Kiessling. Uber eine Dinucleotidpyrophosphorsaure der Hefe. Naturwissenschaften, 26x3.

With M. Dubuisson and W. Schulz. Untersuchungen iiber die Reaktion- sanderungen des Muskels im Verlauf der Tatigkeit im Zusammenhang mit den chemischen Vorgangen. Pfliig. Arch. ges. Physiol., 239:776.

The Intermediary Reactions of Fermentation. Nature, London, 141 855. With W. Kiessling. Uber ein Adenindinucleotid der Hefe: Di(Adenosin-5'

Phosphorsaure) . Biochem. Z., 296:410. Bemerkungen zu der Arbeit von Ernst und Koczkas: "Eigenfrequenz

und Reversibilitat der Volumverminderung des Muskels." Pfliig. Arch. ges. Physiol., Arch. ges. Physiol., 240:386.

With W. Schulz. Eine neue Bestimmungsmethode der Phosphoglycerin- saure. Biochem. Z., 297:60.

With P. Ohlmeyer and W. Mohle. ~ b e r die Koppelung zwischen Oxy- doreduktion und Phosphatveresterung bei der anaeroben Kohlenhy- dratspaltung. I. Mitteilung. Die Reaktionsgleichungen der Koppelung. Biochem. Z., zg7:go. 11. Mitteilung. Die Koppelung als Gleichgewich- treaktion. Biochem. Z., zg7:113.

With P. Ohlmeyer, W. Gentner, and H. Maier-Leibnitz. Studium der Zwischenreaktionen der Glykolyse mit Hilfe von radioaktiven Phosphor. Biochem. Z., 298:396.

Sur l'isolement de l'acide ~-glycProaldthydephosphorique biologique au cours de la dkgradation enzymatique de l'acide hexose diphosphorique. Bull. Soc. Chim. Biol., zo:1033 and 1345.

OTTO MEYERHOF I79

I939

Les Mkthodes employtes par Goethe dans ces etudes scientifiques. Bull. Soc. Philom. Paris, 122:43.

Sur l'isolement de l'acide 3-glyctroaldthydephosphorique biologique au cours de la degradation enzymatique de I'acide hexose disphosphorique. Bull. Soc. Chim. Biol., 21 :g65.

L'emploi du phosphore radioactif dans la glycolyse et la fermentation. Bull. Soc. Chim. Biol., 21 :1og4.

With E. Perdigon. Sur la glycolyse pho~phor~lante dans les extraits em- bryonnaires. C. R. Soc. Biol. Paris, 132:186.

The Chemistry of Anaerobic Recovery in Muscle. New Eng. J. Med., 220 :49.

I940

With E. Perdigon. Sur la glycolyse phosphorylante des tissus animaux. Enzymologia, 8 :353.

1941

Significance of Oxidation for Muscular Contractions. Biol. Symp., 3 :qg. Oxidoreductions in Carbohydrate Breakdown. Biol. Symp., 5:141. Nature, Function and Distribution of the Phosphagens in the Animal

Kingdom. Coll. Net, 16, No. 10. Intermediate Carbohydrate Metabolism. In: A Symposium on Respi~atory

Enzymes, p. 3. University of Wisconsin Press.

With R. Junowicz-Kocholaty. The Two-fold Activation of Carbohydrate Breakdown by Arsenate and the Dephosphorylation of Phosphopyruvic Acid. J. Biol. Chem., 145:443.

Enzymatic Mechanisms of Fermentation. Amer. Brewer, January. With R. Junowicz-Kocholaty. The Equilibria of Isomerase and Aldolase

and the Problem of the Phosphorylation of Glyceraldehyde Phosphate. J. Biol. Chem., 14g:1, 71.

I944

Energy Relationships in Glycolysis and I'hosphorylation. Ann. N. Y. Acad. Sci., 45 :377,

I 80 B I O G R A P H I C A L MEMOIRS

With L. V. Beck. Triose Phosphate Isomerase. J. Biol. Chem., 156:1og. Physical Changes of Muscle Related to Activity. In: Co2loid Chemistry,

5:883-990. Ed. by Jerome Alexander. Reinhold Publishing Corporation, N. Y.

The Origin of the Reaction of Harden and Young in Cell-free Alcoholic Fermentation. J. Biol. Chem., 157:105.

With B. D. Polis. Partial Separation of Adenosinetriphosphatase from Myosin. J. Biol. Chem., 163:339.

New Investigations in the Kinetics of Cell-free Alcoholic Fermentation. J. Microbiol. Serology, 12:140. Antonie Van Leeuwenhoek Jubilee Volume.

With Nevena Gliazkowa. The Rate of Anaerobic Glycolysis of Various Hexoses in Mammalian Tissues. Arch. Biochem., 12:405.

The Main Chemical Phases of the Recovery of Muscle. Ann. N. Y. Acad. Sci., 47 2315.

The Rates of Glycolysis of Glucose and Fructose in Extracts of Brain. Arch. Biochem., 13 :485.

With J. R. Wilson. The Rate of Turnover of Hexosediphosphate in Brain Preparations. Arch. Biochem., 14:71.

With B. D. Polis. Studies on Adenosinetriphosphate in Muscle. I. Concen- tration of the Enzyme on Myosin. J. Biol. Chem, 169:389.

With P. Oesper. The Mechanism of the Oxidative Reaction in Fermenta- tion. J. Biol. Chem., 170:1.

1948

With J. R. Wilson. Studies on Glycolysis of Brain Preparations. IV. Arch. Biochem, 17x53.

With L. 0. Randall. Inhibitory Effects of Adrenochrome on Cell Metabo- lism. Arch. Biochem., 17x71.

With W. W. Kielley. Studies on Adenosinetriphosphate in Muscle. 11. A New Magnesium-activated ATP-ase. J. Biol. Chem., 176:591.

With J. R. Wilson. Studies on Glycolysis of Brain Preparations. V. Affinity of Hexokinase for Glucose and Fructose. Arch. Biochem., 19:502.

OTTO MEYERHOF 181

New Investigations on Enzymatic Glycolysis and Phosphorylation. Experi- entia, 4:169.

A Mg-activated ATP-ase from Muscle. J. Biol. Chem., 174:387. With Jean R. Wilson. Glycolysis in Homogenates and Extracts of Malig-

nant Tumor. Amer. J. Med. Sci., 216:235.

With J. R. Wilson. Studies on the Enzymatic System of Tumor Glycoly- sis. I. Glycolysis of Free Sugar in Homogenates and Extracts of Trans- planted Rat Sarcoma. Arch. Biochem., 21 :I.

With J. R. Wilson. Studies on the Enzymatic System of Tumor Glycoly- sis. 11. Comparative Study of Rat and Mouse Tumor Homogenates. Arch. Biochem, 21 :22.

With H. Green. Synthetic Action of Phosphatase. I. Equilibria of Bio- logical Esters. J. Biol. Chem., 178:655.

With P. Oesper. The Enzymatic Equilibria of Phospho(eno1) Pyruvate. J. Biol. Chem., 17g:1371.

With J. R. Wilson. Comparative Study of the Glycolysis and ATP-ase Activity in Tissue Homogenates. Arch. Biochem., 23:246.

Glycolysis of Animal Tissue Extracts Compared with the Cell-free Fer- mentation of Yeast. Wallerstein Laboratories Communications, 12:255.

Further Studies of the Harden-Young Effect in Alcoholic Fermentation of Yeast Preparations. J. Biol. Chem., 180:575.

With H. Green. Transphosphorylation by Alkaline Phosphatase in the Absence of Nucleotides. Science, I 10 :503.

With S. Fiala. Pasteur Effect in Dead Yeast. Fed. Proc., 9:205. With H. Green. Transphosphorylation in the Absence of Nucleotides.

Fed. Proc., g:17g. With H. Green. Synthetic Action of Phosphatase. 11. Transphosphoryla-

tion by Alkaline Phosphatase in the Absence of Nucleotides. J. Biol. Chem., 183 :377.

With W. W. Kielley. Studies on Adenosinetriphosphatase of Muscle. 111. The Lipoprotein Nature of the Magnesium-activated Adenosine-triphos- phatase. J. Biol. Chem., 183:391.

With P. Oesper. The Determination of Triose Phosphate Isomerase. Arch. Biochem., 27:223.

I 82 BIOGRAPHICAL MEMOIRS

With A. Kaplan. A Derivative of Cozymase as Activator of Fermentation. Arch. Biochem., 28 :147.

With S. Fiala. Pasteur Effect in Dead Yeast. Biochim. et Biophys. Acta, 6:1.

Biochemistry. Sci. Amer., 183:62. ~ b e r Goethes Methode der Naturforschung. Proc. Rudolf Virchow Med.

Sci., 8 :3.

Mechanisms of Glycolysis and Fermentation. Canad. J. Med. Sci., 29 :63. Enolase. In: The Enzymes, I :1207. Academic Press, N. Y. Aldolase and Isomerase. In: The Enzymes, 2:163. Academic Press, N. Y. With A. Kaplan. The Speed-controlling Reactions in Fermentation of

Quickly Dried Yeast. Arch. Biochem. Biophys., 33:282. Phosphorus Metabolism. Amer. Sci., 39:682. Also appeared in Phosphorus

Metabolism Vol. I, ed. by W. D. McElroy and B. H. Glass. Baltimore: The Johns Hopkins University Press.

Recent Advances in the Study of Metabolic Reactions of Yeast Prepara- tions. Amer. Sci., 40:482 and 517.

With P. Ohlmeyer. Purification of Adenosine Triphosphatase of Yeast. J. Biol. Chem., 195x1.

With A. Kaplan. The Mechanism of Cyanide Inhibition of Fermentation. Arch. Biochem. Biophys., 37:375.

Carbohydrate Metabolism in Brain Tissue. Symposium on the Biological Aspects of Mental Health and Disease. N. Y. Acad. Med., November, 1950, Ch. 7, P. 84.

With P. Oesper. Notes on the Enzymatic Equilibrium between Inorganic Pyrophosphate and Orthophosphate. Arch. Biochem. Biophys., 38237.

With H. Green. Synthetic Action of Phosphatase. 111. Rates of Transphos- phorylation with Alkaline and Acid Phosphatase. J. Biol. Chem., 197:

347. With R. Shatas. Heat of Hydrolysis of Acetyl Phosphate. Arch. Biochem.

Biophys., 40 :253.

I953

With R. Shatas and A. Kaplan. Heat of Hydrolysis of Trimetaphosphate. Biochim. et Biophys. Acta, 12:121.