22
I I OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION NUCLEAR DIVISION for the U.S. ATOMIC ENERGY COMMISSION ORNL - TM - 2685 COPY NO. - DATE - August 10, 1969 INHERENT NEUTRON SOURCE IN MSRE WITH CLEAN 233UFUEL R. C, Steffy, Jr. ABSTRACT After about three years of nuclear operation, the MSRE fuel, enriched 235U, was replaced with a 233Ufuel mixture. are quantities of decay chain, is a strong alpha emitter and interacts with fluorine, beryllium, and lithium to produce neutrons. cause of the buildup of 232Udaughters, and at the time of reaching critieality with the 233Ufuel, the neutron source in the MSRE core was about 4 x lo8 neutron/sec, primarily from the reactions Be(ol,n)I2C and "F(~t,n)~~Na. Alpha-n reactions with lithium will produce <3 X lo6 neutrons/sec. will produce <lo2 neutrons/sec. In this new mixture there Each of these, along with the 232U This neutron source is time-dependent be- , 233U,and 234U . 232u 9 Spontaneous fission Keywords: Inherent neutron source, 3U fuel, (a,n> reactions , alpha particles , particle sources, 2U decay chain, fluorine , beryllium, lithium. nOTlCL This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

ORNL-TM-2685

Embed Size (px)

DESCRIPTION

http://www.energyfromthorium.com/pdf/ORNL-TM-2685.pdf

Citation preview

Page 1: ORNL-TM-2685

I

I

OAK RIDGE NATIONAL LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION

for the U.S. ATOMIC ENERGY COMMISSION

ORNL - TM - 2685

COPY NO. -

DATE - August 10, 1969

INHERENT NEUTRON SOURCE IN MSRE WITH CLEAN 233U FUEL

R. C, Steffy, Jr.

ABSTRACT

After about three years of nuclear operation, the MSRE fuel, enriched 235U, was replaced with a 233U fuel mixture. are quantities of decay chain, is a strong alpha emitter and interacts with fluorine, beryllium, and lithium to produce neutrons. cause of the buildup of 232U daughters, and at the time of reaching critieality with the 233U fuel, the neutron source in the MSRE core was about 4 x lo8 neutron/sec, primarily from the reactions Be(ol,n)I2C and "F(~t,n)~~Na. Alpha-n reactions with lithium will produce <3 X lo6 neutrons/sec. will produce <lo2 neutrons/sec.

In this new mixture there Each of these, along with the 232U

This neutron source is time-dependent be-

, 233U, and 234U . 232u

9

Spontaneous fission

Keywords: Inherent neutron source, 3U fuel, (a,n> reactions , alpha particles , particle sources, 2U decay chain, fluorine , beryllium, lithium.

nOTlCL This document contains information of a preliminary nature and was prepared primarily for internal use a t the Oak Ridge National Laboratory. I t is subject to revision or correction and therefore does not represent a final report.

Page 2: ORNL-TM-2685

This report was prepored os an account of Government sponsored work.

nor the Commission, nor any person octing on behalf of the Commission:

A. Mokes ony worronty or representation, expressed or implied, with respect to the occurocy,

completeness, or usefulness of the infwmation contoined in th is report, or that the use of

any information, apparatus, method, or process disclosed in th is report may not infringe

privately owned rights; or

Assumes any l iabi l i t ies wi th respect to the use of, or for domoges resulting from the use of

any informotion, opporotus, method, or process disclosed in th is report.

Neither the United Stater,

B.

As used in the above, "person octing on behalf of the Commission" includes ony employee or contractor of the Commission, or employee of such contractor, t o the extent that such employee

or controctor of the Commission, or employee of such contractor prepares, disseminates, or

provides access to, any informotion pursuant t o his employment or controct wi th the Commission,

or h is employment wi th such contractor.

Page 3: ORNL-TM-2685

3

CONTENTS

Page

In t roduc t ion . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Fuelcomposi t ion . . . . . . . . . . . . . . . . . . . . . . . . . 4 A l p h a s o u r c e . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7 Neutron Source . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7

7Li(a,n)10B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spontaneous F i s s i o n s .

'Be(a,n) and 1gF(ap)2%a. . . . . . . . . . . . . . . . . 8 D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 A p p e n d i x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

f o r 23% Fuel Mixture . . . . . . . . . . . . . . . . . . . 12

Source from 'Be(a,n)l% and ''F(c~,n)~%a . . . . . . . . 12 Source from 7Li(a,n)'oB . . . . . . . . . . . . . . . . 1'7

Ca lcu la t ion of Inherent Neutron Source i n MSRF:

Page 4: ORNL-TM-2685

4

INTRODUCTION

I n the KRE f u e l mixtures, a lpha-emit ters are d i spe r sed i n l a r g e

q u a n t i t i e s of f l u o r i n e , beryll ium, and l i t h ium.

ments undergo alpha-n r e a c t i o n s t o produce neutrons. Haubenreich’ calcu-

l a t e d t h e inherent neutron source f o r t h e i n i t i a l f u e l loading (- 35% 23% and N 65% 2’8U), b u t t h e d i f f e r e n t concentrat ions of uranium i so topes for t h e 23% f u e l loading, a l l of which a r e s t rong a lpha e m i t t e r s , required

tha t another c a l c u l a t i o n be performed. The c a l c u l a t i o n s r epor t ed he re in

were performed be fo re t h e 23% w a s loaded i n t o t h e r e a c t o r .

All three of these e l e -

This memorandum is divided i n t o two p a r t s . The f i r s t p a r t p re sen t s

f i n a l r e s u l t s and gene ra l d i scuss ions ; t h e second p a r t (appendix),

intermediate r e s u l t s and de t a i l s of t h e c a l c u l a t i o n s .

FUEL COMPOSITION

The s t r e n g t h of t h e inhe ren t neutron source is, of course, determined

by t h e composition of t h e f u e l sa l t . Except f o r t he change i n uranium,

the major c o n s t i t u e n t s of t h e f u e l sa l t were e s s e n t i a l l y unchanged by t h e

chemical processing which removed t h e 235U-rich uranium and replaced it

w i t h 8 233J f u e l load.

neutron source were b a s i c a l l y a func t ion of t h e change i n t he alpha pro-

duction rate and t h e a s soc ia t ed alpha energies .

approximate weight percentages of t h e components i n t h e 233J f u e l ioading.

These were estimated based on t h e p red ic t ed c r i t i c a l uranium concen t r a t ion

of 15.8 grams of uranium p e r l i t e r of s a l t (- 1 lb/ f t3) .

t h a t a l l of t h e uranium i n t h e f u e l w a s loaded as p a r t of t he 235 fEel

loading, and t h a t t he small amount p re sen t from o t h e r sources was n e g l i -

g i b l e .

t h e 23%1 f u e l loading are l i s t ed i n Table 2 w i t h a comparable l i s t i n g for

t h e 2q f u e l loading.

Thus, changes i n t h e s t r e n g t h of t h e inhe ren t

Table 1 l i s t s t h e

It w a s assumed

The concentrat ions of t h e uranium isotopes which are p r e s e n t i n

Page 5: ORNL-TM-2685

5

Ta.ble 1

MSRE Fuel S a l t Composition

E 1 eme n t wt; % i n

23-% Mixture

F

L i

Be

Zr u

* 68.1 11.0

8.8 11.0

0.73

* 99.99% 7 L i

Table 2

Uranium I so top ic Concentration i n YSRE Fuels

Nuclide A t o m $ in a

23% Mixture b Atom $ i.n

I n i t i a l Loading

0.022

91.49 7 .6

0.05 0.7

0.14

0.3 35 0 . 3 64.4

a

s Data from Reference 2.

Data from Reference 1.

Page 6: ORNL-TM-2685

6

AL€"A SOURCE

Each of t h e uranium isotopes i n t h e 23%-fuel mixture decays by

alpha emission.

a t e s s e n t i a l l y a cons t an t ra te f o r t h e l i f e t i m e of the MSRE. With one

exception, t h e daughters of t h e uranium i so topes a l s o have long h a l f - l i v e s

f o r a lpha emission and never reach high enough concen t r a t ions t o e m i t

a lpha p a r t i c l e s a t a s i g n i f i c a n t rate. The very important exception is

228Th, t he daughter of 23%, which decays with a 1.91 y e a r ha l f - l i f e by

alpha emission. This i s fpllowed by an e n t i r e s t r i n g of a lpha e m i t t e r s

with very s h o r t h a l f - l i v e s ; s o sho r t , i n f a c t , t h a t they are e s s e n t i a l l y

i n equi l ibr ium w i t h the 228Th. An alpha decay by 228Th is qu ick ly f o l -

lowed by a cascade of alpha emissions u n t i l the p a r e n t has f i n a l l y decayed

t o x)8Pb, which i s s t a b l e .

These a l l have long h a l f - l i v e s and e m i t a l p h a p a r t i c l e s

Immediately a f t e r t h e 23% was p u r i f i e d (- June 1964), t h e only a lpha

emissions were from t h e decaying uranium atoms, b u t as t h e concen t r a t ion

of 228Th increased, t h e alpha a c t i v i t y obviously increased.

a c t i v i t y i n t h e f u e l sa l t i s composed of a time-independent c o n t r i b u t i o n

from t h e decaying uranium atoms and a time-dependent c o n t r i b u t i o n from t h e

23% decay chain.

22&rh ha l f - l i fe of 1.91 yea r s and reaches 755 of t h e s a t u r a t i o n value

about 4 yea r s af ter t h e 23% p u r i f i c a t i o n .

So t h e alpha

The time-dependent c o n t r i b u t i o n is c o n t r o l l e d by the

The energies a t which t h e a lpha p a r t i c l e s are emit ted are a l s o i m -

p o r t a n t . A l l of t h e s i g n i f i c a n t a lpha emissions from t h e uranium atoms

are between 4 . 1 and 5.3 MeV.

23% decay chain are emitted with ene rg ie s between 5.2 and 8.77 MeV.

Since t h e neutron y i e l d inc reases sharply with i n c i d e n t s l p h a energy, t h e

higher-energy alphas i n t h e 23% decay chain add weight t o t h e importance

of t h e chain.

The alphas from t h e lower members of t h e

Tabulated information p e r t a i n i n g t o t h e p r o p e r t i e s of the decay of

the uranium isotopes and the 23% decay-chain a r e given i n the appendix

i n a d d i t i o n t o tables of t h e numbers of alphas/sec emit ted by t h e va r ious

isotopes.

Page 7: ORNL-TM-2685

7

NEXJTIION SOURCE

Ca lcu la t ion of t h e neutron source is necessary pr imari ly t o in su re

t h a t , even when s u b c r i t i c a l , t h e r e a r e enough neutrons a v a i l a b l e t o meet

d e t e c t i o n c r i t e r i a and guard a g a i n s t a s t a r t u p a c c i d e n t . 3

s tandpoint , t h e g r a p h i t e region i n t h e co re is t h e region of concern,

f o r only i n t h i s region of t h e MSRE is c r i t i c a l i t y f e a s i b l e . The ca l cu -

l a t i o n s presented herein are f o r 25 f t 3 of s a l t , t h e approximate voiurne

of s a l t i n t h e e f f e c t i v e core, whereas t h e t o t a l volume of s a l t i s about

75 ft3.

g ive t h e approximate source i n a f u e l d r a i n tank when it con ta ins t h e

e n t i r e f u e l loading.

From t h i s

So m u l t i p l i c a t i o n of t h e source s t r e n g t h i n t h e core by - 3 w i l l

7Li(a , n) 'OB

Haubenreich' found l i t h i u m t o be an i n s i g n i f i c a n t neutron producer

when compared t o beryl l ium and f l u o r i n e i n t h e 23% f u e l mixture.

c u l a t i o n ( s e e appendix) of t h e neutron y i e l d from t h e most e n e r g e t i c

a lpha (8.77 MeV) i n t h e 23% f u e l showed t h a t l i t h i u m produced l e s s tLlan

one neutron f o r every 110 produced by beryl l ium and f l u o r i n e .

s t a r t i n g a t lower energies produce p ropor t iona te ly fewer neutrons from

l i t h i u m because of t h e r ap id decrease with decreasing alpha energy in t h e

c ros s s e c t i o n of l i t h i u m f o r (a,n) r eac t ions .*

7Li(a,n)10B is - 4.3 Mev.)

a c t i o n s with l i t h i u m i s <3 x lo6 n/sec.

A c a i -

Alphas

(Threshold energy f o r

The t o t a l neutron source from a l l ( a ,n ) r e -

Spontaneous F i s s ions

All of t h e uranium i so topes which are p resen t i n t h e 23% f u e l loading

undergo spontaneous f i s s i o n , with h a l f - l i v e s f o r t h i s process ranging frotx

8 x taneous f i s s i o n s i n t h e MSRF: is simply t h e sum of t h e products of t h e

inventory of each isotope and i t s spontaneous f i s s i o n t i m e cons t an t .

Less than 100 n/sec w i l l be produced i n t h e MSRE core by spontaneous

f i s s i o n .

y r f o r '3% t o 3 x y r f o r 23%. The t o t a l r a t e of spon-

Page 8: ORNL-TM-2685

8

'Be(a, n) 13C and "F(a, n) 22Na

High neutron production r a t e s r e s u l t from alpha r e a c t i o n s w i t h

beryl l ium and f l u o r i n e .

isotopes ( ene rg ie s between 4 .1 and 5.3 MeV) the neutron production r a t e s

from t h e beryl l ium and f l u o r i n e a r e approximately equal ,

y i e l d of f luorine ' increases more r ap id ly with inc reas ing alpha energy

than does t h e y i e l d of beryl l ium (see Fig. l);6,7 t he re fo re , f o r t h e

higher-energy alpha p a r t i c l e s produced by t h e 23% decay chain, most of

t h e neutrons r e s u l t from (a ,n) r e a c t i o n s w i t h f l u o r i n e .

For t h e alpha p a r t i c l e s emitted from t h e uranium

The neutron

Figure 2 shows t h e t o t a l c a l c u l a t e d neutron source f o r t h e MSRE core

region and t h e i n d i v i d u a l production r a t e s f o r t h e most s i g n i f i c a n t a lpha-

emitters. The 23% decay chain obviously dominates t h e neutron production

with "'90 being t h e alpha e m i t t e r (a lpha energy of 8.77 MeV) which causes

t h e most p r o l i f i c neutron production.

DISCUSSION

When t h e 233, mixture w a s p laced i n t he ERE: f u e l salt , t h e r e a c t o r

a l r eady had about three yea r s of ope ra t ing h i s t o r y .

power insured t h a t a l a r g e photoneutron source would be p resen t f o r some

time a f t e r shutdown of t h e r e a c t o r .

lowed t o e lapse, t h i s source would weaken. More important as a r e l i a b l e

neutron source i n t h e MSRE is the inhe ren t neutron production from (a ,n)

r e a c t i o n s w i t h t h e s a l t c o n s t i t u e n t s .

independent of power h i s t o r y ana SLctualiy inc reases asymptol ical ly t o a

l i m i t i n g value. A t t h e time t h e MSEiE achieved c r i t i c a l i t y w l t r , 23% as

t h e f i s s i l e m a t e r i a l ( t h e 23% mixture w a s t h e equ iva len t of - 4 years

o l d ) , a t h e inhe ren t neutroll source ir. t h e core region was - k x loa n/sec,

about a f a c t o r of 1000 Over the inhe ren t smrce which was c a l c u l a t e d f o r t he 235U f u e l mixture.

The long runs a t high

However, i f s u f f i c i e n t t ime were a l -

The (a,n) source i s e s s e n t i a l l y

The accuracy of these c a l c u l a t i o n s i s dependent on the accuracy t o

which t h e f u e l i s o t o p i c composition and t h e va r ious y i e l d data are known.

The f u e l composition is thought t o be known t o w e l l w i th in k s$ and i s

Page 9: ORNL-TM-2685

L

9

ORNL-DWG 69- 40029A

I o3

5

2

2 IO2 I a -I Q

z _J

-J

0 5 - - I E W Q

m 2 z 0 L1: I- 3 W 40’

3-

5

2

1 oc 0.5 I 2 5 10

E, ALPHA ENERGY ( M e V )

Fig. 1. Neutron Yield from Thick Beryllium and Fluorine Targets as a Function of Incident Alpha-Particle Energy.

Page 10: ORNL-TM-2685

10

i o9

5

W a 0 2 0

W (I In 5 W I I-

z W 0

0 v)

z 0 a &- 2 W z +- z W

5 108

a w 5

5 I

2

I o7

ORNL- D W G 6 9 - 10030A

l I I I

I TOTAL URANIUM

Y I -

I I 1 1

( O C T 1968 - M S R E CRIT ICAL

I W I T H 233U)

0 1 2 3 4 5 6 7 TIME AFTER PURIFICATION OF THE 2 3 3 ~ FUEL ( y e a r s )

Fig. 2. Total Inherent Neutron Source and the Neutron Source Resulting from Individual Alpha Emitters in the 3U-Fueled-MSRE Core.

Page 11: ORNL-TM-2685

11

probably not an apprec iab le source of e r r o r .

which con ta ins the most p o s s i b i l i t y of e r r o r i s t h e y i e l d data f o r t h e

r eac t ion , igF(ar, n) *'%a.

t h e known y i e l d d a t a ( s e e Fig. 1), which only went t o a lpha energ ies of 5.3 MeV, t o g e t t h e y i e l d from t h e higher-energied a lphas from t h e 23%

decay chain. We made t h e assumption t h a t t h e y i e l d cont inued inc reas ing

wi th t h e same f u n c t i o n a l r e l a t i o n s h i p t o t h e h igher ene rg ie s . While it

is reasonable t o expect t h e neutron product ion r a t e t o inc rease w i t h a lpha

energy, it is no t known whether t h e y i e l d w i l l i nc rease according t o t h e

same power f u n c t i o n which could be used t o desc r ibe i t s behavior f o r lower

energied a lphas . Yield data f o r bery l l ium (which is known from experiment

f o r a lphas t o % Mev and is ex t r apo la t ed t o - 8 Mev by t h e experimenters)6

i s a l s o shown i n Fig. 1 and does indeed inc rease as a power func t ion w i t h

i nc reas ing a lpha energy. S ince t h e data f o r bery l l ium inc reases uniformly

t o higher a lpha energies , one would tend t o expect t h e assumption about

f l u o r i n e t o be good, b u t even i f t h e assumption were n o t good and t h e

y i e l d da t a f o r t h e 8.77-Mev a lpha were lower by a f a c t o r of 2 than t h e

ex t r apo la t ed curve, t h e c a l c u l a t e d t o t a l neutron source would be i n e r r o r

by only - 25$.

of k 25% t o t h e s e c a l c u l a t i o n s wi th t h e expec ta t ion t h a t t h e e r r o r i s much

smaller b u t wi th t h e r e a l i z a t i o n t h a t more experimental d a t a on high-energy

a lpha i n t e r a c t i o n s wi th f l u o r i n e is necessary be fo re s t ronge r confidence

i n the c a l c u l a t e d neutron y i e l d i s warranted.

The a r e a of t h i s c a l c u l a t i o n

Due t o i n s u f f i c i e n t data, we had t o e x t r a p o l a t e

We f e e l t h a t it is fair to assign a probable error band

Page 12: ORNL-TM-2685

1.2

APPENDIX

Ca lcu la t ion of Inherent Neutron Source i n E R E f o r

23% Fuel S a l t Mixture

Source from 'Be(a,, n) 1% and 19F(a, n) 22Na

For both r e a c t i o n s 'Be(a, n) I;% and 19F(a, n) 22Na, t h e g e n e r a l equation

used t o determine t h e neutron source w a s

where

Aa, = Alpha a c t i v i t y ( a / s e c ) i n E R E : core (25 f t 3 of s a l t )

N = Neutron source (n/sec)

= Maximum number of neutrons produced if t a r g e t were composed completely of neutron-producing n u c l e i ('Be o r I9F as t h e case may b e ) . %ax is given i n u n i t s of neutrons p e r m i l l i o n a lphas .

mixture t o number t h a t would be produced i n pure t a r g e t material.

Nmax

( N/Nmax)= F r a c t i o n a l y i e l d of neutrons produced i n f u e l

Each of t h e t h r e e terms enclosed i n parentheses i n t n i s equa%ion i s

found independently. Each term is discussed i n t h e fol lowing paragraphs.

For. t h e l i f e of t h e MSRE, each of t h e irraniun; isotopes p re sen t i n

t h e f u e l w i l l b e a near-constant a lpha source due t o i t s long h a l f - i i f e

( s e e Table 3) . which a lsc has a long decay h a l f - l i f e .

i n each of t h e s e decay chains a r e Thus el iminated as s i g n i f i c a n t a lpha

sources .

Each of t h e isotopes, except 23%, decays t o a n u c i i a e

The secona, ana subsequent nucl ides

Whiie 232U produces a cons t an t supply of a lphas, F t also produces

Thorium-228 has a i.91 y e a r h a l f - l i f e t h e same number of 22&rh atoms.

and starts a cha in of s h o r t h a l f - l i v e d elements (see Table 4 ) . f u e l mixture w a s about four yea r s o l d when loaded i n t o t h e r e a c t o r , w e may

assume t h a t 228Th and i t s decay chain are i n equi l ibr ium ( i . e . 9 t h e a c t i v i t y

(alphas/sec) from 22&rh and each member of i t s decay cha in w i l l be t h e

same).

Since t h e

Page 13: ORNL-TM-2685

Table 3

Alpha Source i n %RE: Core from Uranium Isotopes

Decay a Half Life Energy Emission a Source

I so tope ( Y r ) (MeV) Percentage (a/sec)

232tr 74 5.31 68 1.29 x io12 5.26 31 0.59 x lo1* 5.13 0.3 0.06 x io12

a33J 1.62 x 10’ 4.82 83 3.01 x 1 O I 2

4.78 1 5 0.54 x 10’’ 4.73 2 0.07 x 1Ol2

234v 2.48 x io5 4.76 74 1.45 x lo1’ 4.70 23 0.45 x 10’’

0.06 x io1’ 4.60 3

“#U 7.13 X 10’ 4.39 86 5.30 x lo6 4.57 10 0.63 x lo6 4.18 4 0.25 x lo6

236v 2.39 x 107 4.50 73 9.80 x lo6 4.45 27 3.61 x lo6

Y

Page 14: ORNL-TM-2685

11

Table 4

Inforrnntion Relateci t o Members of' 'v IJ Chain

Decay Decay Alpha Energy Erniss ion i h c 1 i de Mode Half - L i f e (MeV) I'e r c en t age

22"Th Q

a

1.91 y r

3.64 day

':k ' 0 L L Rti a 52 sec

a 0.16 sec

?12pn R - 10.64 h

21231 0- (66.35) 60.5 m i r ?

a( 33.7%) 60.5 min

'l"po

5.42

5.33 5.20

5.68 5.44 5.19

6.25

6.77

none

riorie

6.09 6.05

8.77

71 28 0.6

95 4.6 0.1;

1-00

0

0

27 7 0

100

A c t i v i t y Oi' each of t he uranium nucl ides i s simply t h e product X3, where X is t h e decay constant ana I3 is t h e number of atoms of t h e par-

t i c u l s r isotope. Ac t iv i ty of 228Th (and o t h e r members of decay chain)

ii:ny be ca l cu la t ed using t h e r e l a t i o n

Page 15: ORNL-TM-2685

where

( A ( Y ) ~ = 228Th a c t i v i t y (a /sec)

h2 = 22&rh decay cons tan t

N1 = Number of ‘lJ% atoms

N2 = Number of 228Th atoms

= 23% decay cons tan t

Resul t s of t h i s c a l c u l a t i o n a r e shown i n Tables 3 and 5 and completes

t h e c a l c u l a t i o n of t h e a lpha a c t i v i t y .

Runnalls and Boucher6 g ive t h e neutron y i e l d f o r a lphas inc iden t

upon a bery l l ium t a r g e t as a func t ion of a lpha energy, E ( i n Mev),

Nmax = 0.152 E3*65 neutrons pe r m i l l i o n a lphas . (3)

T h i s r e l a t i o n i s expected t o be good over the range of a lpha energ ies

encountered i n t h e %RE f u e l .

Apparently l i t t l e work has been performed on t h e neutron source from

(a ,n) r eac t ions wi th f l u o r i n e .

c a t e was i n an a r t i c l e by Segre and Wiegand.’

given f o r a lpha energ ies up t o 5.3 MeV.

The only neutron y i e l d da t a we could lo-

The y i e l d d a t a w a s only

Up t o t h i s energy, t h e y i e l d w a s

i nc reas ing as a power func t ion of energy.

up t o 8.77 Mev (as w a s the apparent case wi th beryl l ium), t h e data was ext rapola ted . The a n a l y t i c expression f o r the neutron product ion of

f l u o r i n e as a func t ion of a lpha energy was found t o be

Assuming tha t t h i s he ld t r u e

= 1.02 x lo‘* E6*83 neutrons per m i l l i o n a lphas . Nmax

Equations (3) and (4) a n a l y t i c a l l y de f ine t h e expressions t o be

used for t h e Nmax term i n Equation (1)

max from t h e y i e l d i n a pure medium t o y i e l d from a mixture .

which agrees we l l wi th observed da ta ,= f o r c a l c u l a t i n g t h i s term is

The term (N/N ) i n t h e gene ra l equat ion converts t h e neutron y i e l d An expression,

Y

Page 16: ORNL-TM-2685

16

n S N PP (---> =

max N

where n i

stopping power".

the c a l c u l a t i o n is being performed. Number values f o r "S" were obtained

from an a r t i c l e by Livingstone and Betheg where d a t a i s given f o r a v a r i e t y

of elements as a func t ion of i nc iden t a lpha energy. Table 9 g ives va lues

f o r "S" f o r MSRE f u e l salt , obtained by i n t e r p o l a t i o n of t he Livingstone-

Bethe data.

i s t h e number dens i ty of a nucl ide and Si i s t h e " r e l a t i v e atomic

Subsc r ip t "p" refers t o the p a r t i c u l a r nuc l ide f o r which

Table 9

Relatiye Atomic Stopping Powers, Si

4 5 6 9

Li 0.55 0.55 0.55 0.55 Be 0.63 0.63 0.63 0.63 F 1.1 1.1 1.1 1.2

Z r 2.8 2.9 3.1 3 -2

U 4.0 4.5 4.8 5 -0

Shown i n Table 10 are the c a l c u l a t e d values f o r the f r a c t i o n a l y i e l d f o r

beryl l ium and f l u o r i n e as a func t ion of i n c i d e n t a lpha energy.

t o c a l c u l a t e t h e neutron source from a p a r t i c u l a r a lpha emi t t e r , Equation (1)

is used.

l a t e d using Equation ( 2 ) .

la ted f o r bo th beryl l ium and f l u o r i n e .

found i n Table 10. Multiplying these q u a n t i t i e s , one g e t s t h e source from

beryl l ium and f l u o r i n e . Addition of these two gives t h e t o t a l source from

a p a r t i c u l a r a lpha.

I n brief,

Alpha a c t i v i t y ( A a ) may be obtained from Table 3 o r 5 o r calcu-

Using Equations (3) and (4), Nmax may be calcu-

The appropr i a t e ( N / h a x ) may be

Page 17: ORNL-TM-2685

Table 10

F r a c t i o n a l Yie1.d Data f o r Be and F

4 5 6 9

Be 0 079 0 079 0.078 0.074 F 0.695 0.692 0.688 0.647

Source from 7 ~ i (a , n) 'OB

Haubenreich' found t h a t f o r lower energy alphas (<5 MeV) l i t h i u m w a s

not a s i g n i f i c a n t neutron producer i n t h e E R E . To be s u r e t h a t it d i d

no t become s i g n i f i c a n t a t higher a lpha energies, t h e neutron source from t h e 8.77-Mev alphas w a s ca l cu la t ed .

Neutron y i e l d from l i t h i u m may be c a l c u l a t e d us ing t h e re la t ion"

N ' = Aa J E o Np a(E) ( - d x / a ) dE. 4.3

Where

N = Neutron Y i e l d (n/sec)

Aa = alpha a c t i v i t y (a lphas/sec of energy E)

Eo = Energy of i n c i d e n t a lpha (Mev)

N = Number dens i ty of l i t h i u m P

o(E) = Cross s e c t i o n f o r (a,n) r e a c t i o n

4.3 = Threshold energy f o r 7 L i (a ,n) l0B r e a c t i o n .

The term (-dx/dE) was obtained from an a r t ic le by HarrisL1 i n which

he p l o t s (-dx/dE) as a func t ion of alpha energy for a number of elements.

For t h e MSRE f u e l mixture t h i s was found by t h e r e l a t i o n

Page 18: ORNL-TM-2685

18

where wi corresponds t o t h e weight f r a c t i o n of component i and (-dx/dE)i

is t h e va lue taken from Harris for t h e i component. Uni t s on (-dx/dE)

are gm*cm'2*Mev'1.

of t h e MSRE f u e l mixture.

t h

Table 11 gives the va lues of (-dx/dE) for t h e components

Table 11

(-dx/dE) f o r MRF, Fuel Components

~ -~ ~~- _ _ ~ ~

I-dxldE) x lo3 (gm- cm-2 SMev'lr

Inc iden t Alpha Energy (Mev) Element 4 5 6 9

L i 11 1.1 1.3 1.4 1.9 Be 8.8 ' 1 . 2 1 . 4 1 .5 1.9

Z r 11 2.5 2.8 3.1 3.9 U 0.73 4.4 5 *o 5.5 7.3

F 68.4 1.3 1 .5 1.8 2.4

1.4 1.6 1.9 2.5

i

Page 19: ORNL-TM-2685

Y

Lithium's microscopic cross s e c t i o n f o r (a,n) r e a c t i o n 4 reaches a

maximum of cv 250 mb f o r 7.1-Mev alphas, and drops exponent ia l ly wi th de-

c r e a s i n g energy.

a t - 150 mb.

Between 7.5 and 8.8 Mev t h e c r o s s s e c t i o n is cons t an t

By approximating the c r o s s s e c t i o n by s t ra ight l i n e s and c a r r y i n g

o u t t h e i n t e g r a t i o n , t h e neutron source from 8.77-Mev alpha r e a c t i o n s

w i t h l i t h i u m is found t o be U. l x lo6 n/sec,

g i b l e when compared with the - lo8 n/sec from f l u o r i n e and beryl l ium.

The lower energy alphas w i l l produce p ropor t iona te ly less due t o t h e

exponent ia l decay of t h e cross s e c t i o n a t lower ene rg ie s .

T h i s is seen t o be n e g l i -

Page 20: ORNL-TM-2685

20

REFERENCES

1.

2.

3.

4.

5 .

6 .

7.

8.

9.

10.

11.

P. N. Haubenreich, Inherent Neutron Source i n Clean MSRE Fuel S a l t , USAEC Report ORNL-TM-611, Oak Ridge Nat ional Laboratory, August 27, 1963 *

Oak Ridge National Laboratory, MSRP Semiann. Progr . Rept. Aug. 31, 1967, USAEC Report ORNL-4191, p. 50.

J . R. Engel, P. N. Haubenreich, and B. E. Pr ince, E R E Neutron Source Requirements, USAEC Report ORNL-TM-935, Oak Ridge Nat ional Laboratory, September 11, 1964.

J. H. Gibbons and R . L. Macklin, Charged P a r t i c l e Cross Sec t ions , Phys. Rev., 114, p. 571, 1959.

E. Segre and C . Wiegand, Thick-Target Exc i t a t ion Functions f o r Alpha P a r t i c l e s , USAEC Report LA-136, Los Alamos S c i e n t i f i c Laboratory, September 1944 ( a l s o issued as USAEC Report MDE-185).

0. J. C . Runnals and R. R . Boucher, Neutron Yields from Actinide- Beryllium Alloys, Can. J . Phys ., 34:949 (1956).

J. H. Gabbons and R . L. Macklin, To ta l Cross Sec t ion f o r 'Be(a,n), The Phys ica l Review, 137, No. 6B. Bl5OB - B1509, 22 March 1965.

J . M. Chandler, personal communication t o P. N. Haubenreich, Oak Ridge Nat ional Laboratory, October 1967.

M. S. Livingstone and H. A . Bethe, Nuclear Dynamics, Experimental, Revs. Mod. Phys., 9:272 (1937)

W. N. Hess, Nuetrons from (a ,n) Sources, Annals of Phys., 2: 115-133, (1959)

D. R. Harris, Calcula t ion of t h e Background Neutron Source i n New, Uranium-Fueled Reactors, USAEC Report WAPD-TM-220, Bet t is Atomic Power Laboratory, March 1960.

Page 21: ORNL-TM-2685

21

1. R. G. Af fe l 2. J. L. Anderson 3. C. F. Baes 4. S. J. Ball 5. H. F. human 6. S. E. Bea l l 7. E. S. B e t t i s 8. R. Blumberg 9. E. G. Bohlmann

10. G. E. Boyd 11. R. B. Briggs 12. J. M. Chandler 13. E . L. Compere 14. W. H. Cook 1.5. W. B. C o t t r e l l 16. J. L. Crowley 17. F. L. C u l l e r . 18. S. J. D i t t o 19. W. P. Ea ther ly 20. J. R . Engel 21. D. E. Ferguson 22. L. M. F e r r i s 23. A . P. Fraas 24. J. K. Franzreb 25. D. N. Fry 26. C . H. Gabbard 27. R. B. Gal laher 28. W . R. Grimes 29. A . G . Gr inde l l 30. R. H. Guymon 31- P. H. Harley 32. P. N. Haubenreich 33. J. R. Hightower 34 A. Houtzeel 35. T. L. Hudson 36. P. R. Kasten 37. R. J. Ked: 38. T. W. Ker l in 39. H. T. Kerr 40. S. S. Kirslis

I n t e r n a l D i s t r ibu t ion

ORNL-TM-2685

41. A. I. Krakoviak 42. T. S. mess 43. R. B. Lindauer 44. M. Lundin 45. R. N. Lyon 46, R. E. MacPherson 47. H. E. McCoy 48. H. C. McCurdy 49. C . K. McGlothlain

52 H. A . McLain 53. L. E. McNeese

55. A. J. M i l l e r 56. R . L. Moore

50-51. T. W. McIntosh, AEC Wash.

J. R. McWherter 54

57 58 59 60. 61. 62.

66. 67 68. 69. 70 71.

72-80. 81. 82. 83 84.

63-65.

85. 86. 87. 88. 89 90

E. L. Nicholson A . M. Perry B. E. Pr ince G. L. Ragan J. L. Redford M. Richardson M. W. Rosenthal A. W . Savolainen Dunlap S c o t t M. J. Skinner A. N. Smith 0. L. Smith I. Spiewak R. C. S te f fy , Jr. D. A . Sundberg J. R. Tal lackson R. E. Thoma D. B. Trauger K. W. West J. R. Weir M. E. Whatley G. D. Whitman J. C . White Gale Young

Page 22: ORNL-TM-2685

22

I n t e r n a l D i s t r ibu t ion (continued)

91-92. 93-94 94-97

98 99

100.

101-115. 116.

Cent ra l Research Library (CRL) Y - 1 2 Document Reference Sec t ion (IIRS) Laboratory Records Department (LRD) Laboratory Records Department -Record Copy (LRD-RC) ORNL Pa ten t Off ice . & c l e a r Safe ty Information Center (NSIC)

Externa l D i s t r ibu t ion

Division of Technical Information Extension (M'IE) Laboratory and Univers i ty Division, OR0