50
UNIT 2 ORDINARY DIFFERENTIAL EQUATIONS MATHEMATICS II(MA6251) UNIT 2 -P.VEERAIAH DEPARTMENT OF APPLIED MATHEMATICS 12/23/2014 SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 1

ORDINARY DIFFERENTIAL EQUATIONS MATHEMATICS II(MA6251) I YR/UNIT 2(PART I... · ORDINARY DIFFERENTIAL EQUATIONS MATHEMATICS II(MA6251)-P.VEERAIAH DEPARTMENT OF APPLIED MATHEMATICS

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

  • UNIT 2

    ORDINARY DIFFERENTIALEQUATIONS

    MATHEMATICS II(MA6251)UNIT 2

    -P.VEERAIAHDEPARTMENT OF APPLIED

    MATHEMATICS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    1

  • UNIT 2 SYLLABUS Higher order linear differential equations with

    constant coefficients

    Method of variation of parameters

    Cauchy’s and Legendre’s linear equations

    Simultaneous first order linear equations with

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 2

    Simultaneous first order linear equations with constant coefficients

  • Second-order linear differentialequations

    2

    2Differential equations of the form ( )

    are called second order linear differential equations.

    d y dya b cy Q x

    dx dx

    When ( ) 0 then the equations are referred to as homogeneous,Q x When ( ) 0 then the equations are non-homogeneous.Q x

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 3

    When ( ) 0 then the equations are non-homogeneous.Q x

    Note that the general solution to such an equationmust include two arbitrary constants to becompletely general.

  • Second-order linear differentialequations

    Theorem

    If ( ) and ( ) are two solutions then so is ( ) ( )y f x y g x y f x g x 2

    2we have 0d f df

    a b cfdx dx

    2

    2and 0d g dg

    a b cgdx dx

    Adding 2 20

    d f df d g dga b cf a b cg

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 4

    Adding2 2 0

    d f df d g dga b cf a b cg

    dx dx dx dx

    2 2

    2 2 0d f d g df dg

    a b c f gdx dx dx dx

    And so ( ) ( ) is a solution to the differential equation. y f x g x

  • Second-order linear differentialequations

    , for and , is a solution to the equation 0mxdy

    y Ae A m b cydx

    It is reasonable to consider it as a possible solution for

    2

    2 0d y dy

    a b cydx dx

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 5

    2dx dxmxy Ae mxdy Ame

    dx

    22

    2mxd y Am e

    dx

    If is a solution it must satisfymxy Ae 2 0 mx mx mxaAm e bAme cAe assuming 0, then by division we getmxAe 2 0am bm c

    The solutions to this quadratic will provide two values ofm which will make y = Aemx a solution.

  • Second-order linear differentialequations When the roots of the auxiliary equation are both

    real and equal to m, then the solution would appear to be

    y = Aemx + Bemx = (A+B)emx

    A + B however is equivalent to a single constant

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 6

    A + B however is equivalent to a single constant and second order equations need two

    With a little further searching we find that y = Bxemx is a solution. So a general solution is

    mx mxy Ae Bxe

  • Roots are complex conjugates

    ( ) ( )p iq x p iq xy Ae Be px iqx px iqxAe e Be e

    px iqx iqxe Ae Be We know that cos sinie i

    When the roots of the auxiliary equation are complex, they will be of the form m1 = p + iq and m2 = p – iq.

    Hence the general equation will be

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 7

    cos sin cos( ) sin( )pxe A qx i qx B qx i qx cos sin cos sinpxe A qx i qx B qx i qx

    cos sinpxe A B qx A B i qx cos sinpxe C qx D qx

    Where and ( )C A B D A B i

  • 2

    2 ( )d y dy

    a b cy Q xdx dx

    22 ( )

    d g dga b cg Q x

    dx dx

    Non-homogeneousSecond-order lineardifferential equations

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 8

    Non homogeneous equations take the form

    Suppose g(x) is a particular solution to this equation. Then

    2

    2

    ( ) ( )( ) ( )

    d g k d g ka b c g k Q x

    dx dx

    Now suppose that g(x) + k(x) is another solution. Then

  • Non homogeneoussecond order differential equations

    Giving

    2 2

    2 2 ( )d g d k dg dk

    a a b b cg ck Q xdx dx dx dx

    2 2

    2 2 ( )d g dg d k dk

    a b cg a b ck Q xdx dx dx dx

    2

    2( ) ( )d k dk

    Q x a b ck Q xdx dx

    2d k dk

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 9

    2

    2 0d k dk

    a b ckdx dx

    From the work in previous exercises we know how to find k(x).

    This function is referred to as the Complementary Function. (CF)

    The function g(x) is referred to as the Particular Integral. (PI)

    General Solution = CF + PI

  • 22ndnd Order DEOrder DE –– Homogeneous LE withHomogeneous LE withConstant CoefficientsConstant Coefficients(2) If 1 and 2 are distinct real numbers (if b2 - 4ac > 0), then the general solution is:

    xx ececy 21 21

    (3) If 1 = 2 (if b2 - 4ac = 0), then the general solution is:

    xx xececy 11 21 xececy 21

    (4) If 1 and 2 are complex numbers (if b2 - 4ac < 0), then the general solution is:

    xecxecy xx sincos 21 Where:

    a

    bac

    a

    b

    2

    4 and

    2

    2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 10

  • 22ndnd Order DEOrder DE –– Homogeneous LE withHomogeneous LE withConstant CoefficientsConstant CoefficientsHomogeneous Linear Equations with Constant Coefficients

    A second order homogeneous equation with constant coefficients is written as: 0 0 acyybyawhere a, b and c are constant

    The steps to follow in order to find the general solution is as follows: The steps to follow in order to find the general solution is as follows:

    (1) Write down the characteristic equation

    0 02 acba This is a quadratic. Let 1 and 2 be its roots we have

    a

    acbb

    2

    422,1

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 11

  • TYPE-1 PARTICULAR INTEGRALS f(x) = eax+b

    Solve the equation

    coshx=1)y+2D-(D2

    The given differential equation is ( =Coshx

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 12

    The auxiliary equation ism2-2m + 1=0i.e. (m-1)2 =0 i.e. m = 1,1 . The roots are real and equal.The complementary function isCF =(A+Bx)ex

  • TYPE-1 PARTICULAR INTEGRALS f(x) = eax+b

    2122 12212

    cosh

    integralparticular thefind tohaveNow we

    + PI = PI)D+-(D

    +ee =

    )D+-(D

    xPI =

    -xx

    twice)0r denominato themakes1= DSince( )e(x

    = e

    =Now PIx2x

    1

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 13

    twice)0r denominato themakes1= DSince( 4

    = 1)+2D-2(D

    =Now PI21

    )-ting D = ( Substitu

    e =

    )D+-(D

    e = PISimilarly

    -x-x

    1

    8122 22

    Now the general solution of the DE is GS = CF + PI1 + PI2 =

    (A+Bx)ex +

  • is the solution of the given DE. 2. Solve (D2-2D+2) y = ex + 5 + e-2x

    Solution: The given differential equation is(D2-2D+2) y = ex + 5 + e-2x

    The auxiliary equation is

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 14

    The auxiliary equation is m2-2m + 2= 0 Solving for m , we get m = i.e. m = 1 ± i . The roots are complex conjugates. The complementary function is CF = (Acos x + B sin x)ex

    2

    4.2)-(4±2

  • )1(12)+2D-(D

    e2

    x

    1 DSincee

    PIx

    )uting D = (Substit = )D+-D

    e = PISimilarly

    x

    02

    5

    22(

    52

    0

    2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 15

    2) = Ding(Substitut/ 2

    e=

    2)+2D-(D

    e=PI

    2x

    2

    2x

    3

    DE.given theofsolution theis 2

    e+

    2

    5+

    1

    e+x)esin B+x (Acos

    = PI+ PI+ PI+CF=GS

    solutiongeneralNow the

    2xxx

    321

  • Solve (D2-3D+2) y = 2cos(2x+3) Solution : The given differential equation is y = 2cos(2x+3) The auxiliary equation is m2- 3m + 2= 0 Solving for m , we get (m -1) (m-2) = 0

    2)+3D-(D2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 16

    Solving for m , we get (m -1) (m-2) = 0 i.e. m = 1 ,2 The roots are real and distinct The complementary function is CF = (A ex + B e2x )

  • Now we have to find the particular integral

    PI =

    4)- = D(since

    = 2)+3D-(-4

    3)+cos(2x(2 =

    2)+3D-(D

    3)+cos(2x(2 =

    2

    2

    )x+(D)+(-)x+(D+(-)x+( 32cos23232cos2)3232cos2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 17

    ) ) D-

    )x+(D)+(-

    D) +D)(--(-

    )x+(D+(- =

    D)-(-

    )x+(294(

    32cos232

    3232

    32cos2)32

    32

    32cos2

    = )9.(-4)-((4

    3)+cos(2x3D)(2+(-2

    40

    3)+sin(2x12-3)+cos(2x(-4

    10

    ] 3)+sin(2x3-3)+[-cos(2x

    DE.given theofsolution theis 10

    ] 3)+sin(2x3-3)+[-cos(2x+ )e B+e(A= PI+CF=GS 2xx

  • Solve (D2+1)2y = 2sinx cos3x

    Solution: The given differential equation is

    y = 2sinx cos3x

    The auxiliary equation is

    (m2+1)2 =0 Solving for m , we get

    22 1)+(D

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 18

    (m2+1)2 =0 Solving for m , we get

    (m2+1) (m2+1) = 0

    i.e. m2 = -1 = i2 twice

    Therefore m = ±i, ±i

    The roots are pair of complex conjugates

  • The complementary function is

    CF = (A+Bx)cos x +(C+Dx) sin x

    Now we have to find the particular integral

    2222 1

    2sin4sin

    1

    )3cossin2 =

    )+(D

    xx- =

    )+(D

    xx(PI =

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 19

    21

    2222 11

    + PIPI

    )+(D)+(D

    )16-= D(since

    225

    sin4x =

    1)+(-16

    sin4x=

    1)+(D

    sin4x = PI

    2

    2221

    )4-= D(since 9

    sin4x=

    1)+(-4

    sin4x =

    PI

    22

    2

  • DE.given theof solution theis

    9

    sin2x+

    225

    sin4x+x sinDx)+(C+x Bx)cos+(A=PI+ PI+CF=GS 21

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 20

  • 42 )4( xyD

    42 )4( xyD

    xBxAFC 2sin2cos.. 11

    24121

    1641

    4

    1

    2

    4

    42

    x

    xDD

    Solve the DE

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 21

    2

    4

    4 Dx

    4

    2

    )4

    1(

    141

    xD

    41

    2

    )4

    1(41

    xD

    23

    341

    1624

    412

    41

    24

    2

    4

    xx

    xx

    23

    341

    2sin2cos 24 xxxBxAPICFGS

  • 2.Solve the DE x = y 2)+3D+(D 22

    x =2)y +3D+(D

    isequationaldifferentigivenThe:Solution22

    distinct.andrealarerootsThe

    . ,-21-=m i.e.

    0= 2)+(m1)+(mget we,mfor Solving

    0=2+3m+m

    isequationauxiliary The2

    )e B+e(A=CF

    isfunctionary complementThe

    .

    2x-x-

    x2 (9.2)]1

    +6x)+(21

    -[x1

    =PI

    )....]x)2

    3D)+(D(+

    2

    3D)+(D-([1

    2

    1 =

    2

    2222

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 22

    ]2

    3D)+(D+[1

    2

    1=

    )2

    3D)+(D+(1

    2

    1 =

    3D)+D+(2

    x=PI

    (-1)2

    1-2

    2

    2

    ]2

    7)-6x-(x[

    2

    1=PI

    (9)]2

    1+3x)+(1-[x

    2

    1=PI

    (9.2)]4

    +6x)+(22

    -[x2

    =PI

    2

    2

    2

    7)-6x-(x

    2

    1+ )e B+e(A=

    PI+CF=GS2

    2x-x-

  • TYPE-4 PARTICULAR INTEGRALS

    1.Solve (D2-2D+2) y = ex x2

    xe=2)y +2D-(DisequationaldifferentigivenThe 2x2

    2

    4.2)-(4±(2=mget we,mfor Solving

    0=2+2m-m

    isequationauxiliary The2

    x)esin B+x (Acos=CF

    isfunctionary complementThex

    1)+ D= D(Since

    1)+2-2D-1+2D+(D

    e =

    2)+2D-(D

    )x(e=PI

    integralparticular thefind tohaveNow we

    2

    2x

    2

    2x x

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 23

    .conjugatescomplex arerootsThe

    . i ±1=m i.e.

    2

    =mget we,mfor Solving1)+ D= D(Since

    12

    xe=dx

    3

    xe=

    3

    x

    D

    1 e= dxx

    D

    1 e=

    D

    x e

    4x

    3x

    3x2x

    2

    2x

    equation.aldifferenti theofsolutionrequired theis 12

    xe+x)esin B+x (Acos =PI+CF=GS

    4xx

  • 2. sinx e = y 3)+4D+(D -x2

    0=3+4m+m

    isequationauxiliary The

    sinx e =3)y +4D+(D

    isequationaldifferentigivenThe:Solution

    2

    x-2

    )e B+e(A=CF

    isfunctionary complementThe

    distinct.andrealarerootsThe

    . ,-31-=m i.e.

    0= 3)+(m1)+(mget we,mfor Solving

    3x-x-

    1)- D= D(since 3)+1)-4(D+1)-((D

    sinx)e =

    3)+4D+(D

    sinx)(e= PI

    integralparticular thefind tohaveNow we

    2

    (-x)

    2

    (-x)

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 24

    3)+4-4D+1+2D-(D

    sinx)(e =

    1)- D= D(since 3)+1)-4(D+1)-((D

    =

    2

    (-x)

    2

    -1)= DSince( 5

    2cosx))-(-sinxe=

    2D)sinx -(-1)4D-(1

    e=

    2D))-2D)(-1+((-1

    2D)sinx-)(-1(e =

    -1)= DSince( 2D)+(-1

    sinx)(e=

    2D)+(D

    sinx)(e=

    2(-x)

    2

    (-x)(-x)

    2(-x)

    2

    (-x)

    equation.aldifferenti theofsolutionrequired theis 5

    2cosx))-(-sinx(e+)e B+e(A

    = PI+CF=GS(-x)

    3x-x-

  • Solve (D3-1)y=x sinx

    Solution: The given differential equation is (D3-1)y = x sinx

    The auxiliary equation is

    m3-1= 0

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 25

    m3-1= 0

    i.e (m-1)(m2 +m+1)=0

    Solving for m , we get m =

    i.e. m = 1,

    2

    )4.1)-(1±(-1

    2

    )4.1)-(1±(-1

    x/2-)e)x (3/2sin( B+)x (3/2(Acos(=CF

    isfunctionary complementThe

    rootreala andconjugatescomplex ofpair a arerootsThe

  • sin4

    13

    2

    sin1

    sin1

    13

    1

    sin1

    sin11

    13

    11

    sin1

    13

    1

    sin

    22

    22

    22

    2

    22

    22

    2

    2

    x)-D) (D(

    )(-

    x))-x(D-=

    x )-D(

    )-D) (D(

    ))-((D

    x))(-x(D-=

    x) (D+-D)(

    )-D) (D(-

    )))(D-(D+

    x))(-x(D-=

    )(-D-)D(

    )-(-D-

    xx

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 26

    4

    cos23

    2

    sincos4

    cos2sinsin3

    2

    sincos

    42

    x)))(((-

    x))x-(x(=

    x))(-x-x+(-(-

    x))x-(x( =

    )(-

    equation.aldifferenti theofsolutionrequired theis2

    3cosx)-sinx)-(x(cosx+)ex 3/2sin B+x 3/2(Acos(

    = PI+CF=GS

    x/2-

  • )e CF =(A+Bx

    nction ismentary fuThe comple

    l.l and equats are rea . The roo,i.e. m =

    =)i.e. (m-

    =m + - m

    on isary equatiThe auxili

    x )y = x e D+-on is (Dial equati different The givenSolution:

    x )y = x e D+Solve (D

    x

    x

    x-

    11

    01

    012

    sin12

    sin12

    2

    2

    2

    2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 27

    ) xdxx(D

    e =

    x]) ([xD

    e =

    )-D+

    x] [xe =

    )D-

    xxePI =

    egralular the partice to find Now we hav

    x

    x

    x

    x

    sin

    sin

    11(

    sin

    1(

    sin

    int

    2

    2

    2

    uationrential eq the diffeolution ofrequired sx) is the x+ (-x +e(A+Bx)e

    F +PI = GS = C

    x) x+ (-x e=

    dx x)x+(x [-x e=

    )dx xx+(-xe =

    x)) x+ (-x(eD

    =

    xx

    x

    x

    x

    x

    cos2sin

    cos2sin

    ]sinsinsin

    sincos

    sincos1

  • equal.andrealarerootsThe.1,1=m i.e.

    0=1)-(m i.e.

    0=1+2m-m

    isequationauxiliary The

    x loge=1)y +2D-(DisequationaldifferentigivenThe:Solution

    x loge=1)y +2D-(D1.

    2

    2

    x2

    x2

    1)-(D

    dx)elogx ee=

    1-D1-D

    logxe

    =

    1)-(D

    logx)(e=PI

    (-x)xx

    x

    2

    x

    dx)Xe(e=Xa-D

    1 ax-ax

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 28

    Bx)e+(A=CF

    isfunctionary complementThe

    equal.andrealarerootsThe.1,1=m i.e.

    x

    dxx)]-[(xlogxe=

    dx]ex)-(xlogx[ee=

    1)-(D

    x))-(xlogx(e=

    x

    (-x)xx

    x

    3]-[2logx4

    ex=

    ]3x-logx[2x4

    e=

    ]4

    3x-logx

    2

    x[e=

    ]2

    x-

    4

    x-logx

    2

    x[e=

    ]2

    x-dx

    x

    2

    1logx

    2

    x[e=

    x2

    22x

    22x

    222x

    222x

    x

  • )e B+e(A=CF

    isfunctionary complementThe

    distinct.andrealarerootsThe

    2,-1-=m i.e.

    0=1)+2)(m+(mget we,mfor Solving

    0=2+3m+ m

    isequationauxiliary The

    e=2)y +3D+(D

    isequationaldifferentigivenThe :Solution

    e=2)y +3D+2.(D

    x-2x-

    2

    )(e2

    )(e2

    x

    x

    21

    2

    2

    1

    1

    123

    int

    -PI=PI

    eD+

    eD+

    D+ +D

    ePI =

    egralular the partice to find Now we hav

    xx

    x

    ee

    e

    xt(-x)

    xex-e1

    xx

    e= t wheredtee =

    dxeee= e1D

    1=PI

    dx.e.eee=e2+D

    1 =PI xxe2x-)(e2

    xx

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 29

    )(e(-x)t(-x)

    xt(-x)

    x

    ee=ee=

    e= t wheredtee =

    1)-.(e.ee=

    ))e-.(e(ee=)e-(tee=

    e= t wheredttee=2+D

    x)(e2x-

    )(ex)(e(-2x)tt(-2x)

    xt(-2x)

    x

    xx

    equation.aldifferenti theofsolutionrequired theistion)simplifica(after .ee+)e B+e(A=

    1)-.(e.ee-ee+)e B+e(A

    = PI+CF=GS

    )(e(-2x)x-2x-

    x)(e(-2x))(e(-x)x-2x -

    x

    xx

  • )

    isfunctionary complementThe

    conjugatescomplex arerootsThe

    2i ±=m i.e.

    0=2i)-2i)(m+(mget we,mfor Solving

    4i=4- =m 0,=4+m

    isequationauxiliary The

    cos2xx =4)y +(D

    isequationaldifferentigivenThe:Solution

    cos2xx =4)y + (Dequation theSolve

    222

    22

    22

    2ix

    2

    22ix

    22

    22ix

    2

    22ix

    2

    i2x2

    2

    2

    1e

    4iD)+(D

    xe ofpart Real=

    4)+4i+4iD+(D

    xe ofpart Real=

    4)+2i)+((D

    xeofpart Real=

    4)+(D

    exofpart Real=

    4)+(D

    cos2xx=PI

    integralparticular thefind tohaveNow we

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 30

    Bsin2x)+cos2x (A=CF 2(-1)2ix

    x)

    4iD

    +1

    1(

    4iD

    e ofpart Real=

  • Contd.,

    )dx8

    1 -

    2i

    x-(x(

    4i

    e ofpart Real=

    )8

    1 -

    2i

    x-(x

    4iD

    eofpart Real=

    )16i

    2+

    4i

    2x-(x

    4iD

    eofpart Real=

    x)16

    D+

    4i

    D-(1

    4iD

    e ofpart Real=

    22ix

    22ix

    2

    22ix

    2(-1)

    2

    22ix

    i

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 31

    equation.aldifferenti theofsolutionrequired theiscos2x 4

    x - )

    8

    x -

    3

    x(

    4

    sin2x)( +

    Bsin2x)+cos2x (A= PI+CF=GS

    cos2x4

    x - )

    8

    x -

    3

    x(

    4

    sin2x)( =

    x/8) - 4i

    x-

    3

    x(

    4i

    e ofpart Real=

    )dx8

    - 2i

    -(x(4i

    ofpart Real=

    23

    23

    232ix

  • 1. Solve (D2-2D+2) y = ex cosx Solution: The given differential equation is

    (D2-2D+2) y = ex cos x

    The auxiliary equation is

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 32

    m2-2m + 2= 0

    Solving for m , i.e. m = 1 ± i .

    The roots are complex conjugates.

    The complementary function is

    CF = (Acos x + B sin x)ex

  • EXTRA PROBLEMS)1(

    2)1(2)1(2)+2D-(D

    cose22

    x

    1 DDSince

    DD

    exPI

    x

    )22212(

    cos21

    DDD

    xePI

    x

    2

    )sin(x)esin Bx (Acos x

    xxePIisCFsolutiongeneralThe

    x

    2

    )sin( xxePI

    x

    )1(cos21

    D

    xePI

    x

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 33

  • 2. Solve (D2-3D+2) y = 2cos(2x+3) + 2 ex

    Solution : The given differential equation is (D2-3D+2 ) y = 2cos(2x+3) + 2ex

    The auxiliary equation is

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 34

    The auxiliary equation is m2- 3m + 2= 0 Solving for m , we get (m -1) (m-2) = 0 i.e. m = 1 ,2 The roots are real and distinct The complementary function is CF = (A ex + B e2x )

  • Now we have to find the particular integralPI1 =

    4)- = D(since

    = 2)+3D-(-4

    3)+cos(2x(2 =

    2)+3D-(D

    3)+cos(2x(2 =

    2

    2

    ) ) D-

    )x+(D)+(-

    D) +D)(--(-

    )x+(D+(- =

    D)-(-

    )x+(294(

    32cos232

    3232

    32cos2)32

    32

    32cos2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 35

    )9.(-4)-((4

    3)+cos(2x3D)(2+(-2

    40

    3)+sin(2x12-3)+cos(2x(-4

    10

    ] 3)+sin(2x3-3)+[-cos(2x

    DE.given theofsolution theis 10

    ] 3)+sin(2x3-3)+[-cos(2x+ )e B+e(A=PI PI+CF=GS 2xx21

    )()21(

    2

    )2)(1(

    22 caseexception

    xe

    DD

    ePI

    xx

  • 3. Solve the differential equation

    (D2 +4D+3)y= 6e-2x sinx sin 2x

    Solution The given DE is (D2 +4D+3)y= 6e-2x

    sinx sin 2x

    The AE is m2 +4m +3 =0 i.e. m=-1, -3

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 36

    The AE is m2 +4m +3 =0 i.e. m=-1, -3

    The complementary function is CF = Ae-x +Be-3x 1

    )cos3(cos3

    38444

    )2sinsin2(3

    3)2(4)2(

    )2sinsin2(3

    )34(

    2sinsin62

    2

    2

    2

    2

    2

    2

    2

    D

    xxe

    DDD

    xxe

    DD

    xxe

    DD

    xxePI

    xxxx

    11

    cos3

    19

    3cos3

    1

    )cos3(cos3 22

    2

    2

    xexe

    D

    xxePI

    xxx

    2

    cos3

    10

    3cos3 BeAe

    223x-x- xexePICFGS

    xx

  • 4.Solve the equation (D2 +5D+4)y = e-x sin2x

    Solution: The differential equation is

    (D2 +5D+4)y = e-x sin2x

    The auxiliary equation is m2 + 5m +4 =0

    Solving for m, we get m = -1, -4.

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 37

    Solving for m, we get m = -1, -4.

    The complementary function is

    CF = Ae-x+Be-4x

    D

    xe

    DD

    xe

    DDD

    xe

    DD

    xe

    DD

    xePI

    xxxxx

    54

    2sin

    5

    2sin

    14552

    2sin

    4)1(5)1(

    2sin

    45

    2sin2222

  • 116

    )2cos102sin4(

    )4(2516

    )2cos102sin4(

    2516

    2sin)54(

    )54)(54(

    2sin)54(2

    xxexxe

    D

    xDe

    DD

    xDePI

    xx

    xx

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 38

    116)4(2516

    116

    )2cos102sin4(4 xxeBeAePICFGSx

    xx

  • EXTRA PROBLEMS

    )e CF =(A+Bx

    nction ismentary fuThe comple

    l.l and equats are rea . The roo,i.e. m =

    =)i.e. (m-

    =m + - m

    on isary equatiThe auxili

    x x e )y = D+-on is (Dial equati different The givenSolution:

    x x e )y = D+Solve (D

    x

    x

    x-

    11

    01

    012

    sin812

    sin812.5

    2

    2

    2

    2

    ) xdxx(D

    e =

    x]) ([xD

    e =

    )-D+

    x] [xe =

    )D-

    xxePI =

    egralular the partice to find Now we hav

    x

    x

    x

    x

    sin8

    sin8

    11(

    sin8

    1(

    sin8

    int

    2

    2

    2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 39

    uationrential eq the diffeolution ofrequired sx) is the x+ (-xe +(A+Bx)e

    F +PI = GS = C

    x) x+ (-xe =

    dx x)x+(x [-xe =

    )dx xx+(-xe =

    x)) x+ (-xe(D

    =

    xx

    x

    x

    x

    x

    cos2sin8

    cos2sin8

    ]sinsinsin8

    sincos8

    sincos81

  • 6. Solve the differential equation (D2 -4D+3)y= ex cos 2xSolution The given DE is (D2 -4D+3)y= ex cos 2xThe AE is m2 +4m +3 =0 i.e. m=1, 3The complementary function is CF = Aex +Be3x

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 40

    8

    )2sin2(cos

    32

    )2sin42cos4(

    )4(416

    )2)(cos24(

    )416(

    )2)(cos24(

    24

    )2(cos

    2

    )2(cos22

    xxe

    xxexDe

    D

    xDe

    D

    xe

    DD

    xePI

    x

    xx

    xxx

    DD

    xe

    DDD

    xe

    DD

    xe

    DD

    xePI

    xxxx

    2

    2cos

    34412

    2cos

    3)1(4)1(

    2cos

    34

    )2(cos2222

    8

    )2sin2(cos BeAe 3xx

    xxePICFGS

    x

    The complementary function is CF = Ae +Be

  • 7. Solve the differential equation

    (D2 +3D+2)y= sin x + x2

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 41

    (D +3D+2)y= sin x + x

    Solution The given DE is (D2 +3D+2)y= sin x + x2

    The AE is m2 +3m +2=0 i.e. m=-1, -2

    The complementary function is CF = Ae-x +Be-2x

  • EXTRA PROBLEMS

    19

    sin)13(

    )13)(13(

    sin)13(

    13

    sin

    231

    sin

    23

    sin221

    D

    xD

    DD

    xD

    D

    x

    D

    x

    DD

    xPI

    10

    sincos3

    1)1(9

    sin)13(1

    xxxD

    PI

    )2

    3D)+(D+(1

    2

    1 =

    3D)+D+(2

    x=PI

    1-2

    2

    2

    2

    11

    (9.2)]4

    1+6x)+(2

    2

    1-[x

    2

    1=PI

    )....]x)2

    3D)+(D(+

    2

    3D)+(D-([1

    2

    1 =

    2

    2

    2222

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 42

    ]2

    3D)+(D+[1

    2

    1=

    )2

    +(12

    =

    (-1)2

    ]2

    7)-6x-(x[

    2

    1=PI

    (9)]2

    1+3x)+(1-[x

    2

    1=PI

    2

    2

    2

    2

    2

    7)-6x-(x

    2

    1

    10

    sincos3+ )e B+e(A=

    PI PI+CF=GS2

    2x-x-

    21

    xx

  • 8. Solve the differential equation

    (D2 +16)y = cos 3 x

    Solution The given DE is (D2 +16)y= cos 3 x

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 43

    Solution The given DE is (D2 +16)y= cos 3 x

    The AE is m2 +16=0 i.e. m = ±4i

    The complementary function is CF = Acos4x +Bsin4x

  • 7

    3cos

    169

    3cos

    16

    3cos

    20

    cos

    )15(4

    cos3

    )161(4

    cos3

    )16(4

    cos3

    )16(4

    3coscos3

    )16(

    cos

    22

    21

    22

    3

    xx

    D

    xPI

    xxx

    D

    xPI

    D

    xx

    D

    xPI

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 44

    7

    3cos

    20

    cos4sin4cos21

    xxxBxAPIPICFGS

  • 2/x-

    3

    )2

    3sin

    2

    3(BcosAe CF

    root.reala andconjugatescomplex arerootsThe

    . 2

    3i±11,-=m i.e.

    -1m,2

    4)-(1±1=mget we,mfor Solving

    0=1m

    isequationauxiliary The

    xexCx

    1.Solve the DE(D3+1)y =0

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 45

    1243133

    22)2(42423232

    22

    2

    22

    2

    22

    2

    22

    xexedxxex

    D

    e

    dxxD

    e

    D

    xe

    D

    xe

    D

    exPI

    xxxx

    xxxx

    2.Find the particular integral of (D2-4D+4)y

    =x2e2x

  • EXTRA PROBLEMS-PARTA

    3.Find the particular integral of (D2+4)y =sin2x

    )(4

    2cos

    )4(

    2sin2

    caseExceptionxx

    D

    xPI

    4.Find the particular integral of )1(sin1sinsin

    11

    sin

    )1(

    sin 2222

    Dcexe

    D

    xe

    D

    xe

    D

    exPI

    xxxx

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 46

    4.Find the particular integral of (D-1)2y = exsinx

    111)1( 222 DDD

    5.Find the particular integral of (D-1)2y = coshx

    84)1(2)1(212

    )1(

    cosh 2

    2222

    xxxx

    xx

    eex

    D

    e

    D

    e

    D

    ee

    D

    xPI

  • EXTRA PROBLEMS-PARTA

    6.Find the particular integral of (D2-4)y = cosh2x

    7.Find the particular integral of

    8. Find the particular integral of

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 47

    integral of (D2-4)y =1

    integral of (D-2)2y = 2x

    9.Find the particular integral of

    (D+1)2y =e-xcosx

  • EXTRA PROBLEMS-PARTA

    42sinh

    88)2)(2(2)2)(2(242

    )4(

    2cosh.6

    2222

    2

    22

    2

    xxxexe

    DD

    e

    DD

    e

    D

    ee

    D

    xPI

    xxxx

    xx

    4

    1

    2,2,,04

    4

    1

    44)4(

    1.7

    22

    22

    2

    0

    2

    0

    2

    xx

    xx

    xx

    BeAePICFGS

    BeAeCF

    mgetwemforsolvingmisAEThe

    e

    D

    e

    DPI

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 48

    4 BeAePICFGS

    )()22(log2)2(2

    .8 log2

    2log

    2

    2log

    2

    axxxxx

    eaSincee

    D

    e

    DPI

    )1(sin1

    coscos

    )11(

    cos

    )1(

    cos.9 2

    222

    ceDxe

    D

    xe

    D

    xe

    D

    xePI

    xxxx

  • EXTRA PROBLEMSSolve the equation (D2+2D+5)y = ex cos3 x

    Solve the equation (D2+2D-1)y = (x+ex )2

    Find the particular integral of (D2+a2 )y = b cos ax + c sin ax

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 49

  • SOLUTIONS(PART-A & B)

    12/23/2014SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR 50

    UNIT 2

    -P.VEERAIAH

    DEPARTMENT OF APPLIED MATHEMATICS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    1

    ORDINARY DIFFERENTIAL EQUATIONSMATHEMATICS II(MA6251)

    1

    UNIT 2 SYLLABUS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    2

    Higher order linear differential equations with constant coefficients

    Method of variation of parameters

    Cauchy’s and Legendre’s linear equations

    Simultaneous first order linear equations with constant coefficients

    Second-order linear differential equations

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    3

    Note that the general solution to such an equation must include two arbitrary constants to be completely general.

    Second-order linear differential equations

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    4

    Adding

    Second-order linear differential equations

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    5

    The solutions to this quadratic will provide two values of m which will make y = Aemx a solution.

    Second-order linear differential equations

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    6

    When the roots of the auxiliary equation are both real and equal to m, then the solution would appear to be

    y = Aemx + Bemx = (A+B)emx

    A + B however is equivalent to a single constant and second order equations need two

    With a little further searching we find that y = Bxemx is a solution. So a general solution is

    Roots are complex conjugates

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    7

    When the roots of the auxiliary equation are complex, they will be of the form m1 = p + iq and m2 = p – iq.

    Hence the general equation will be

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    8

    Non homogeneous equations take the form

    Suppose g(x) is a particular solution to this equation. Then

    Now suppose that g(x) + k(x) is another solution. Then

    Non-homogeneous Second-order linear differential equations

    Non homogeneoussecond order differential equations

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    9

    Giving

    From the work in previous exercises we know how to find k(x).

    This function is referred to as the Complementary Function. (CF)

    The function g(x) is referred to as the Particular Integral. (PI)

    General Solution = CF + PI

    2nd Order DE – Homogeneous LE with Constant Coefficients

    (2) If 1 and 2 are distinct real numbers (if b2 - 4ac > 0), then the general solution is:

    (3) If 1 = 2 (if b2 - 4ac = 0), then the general solution is:

    (4) If 1 and 2 are complex numbers (if b2 - 4ac < 0), then the general solution is:

    Where:

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    10

    2nd Order DE – Homogeneous LE with Constant Coefficients

    Homogeneous Linear Equations with Constant Coefficients

    A second order homogeneous equation with constant coefficients is written as:

    where a, b and c are constant

    The steps to follow in order to find the general solution is as follows:

    (1) Write down the characteristic equation

    This is a quadratic. Let 1 and 2 be its roots we have

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    11

    Type-1 particular integrals f(x) = eax+b

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    12

    Solve the equation

    The auxiliary equation is

    m2-2m + 1=0

    i.e. (m-1)2 =0

    i.e. m = 1,1 . The roots are real and equal.

    The complementary function is

    CF =(A+Bx)ex

    The given differential equation is (

    =Cosh x

    Type-1 particular integrals f(x) = eax+b

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    13

    Now the general solution of the DE is GS = CF + PI1 + PI2 =

    (A+Bx)ex +

    Type-1 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    14

    is the solution of the given DE.

    2. Solve (D2-2D+2) y = ex + 5 + e-2x

    Solution: The given differential equation is

    (D2-2D+2) y = ex + 5 + e-2x

    The auxiliary equation is

    m2-2m + 2= 0

    Solving for m , we get m =

    i.e. m = 1 ± i .

    The roots are complex conjugates.

    The complementary function is

    CF = (Acos x + B sin x)ex

    Type-1 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    15

    Type-2 particular integralsf(x) = cos(ax+b) or sin (ax+b)

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    16

    Solve (D2-3D+2) y = 2cos(2x+3)

    Solution :

    The given differential equation is

    y = 2cos(2x+3)

    The auxiliary equation is

    m2- 3m + 2= 0

    Solving for m , we get (m -1) (m-2) = 0

    i.e. m = 1 ,2

    The roots are real and distinct

    The complementary function is

    CF = (A ex + B e2x )

     

    Type-2 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    17

    Now we have to find the particular integral

    PI =

    Type-2 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    18

    Solve (D2+1)2y = 2sinx cos3x

    Solution: The given differential equation is

    y = 2sinx cos3x

    The auxiliary equation is

    (m2+1)2 =0 Solving for m , we get

    (m2+1) (m2+1) = 0

    i.e. m2 = -1 = i2 twice

    Therefore m = ±i, ±i

    The roots are pair of complex conjugates

    Type-2 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    19

    The complementary function is

    CF = (A+Bx)cos x +(C+Dx) sin x

    Now we have to find the particular integral

    Type-2 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    20

    Type-3 particular integrals f(x) = xm ( m a positive integer)

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    21

    Solve the DE

    Type-3 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    22

    2.Solve the DE

    Type-4 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    23

    1.Solve (D2-2D+2) y = ex x2

    Type-4 particular integrals f(x) = eaxV(x)

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    24

    2.

    Type-5 particular integrals f(x) = xV(x)

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    25

    Solve (D3-1)y=x sinx

    Solution: The given differential equation is (D3-1)y = x sinx

    The auxiliary equation is

    m3-1= 0

    i.e (m-1)(m2 +m+1)=0

    Solving for m , we get m =

    i.e. m = 1,

    Type-5 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    26

    Type-5 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    27

    Type-6 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    28

    Type-6 particular integrals

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    29

    MISCELLANEOUS MODEL (using Euler’s formula)

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    30

    MISCELLANEOUS MODEL

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    31

    Contd.,

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    32

    1. Solve (D2-2D+2) y = ex cosx

    Solution: The given differential equation is

    (D2-2D+2) y = ex cos x

    The auxiliary equation is

    m2-2m + 2= 0

    Solving for m , i.e. m = 1 ± i .

    The roots are complex conjugates.

    The complementary function is

    CF = (Acos x + B sin x)ex

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    33

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    34

    2. Solve (D2-3D+2) y = 2cos(2x+3) + 2 ex

    Solution :

    The given differential equation is

    (D2-3D+2 ) y = 2cos(2x+3) + 2ex

    The auxiliary equation is

    m2- 3m + 2= 0

    Solving for m , we get (m -1) (m-2) = 0

    i.e. m = 1 ,2

    The roots are real and distinct

    The complementary function is

    CF = (A ex + B e2x )

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    35

     

     

    Now we have to find the particular integral

    PI1 =

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    36

    3. Solve the differential equation

    (D2 +4D+3)y= 6e-2x sinx sin 2x

    Solution The given DE is (D2 +4D+3)y= 6e-2x sinx sin 2x

    The AE is m2 +4m +3 =0 i.e. m=-1, -3

    The complementary function is CF = Ae-x +Be-3x

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    37

    4.Solve the equation (D2 +5D+4)y = e-x sin2x

    Solution: The differential equation is

    (D2 +5D+4)y = e-x sin2x

    The auxiliary equation is m2 + 5m +4 =0

    Solving for m, we get m = -1, -4.

    The complementary function is

    CF = Ae-x+Be-4x

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    38

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    39

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    40

    6. Solve the differential equation

    (D2 -4D+3)y= ex cos 2x

    Solution The given DE is (D2 -4D+3)y= ex cos 2x

    The AE is m2 +4m +3 =0 i.e. m=1, 3

    The complementary function is CF = Aex +Be3x

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    41

    7. Solve the differential equation

    (D2 +3D+2)y= sin x + x2

    Solution The given DE is (D2 +3D+2)y= sin x + x2

    The AE is m2 +3m +2=0 i.e. m=-1, -2

    The complementary function is CF = Ae-x +Be-2x

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    42

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    43

    8. Solve the differential equation

    (D2 +16)y = cos 3 x

    Solution The given DE is (D2 +16)y= cos 3 x

    The AE is m2 +16=0 i.e. m = ±4i

    The complementary function is CF = Acos4x +Bsin4x

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    44

    EXTRA PROBLEMS-PARTA

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    45

    1.Solve the DE

    (D3+1)y =0

    2.Find the particular integral of (D2-4D+4)y =x2e2x

    EXTRA PROBLEMS-PARTA

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    46

    3.Find the particular integral of

    (D2+4)y =sin2x

    4.Find the particular integral of

    (D-1)2y = exsinx

    5.Find the particular integral of

    (D-1)2y = coshx

    EXTRA PROBLEMS-PARTA

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    47

    6.Find the particular integral of

    (D2-4)y = cosh2x

    7.Find the particular integral of

    (D2-4)y =1

    8. Find the particular integral of

    (D-2)2y = 2x

    9.Find the particular integral of

    (D+1)2y =e-xcosx

    EXTRA PROBLEMS-PARTA

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    48

    EXTRA PROBLEMS

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    49

    Solve the equation (D2+2D+5)y = ex cos3 x

    Solve the equation (D2+2D-1)y = (x+ex )2

    Find the particular integral of (D2+a2 )y = b cos ax + c sin ax

    SOLUTIONS(PART-A & B)

    12/23/2014

    SVCE, DEPARTMENT OF APPLIED MATHEMATICS, SRIPERUMBUDUR

    50

    2

    2

    Differential equations of the form ()

    are called second order linear different

    ial equations.

    dydy

    abcyQx

    dxdx

    ++=

    When ()0 then the equations are referred

    to as homogeneous,

    Qx

    =

    When ()0 then the equations are non-homo

    geneous.

    Qx

    ¹

    Theorem

    If () and () are two solutions then so i

    s ()()

    yfxygxyfxgx

    ===+

    2

    2

    we have 0

    dfdf

    abcf

    dxdx

    ++=

    2

    2

    and 0

    dgdg

    abcg

    dxdx

    ++=

    22

    22

    0

    dfdfdgdg

    abcfabcg

    dxdxdxdx

    +++++=

    (

    )

    22

    22

    0

    dfdgdfdg

    abcfg

    dxdxdxdx

    æö

    æö

    +++++=

    ç÷

    ç÷

    èø

    èø

    And so ()() is a solution to the differe

    ntial equation.

    yfxgx

    =+

    , for and , is a solution to the equati

    on0

    mx

    dy

    yAeAmbcy

    dx

    =+=

    2

    0

    ambmc

    ++=

    It is reasonable to consider it as a pos

    sible solution for

    2

    2

    0

    dydy

    abcy

    dxdx

    ++=

    mx

    yAe

    =

    mx

    dy

    Ame

    dx

    Þ=

    2

    2

    2

    mx

    dy

    Ame

    dx

    Þ=

    If is a solution it must satisfy

    mx

    yAe

    =

    2

    0

    mxmxmx

    aAmebAmecAe

    ++=

    assuming 0, then by division we get

    mx

    Ae

    ¹

    mxmx

    yAeBxe

    =+

    Where and ()

    CABDABi

    =+=-

    ()()

    piqxpiqx

    yAeBe

    +-

    =+

    pxiqxpxiqx

    AeeBee

    -

    =+

    (

    )

    pxiqxiqx

    eAeBe

    -

    =+

    We know that cossin

    i

    ei

    q

    qq

    =+

    (

    )

    (

    )

    (

    )

    cossincos()sin()

    px

    eAqxiqxBqxiqx

    =++-+-

    (

    )

    (

    )

    (

    )

    cossincossin

    px

    eAqxiqxBqxiqx

    =++-

    (

    )

    (

    )

    (

    )

    cossin

    px

    eABqxABiqx

    =++-

    (

    )

    cossin

    px

    eCqxDqx

    =+

    2

    2

    ()

    dydy

    abcyQx

    dxdx

    ++=

    2

    2

    ()

    dgdg

    abcgQx

    dxdx

    ++=

    2

    2

    ()()

    ()()

    dgkdgk

    abcgkQx

    dxdx

    ++

    +++=

    22

    22

    ()

    dgdkdgdk

    aabbcgckQx

    dxdxdxdx

    +++++=

    22

    22

    ()

    dgdgdkdk

    abcgabckQx

    dxdxdxdx

    æöæö

    Þ+++++=

    ç÷ç÷

    èøèø

    2

    2

    ()()

    dkdk

    QxabckQx

    dxdx

    æö

    Þ+++=

    ç÷

    èø

    2

    2

    0

    dkdk

    abck

    dxdx

    Þ++=

    x

    x

    e

    c

    e

    c

    y

    2

    1

    2

    1

    l

    l

    +

    =

    x

    x

    xe

    c

    e

    c

    y

    1

    1

    2

    1

    l

    l

    +

    =

    (

    )

    (

    )

    x

    e

    c

    x

    e

    c

    y

    x

    x

    b

    b

    a

    a

    sin

    cos

    2

    1

    +

    =

    a

    b

    ac

    a

    b

    2

    4

    and

    2

    2

    -

    =

    -

    =

    b

    a

    (

    )

    0

    0

    ¹

    =

    +

    ¢

    +

    ¢

    ¢

    a

    cy

    y

    b

    y

    a

    (

    )

    0

    0

    2

    ¹

    =

    +

    +

    a

    c

    b

    a

    l

    l

    a

    ac

    b

    b

    2

    4

    2

    2

    ,

    1

    -

    ±

    -

    =

    l

    coshx

    =

    1)y

    +

    2D

    -

    (D

    2

    2

    1

    2

    2

    1

    2

    2

    1

    2

    cosh

    integral

    particular

    the

    find

    to

    have

    Now we

    + PI

    = PI

    )

    D+

    -

    (D

    +e

    e

    =

    )

    D+

    -

    (D

    x

    PI =

    -x

    x

    twice)

    0

    r

    denominato

    the

    makes

    1

    =

    D

    Since

    (

    4

    )

    e

    (x

    =

    1)

    +

    2D

    -

    2(D

    e

    =

    Now PI

    x

    2

    2

    x

    1

    )

    -

    ting D =

    ( Substitu

    e

    =

    )

    D+

    -

    (D

    e

    =

    PI

    Similarly

    -x

    -x

    1

    8

    1

    2

    2

    2

    2

    2

    4.2)

    -

    (4

    ±

    2

    )

    1

    (

    1

    2)

    +

    2D

    -

    (D

    e

    2

    x

    1

    =

    =

    =

    D

    Since

    e

    PI

    x

    )

    uting D =

    (Substit

    =

    )

    D+

    -

    D

    e

    =

    PI

    Similarly

    x

    0

    2

    5

    2

    2

    (

    5

    2

    0

    2

    2)

    =

    D

    ing

    (Substitut

    /

    2

    e

    =

    2)

    +

    2D

    -

    (D

    e

    =

    PI

    2x

    2

    2x

    3

    DE.

    given

    the

    of

    solution

    the

    is

    2

    e

    +

    2

    5

    +

    1

    e

    +

    x)e

    sin

    B

    +

    x

    (Acos

    =

    PI

    +

    PI

    +

    PI

    +

    CF

    =

    GS

    solution

    general

    Now the

    2x

    x

    x

    3

    2

    1

    2)

    +

    3D

    -

    (D

    2

    4)

    -

    =

    D

    (since

    =

    2)

    +

    3D

    -

    (-4

    3)

    +

    cos(2x

    (2

    =

    2)

    +

    3D

    -

    (D

    3)

    +

    cos(2x

    (2

    =

    2

    2

    ) )

    D

    -

    )

    x+

    (

    D)

    +

    (-

    D)

    +

    D)(-

    -

    (-

    )

    x+

    (

    D

    +

    (-

    =

    D)

    -

    (-

    )

    x+

    (

    2

    9

    4

    (

    3

    2

    cos

    2

    3

    2

    3

    2

    3

    2

    3

    2

    cos

    2

    )

    3

    2

    3

    2

    3

    2

    cos

    2

    =

    ?)/10

    ]

    3)

    +

    sin??(2x

    3

    -

    3)

    +

    ([-cos?(2x

    =

    ?)/40

    3)

    +

    sin??(2x

    12

    -

    3)

    +

    cos?(2x

    ((-4

    ?)/10

    ]

    3)

    +

    sin??(2x

    3

    -

    3)

    +

    ([-cos?(2x

    =

    ?)/40

    3)

    +

    sin??(2x

    12

    -

    3)

    +

    cos?(2x

    ((-4

    =

    )

    9.(-4)

    -

    ?)/((4

    3)

    +

    cos??(2x

    3D)2

    +

    ((-2

    ==

    )

    9.(-4)

    -

    ?)/((4

    3)

    +

    cos??(2x

    ((2

    3D)

    +

    -2

    =

    )

    9.(-4)

    -

    ((4

    3)

    +

    cos(2x

    3D)(2

    +

    (-2

    40

    3)

    +

    sin(2x

    12

    -

    3)

    +

    cos(2x

    (-4

    10

    ]

    3)

    +

    sin(2x

    3

    -

    3)

    +

    [-cos(2x

    DE.

    given

    the

    of

    solution

    the

    is

    10

    ]

    3)

    +

    sin(2x

    3

    -

    3)

    +

    [-cos(2x

    +

    )

    e

    B

    +

    e

    (A

    =

    PI

    +

    CF

    =

    GS

    2x

    x

    2

    2

    1)

    +

    (D

    2

    1

    2

    2

    2

    2

    1

    2

    sin

    4

    sin

    1

    )

    3

    cos

    sin

    2

    + PI

    PI

    =

    )

    +

    (D

    x

    x-

    =

    )

    +

    (D

    x

    x

    (

    PI =

    )

    16

    -

    =

    D

    (since

    225

    sin4x

    =

    1)

    +

    (-16

    sin4x

    =

    1)

    +

    (D

    sin4x

    =

    PI

    2

    2

    2

    2

    1

    )

    4

    -

    =

    D

    (since

    9

    sin4x

    =

    1)

    +

    (-4

    sin4x

    =

    PI

    2

    2

    2

    DE.

    given

    the

    of

    solution

    the

    is

    9

    sin2x

    +

    225

    sin4x

    +

    x

    sin

    Dx)

    +

    (C

    +

    x

    Bx)cos

    +

    (A

    =

    PI

    +

    PI

    +

    CF

    =

    GS

    2

    1

    4

    2

    )

    4

    (

    x

    y

    D

    =

    +

    4

    2

    )

    4

    (

    x

    y

    D

    =

    +

    x

    B

    x

    A

    F

    C

    2

    sin

    2

    cos

    .

    .

    +

    =

    2

    4

    4

    D

    x

    +

    4

    2

    )

    4

    1

    (

    1

    4

    1

    x

    D

    +

    4

    1

    2

    )

    4

    1

    (

    4

    1

    x

    D

    -

    +

    ÷

    ø

    ö

    ç

    è

    æ

    +

    -

    =

    ÷

    ø

    ö

    ç

    è

    æ

    +

    -

    =

    ÷

    ø

    ö

    ç

    è

    æ

    +

    -

    =

    2

    3

    3

    4

    1

    16

    24

    4

    12

    4

    1

    16

    4

    1

    4

    1

    2

    4

    2

    4

    4

    4

    2

    x

    x

    x

    x

    x

    D

    D

    ÷

    ø

    ö

    ç

    è

    æ

    +

    -

    +

    +

    =

    +

    =

    2

    3

    3

    4

    1

    2

    sin

    2

    cos

    2

    4

    x

    x

    x

    B

    x

    A

    PI

    CF

    GS

    x

    =

    y

    2)

    +

    3D

    +

    (D

    2

    2

    x

    =

    2)y

    +

    3D

    +

    (D

    is

    equation

    al

    differenti

    given

    The

    :

    Solution

    2

    2

    distinct.

    and

    real

    are

    roots

    The

    .

    ,-2

    1

    -

    =

    m

    i.e.

    0

    =

    2)

    +

    (m

    1)

    +

    (m

    get

    we

    ,

    m

    for

    Solving

    0

    =

    2

    +

    3m

    +

    m

    is

    equation

    auxiliary

    The

    2

    )

    e

    B

    +

    e

    (A

    =

    CF

    is

    function

    ary

    complement

    The

    .

    2x

    -

    x

    -

    ]

    2

    3D)

    +

    (D

    +

    [1

    2

    1

    =

    )

    2

    3D)

    +

    (D

    +

    (1

    2

    1

    =

    3D)

    +

    D

    +

    (2

    x

    =

    PI

    (-1)

    2

    1

    -

    2

    2

    2

    ]

    2

    7)

    -

    6x

    -

    (x

    [

    2

    1

    =

    PI

    (9)]

    2

    1

    +

    3x)

    +

    (1

    -

    [x

    2

    1

    =

    PI

    (9.2)]

    4

    1

    +

    6x)

    +

    (2

    2

    1

    -

    [x

    2

    1

    =

    PI

    )

    ....]x

    )

    2

    3D)

    +

    (D

    (

    +

    2

    3D)

    +

    (D

    -

    ([1

    2

    1

    =

    2

    2

    2

    2

    2

    2

    2

    +

    2

    7)

    -

    6x

    -

    (x

    2

    1

    +

    )

    e

    B

    +

    e

    (A

    =

    PI

    +

    CF

    =

    GS

    2

    2x

    -

    x

    -

    x

    e

    =

    2)y

    +

    2D

    -

    (D

    is

    equation

    al

    differenti

    given

    The

    2

    x

    2

    .

    conjugates

    complex

    are

    roots

    The

    .

    i

    ±

    1

    =

    m

    i.e.

    2

    4.2)

    -

    (4

    ±

    (2

    =

    m

    get

    we

    ,

    m

    for

    Solving

    0

    =

    2

    +

    2m

    -

    m

    is

    equation

    auxiliary

    The

    2

    x)e

    sin

    B

    +

    x

    (Acos

    =

    CF

    is

    function

    ary

    complement

    The

    x

    1)

    +

    D

    =

    D

    (Since

    1)

    +

    2

    -

    2D

    -

    1

    +

    2D

    +

    (D

    e

    =

    2)

    +

    2D

    -

    (D

    )

    x

    (e

    =

    PI

    integral

    particular

    the

    find

    to

    have

    Now we

    2

    2

    x

    2

    2

    x

    x

    12

    x

    e

    =

    dx

    3

    x

    e

    =

    3

    x

    D

    1

    e

    =

    dx

    x

    D

    1

    e

    =

    D

    x

    e

    4

    x

    3

    x

    3

    x

    2

    x

    2

    2

    x

    ò

    ò

    equation.

    al

    differenti

    the

    of

    solution

    required

    the

    is

    12

    x

    e

    +

    x)e

    sin

    B

    +

    x

    (Acos

    =

    PI

    +

    CF

    =

    GS

    4

    x

    x

    sinx

    e

    =

    y

    3)

    +

    4D

    +

    (D

    -x

    2

    0

    =

    3

    +

    4m

    +

    m

    is

    equation

    auxiliary

    The

    sinx

    e

    =

    3)y

    +

    4D

    +

    (D

    is

    equation

    al

    differenti

    given

    The

    :

    Solution

    2

    x

    -

    2

    )

    e

    B

    +

    e

    (A

    =

    CF

    is

    function

    ary

    complement

    The

    distinct.

    and

    real

    are

    roots

    The

    .

    ,-3

    1

    -

    =

    m

    i.e.

    0

    =

    3)

    +

    (m

    1)

    +

    (m

    get

    we

    ,

    m

    for

    Solving

    3x

    -

    x

    -

    3)

    +

    4

    -

    4D

    +

    1

    +

    2D

    -

    (D

    sinx)

    (e

    =

    1)

    -

    D

    =

    D

    (since

    3)

    +

    1)

    -

    4(D

    +

    1)

    -

    ((D

    sinx)

    e

    =

    3)

    +

    4D

    +

    (D

    sinx)

    (e

    =

    PI

    integral

    particular

    the

    find

    to

    have

    Now we

    2

    (-x)

    2

    (-x)

    2

    (-x)

    -1)

    =

    D

    Since

    (

    5

    2cosx))

    -

    (-sinx

    e

    =

    2D)sinx

    -

    (-1

    )

    4D

    -

    (1

    e

    =

    2D))

    -

    2D)(-1

    +

    ((-1

    2D)sinx

    -

    )(-1

    (e

    =

    -1)

    =

    D

    Since

    (

    2D)

    +

    (-1

    sinx)

    (e

    =

    2D)

    +

    (D

    sinx)

    (e

    =

    2

    (-x)

    2

    (-x)

    (-x)

    2

    (-x)

    2

    (-x)

    equation.

    al

    differenti

    the

    of

    solution

    required

    the

    is

    5

    2cosx))

    -

    (-sinx

    (e

    +

    )

    e

    B

    +

    e

    (A

    =

    PI

    +

    CF

    =

    GS

    (-x)

    3x

    -

    x

    -

    2

    )

    4.1)

    -

    (1

    ±

    (-1

    2

    )

    4.1)

    -

    (1

    ±

    (-1

    x/2

    -

    )e

    )x

    (3/2

    sin(

    B

    +

    )x

    (3/2

    (Acos(

    =

    CF

    is

    function

    ary

    complement

    The

    root

    real

    a

    and

    conjugates

    complex

    of

    pair

    a

    are

    roots

    The

    4

    cos

    2

    3

    2

    sin

    cos

    4

    cos

    2

    sin

    sin

    3

    2

    sin

    cos

    sin

    4

    1

    3

    2

    sin

    1

    sin

    1

    1

    3

    1

    sin

    1

    sin

    1

    1

    1

    3

    1

    1

    sin

    1

    1

    3

    1

    sin

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    x)))

    (

    (

    (

    -

    x))

    x-

    (x(

    =

    x))

    (-

    x-

    x+

    (-

    (

    -

    x))

    x-

    (x(

    =

    x

    )

    -D)

    (

    D

    (

    )

    (-

    x)

    )

    -x(D-

    =

    x

    )

    -D

    (

    )

    -D)

    (

    D

    (

    ))

    -

    ((D

    x)

    )

    (-x(D-

    =

    x

    )

    (D+

    -D)

    (

    )

    -D)

    (

    D

    (

    -

    ))

    )(D-

    (D+

    x)

    )

    (-x(D-

    =

    )

    (-D-

    )

    D

    (

    )-

    (-D-

    x

    x

    -

    -

    equation.

    al

    differenti

    the

    of

    solution

    required

    the

    is

    2

    3cosx)

    -

    sinx)

    -

    (x(cosx

    +

    )e

    x

    3/2

    sin

    B

    +

    x

    3/2

    (Acos(

    =

    PI

    +

    CF

    =

    GS

    x/2

    -

    )e

    CF =(A+Bx

    nction is

    mentary fu

    The comple

    l.

    l and equa

    ts are rea

    . The roo

    ,

    i.e. m =

    =

    )

    i.e. (m-

    =

    m +

    -

    m

    on is

    ary equati

    The auxili

    x

    )y = x e

    D+

    -

    on is (D

    ial equati

    different

    The given

    Solution:

    x

    )y = x e

    D+

    Solve (D

    x

    x

    x

    -

    1

    1

    0

    1

    0

    1

    2

    sin

    1

    2

    sin

    1

    2

    2

    2

    2

    2

    )

    xdx

    x

    (

    D

    e

    =

    x])

    ([x

    D

    e

    =

    )

    -

    D+

    x]

    [x

    e

    =

    )

    D-

    x

    xe

    PI =

    egral

    ular

    the partic

    e to find

    Now we hav

    x

    x

    x

    x

    ò

    sin

    sin

    1

    1

    (

    sin

    1

    (

    sin

    int

    2

    2

    2

    uation

    rential eq

    the diffe

    olution of

    required s

    x) is the

    x+

    (-x

    +e

    (A+Bx)e

    F +PI =

    GS = C

    x)

    x+

    (-x

    e

    =

    dx

    x)

    x+

    (

    x

    [-x

    e

    =

    )dx

    x

    x+

    (-x

    e

    =

    x))

    x+

    (-x

    (e

    D

    =

    x

    x

    x

    x

    x

    x

    cos

    2

    sin

    cos

    2

    sin

    ]

    sin

    sin

    sin

    sin

    cos

    sin

    cos

    1

    ò

    ò

    -

    Bx)e

    +

    (A

    =

    CF

    is

    function

    ary

    complement

    The

    equal.

    and

    real

    are

    roots

    The

    .

    1,1

    =

    m

    i.e.

    0

    =

    1)

    -

    (m

    i.e.

    0

    =

    1

    +

    2m

    -

    m

    is

    equation

    auxiliary

    The

    x

    log

    e

    =

    1)y

    +

    2D

    -

    (D

    is

    equation

    al

    differenti

    given

    The

    :

    Solution

    x

    log

    e

    =

    1)y

    +

    2D

    -

    (D

    1.

    x

    2

    2

    x

    2

    x

    2

    dx

    x)]

    -

    [(xlogx

    e

    =

    dx

    ]

    e

    x)

    -

    (xlogx

    [e

    e

    =

    1)

    -

    (D

    x))

    -

    (xlogx

    (e

    =

    1)

    -

    (D

    dx)

    e

    logx

    e

    e

    =

    1

    -

    D

    1

    -

    D

    logx

    e

    =

    1)

    -

    (D

    logx)

    (e

    =

    PI

    x

    (-x)

    x

    x

    x

    (-x)

    x

    x

    x

    2

    x

    ò

    ò

    ò

    3]

    -

    [2logx

    4

    e

    x

    =

    ]

    3x

    -

    logx

    [2x

    4

    e

    =

    ]

    4

    3x

    -

    logx

    2

    x

    [

    e

    =

    ]

    2

    x

    -

    4

    x

    -

    logx

    2

    x

    [

    e

    =

    ]

    2

    x

    -

    dx

    x

    2

    1

    logx

    2

    x

    [

    e

    =

    x

    2

    2

    2

    x

    2

    2

    x

    2

    2

    2

    x

    2

    2

    2

    x

    ò

    -

    x

    ò

    dx

    )

    Xe(

    e

    =

    X

    a

    -

    D

    1

    ax

    -

    ax

    )

    e

    B

    +

    e

    (A

    =

    CF

    is

    function

    ary

    complement

    The

    distinct.

    and

    real

    are

    roots

    The

    2,-1

    -

    =

    m

    i.e.

    0

    =

    1)

    +

    2)(m

    +

    (m

    get

    we

    ,

    m

    for

    Solving

    0

    =

    2

    +

    3m

    +

    m

    is

    equation

    auxiliary

    The

    e

    =

    2)y

    +

    3D

    +

    (D

    is

    equation

    al

    differenti

    given

    The

    :

    Solution

    e

    =

    2)y

    +

    3D

    +

    2.(D

    x

    -

    2x

    -

    2

    )

    (e

    2

    )

    (e

    2

    x

    x

    2

    1

    2

    2

    1

    1

    1

    2

    3

    int

    -PI

    =PI

    e

    D+

    e

    D+

    D+

    +

    D

    e

    PI =

    egral

    ular

    the partic

    e to find

    Now we hav

    x

    x

    x

    e

    e

    e

    -

    )

    (e

    (-x)

    t

    (-x)

    x

    t

    (-x)

    x

    e

    x

    -

    e

    1

    x

    x

    x

    e

    e

    =

    e

    e

    =

    e

    =

    t

    where

    dt

    e

    e

    =

    dx

    e

    e

    e

    =

    e

    1

    D

    1

    =

    PI

    ò

    ò

    +

    1)

    -

    .(e

    .e

    e

    =

    ))

    e

    -

    .(e

    (e

    e

    =

    )

    e

    -

    (te

    e

    =

    e

    =

    t

    where

    dt

    te

    e

    =

    dx

    .e

    .e

    e

    e

    =

    e

    2

    +

    D

    1

    =

    PI

    x

    )

    (e

    2x

    -

    )

    (e

    x

    )

    (e

    (-2x)

    t

    t

    (-2x)

    x

    t

    (-2x)

    x

    x

    e

    2x

    -

    )

    (e

    2

    x

    x

    x

    x

    x

    ò

    ò

    equation.

    al

    differenti

    the

    of

    solution

    required

    the

    is

    tion)

    simplifica

    (after

    .e

    e

    +

    )

    e

    B

    +

    e

    (A

    =

    1)

    -

    .(e

    .e

    e

    -

    e

    e

    +

    )

    e

    B

    +

    e

    (A

    =

    PI

    +

    CF

    =

    GS

    )

    (e

    (-2x)

    x

    -

    2x

    -

    x

    )

    (e

    (-2x)

    )

    (e

    (-x)

    x

    -

    2x

    -

    x

    x

    x

    Bsin2x)

    +

    cos2x

    (A

    =

    CF

    is

    function

    ary

    complement

    The

    conjugates

    complex

    are

    roots

    The

    2i

    ±

    =

    m

    i.e.

    0

    =

    2i)

    -

    2i)(m

    +

    (m

    get

    we

    ,

    m

    for

    Solving

    4i

    =

    4

    -

    =

    m

    0,

    =

    4

    +

    m

    is

    equation

    auxiliary

    The

    cos2x

    x

    =

    4)y

    +

    (D

    is

    equation

    al

    differenti

    given

    The

    :

    Solution

    cos2x

    x

    =

    4)y

    +

    (D

    equation

    the

    Solve

    2

    2

    2

    2

    2

    2

    2

    2

    (-1)

    2ix

    2

    2

    2ix

    2

    2

    2

    2ix

    2

    2

    2ix

    2

    i2x

    2

    2

    2

    x

    )

    4i

    D

    +

    1

    1

    (

    4iD

    e

    of

    part

    Real

    =

    4iD)

    +

    (D

    x

    e

    of

    part

    Real

    =

    4)

    +

    4i

    +

    4iD

    +

    (D

    x

    e

    of

    part

    Real

    =

    4)

    +

    2i)

    +

    ((D

    x

    e

    of

    part

    Real

    =

    4)

    +

    (D

    e

    x

    of

    part

    Real

    =

    4)

    +

    (D

    cos2x

    x

    =

    PI

    integral

    particular

    the

    find

    to

    have

    Now we

    equation.

    al

    differenti

    the

    of

    solution

    required

    the

    is

    cos2x

    4

    x

    -

    )

    8

    x

    -

    3

    x

    (

    4

    sin2x)

    (

    +

    Bsin2x)

    +

    cos2x

    (A

    =

    PI

    +

    CF

    =

    GS

    cos2x

    4

    x

    -

    )

    8

    x

    -

    3

    x

    (

    4

    sin2x)

    (

    =

    x/8)

    -

    4i

    x

    -

    3

    x

    (

    4i

    e

    of

    part

    Real

    =

    )dx

    8

    1

    -

    2i

    x

    -

    (x

    (

    4i

    e

    of

    part

    Real

    =

    )

    8

    1

    -

    2i

    x

    -

    (x

    4iD

    e

    of

    part

    Real

    =

    )

    16i

    2

    +

    4i

    2x

    -

    (x

    4iD

    e

    of

    part

    Real

    =

    x

    )

    16

    D

    +

    4i

    D

    -

    (1

    4iD

    e

    of

    part

    Real

    =

    2

    3

    2

    3

    2

    3

    2ix

    2

    2ix

    2

    2ix

    2

    2

    2ix

    2

    (-1)

    2

    2

    2ix

    ò

    i

    )

    1

    (

    2

    )

    1

    (

    2

    )

    1

    (

    2)

    +

    2D

    -

    (D

    cos

    e

    2

    2

    x

    1

    +

    =

    +

    +

    -

    +

    =

    =

    D

    D

    Since

    D

    D

    e

    x

    PI

    x

    )

    2

    2

    2

    1

    2

    (

    cos

    2

    1

    +

    -

    -

    +

    +

    =

    D

    D

    D

    x

    e

    PI

    x

    2

    )

    sin

    (

    x)e

    sin

    B

    x

    (Acos

    x

    x

    x

    e

    PI

    isCF

    solution

    general

    The

    x

    +

    +

    =

    +

    2

    )

    sin

    (

    x

    x

    e

    PI

    x

    =

    )

    1

    (

    cos

    2

    1

    +

    =

    D

    x

    e

    PI

    x

    4)

    -

    =

    D

    (since

    =

    2)

    +

    3D

    -

    (-4

    3)

    +

    cos(2x

    (2

    =

    2)

    +

    3D

    -

    (D

    3)

    +

    cos(2x

    (2

    =

    2

    2

    DE.

    given

    the

    of

    solution

    the

    is

    10

    ]

    3)

    +

    sin(2x

    3

    -

    3)

    +

    [-cos(2x

    +

    )

    e

    B

    +

    e

    (A

    =

    PI

    PI

    +

    CF

    =

    GS

    2x

    x

    2

    1

    +

    )

    (

    )

    2

    1

    (

    2

    )

    2

    )(

    1

    (

    2

    2

    case

    exception

    xe

    D

    D

    e

    PI

    x

    x

    -

    =

    -

    -

    =

    1

    )

    cos

    3

    (cos

    3

    3

    8

    4

    4

    4

    )

    2

    sin

    sin

    2

    (

    3

    3

    )

    2

    (

    4

    )

    2

    (

    )

    2

    sin

    sin

    2

    (

    3

    )

    3

    4

    (

    2

    sin

    sin

    6

    2

    2

    2

    2

    2

    2

    2

    2

    -

    -

    -

    =

    +

    -

    +

    +

    -

    -

    -

    =

    +

    -

    +

    -

    -

    -

    =

    +

    +

    =

    -

    -

    -

    -

    D

    x

    x

    e

    D

    D

    D

    x

    x

    e

    D

    D

    x

    x

    e

    D

    D

    x

    x

    e

    PI

    x

    x

    x

    x

    1

    1

    cos

    3

    1

    9

    3

    cos

    3

    1

    )

    cos

    3

    (cos

    3

    2

    2

    2

    2

    -

    -

    +

    -

    -

    -

    =

    -

    -

    -

    =

    -

    -

    -

    x

    e

    x

    e

    D

    x

    x

    e

    PI

    x

    x

    x

    2

    cos

    3

    10

    3

    cos

    3

    Be

    Ae

    2

    2

    3x

    -

    x

    -

    x

    e

    x

    e

    PI

    CF

    GS

    x

    x

    -

    -

    -

    +

    +

    =

    +

    =

    D

    x

    e

    D

    D

    x

    e

    D

    D

    D

    x

    e

    D

    D

    x

    e

    D

    D

    x

    e

    PI

    x

    x

    x

    x

    x

    5

    4

    2

    sin

    5

    2

    sin

    1

    4

    5

    5

    2

    2

    sin

    4

    )

    1

    (

    5

    )

    1

    (

    2

    sin

    4

    5

    2

    sin

    2

    2

    2

    2

    +

    -

    =

    +

    =

    +

    +

    -

    +

    -

    =

    +

    -

    +

    -

    =

    +

    +

    =

    -

    -

    -

    -

    -

    116

    )

    2

    cos

    10

    2

    sin

    4

    (

    )

    4

    (

    25

    16

    )

    2

    cos

    10

    2

    sin

    4

    (

    25

    16

    2

    sin

    )

    5

    4

    (

    )

    5

    4

    )(

    5

    4

    (

    2

    sin

    )

    5

    4

    (

    2

    x

    x

    e

    x

    x

    e

    D

    x

    D

    e

    D

    D

    x

    D

    e

    PI

    x

    x

    x

    x

    -

    -

    =

    -

    -

    -

    -

    =

    -

    -

    -

    =

    -

    -

    +

    -

    -

    -

    =

    -

    -

    -

    -

    116

    )

    2

    cos

    10

    2

    sin

    4

    (

    4

    x

    x

    e

    Be

    Ae

    PI

    CF

    GS

    x

    x

    x

    -

    -

    +

    +

    =

    +

    =

    -

    -

    -

    )e

    CF =(A+Bx

    nction is

    mentary fu

    The comple

    l.

    l and equa

    ts are rea

    . The roo

    ,

    i.e. m =

    =

    )

    i.e. (m-

    =

    m +

    -

    m

    on is

    ary equati

    The auxili

    x

    x e

    )y =

    D+

    -

    on is (D

    ial equati

    different

    The given

    Solution:

    x

    x e

    )y =

    D+

    Solve (D

    x

    x

    x

    -

    1

    1

    0

    1

    0

    1

    2

    sin

    8

    1

    2

    sin

    8

    1

    2

    .

    5

    2

    2

    2

    2

    )

    xdx

    x

    (

    D

    e

    =

    x])

    ([x

    D

    e

    =

    )

    -

    D+

    x]

    [x

    e

    =

    )

    D-

    x

    xe

    PI =

    egral

    ular

    the partic

    e to find

    Now we hav

    x

    x

    x

    x

    ò

    sin

    8

    sin

    8

    1

    1

    (

    sin

    8

    1

    (

    sin

    8

    int

    2

    2

    2

    uation

    rential eq

    the diffe

    olution of

    required s

    x) is the

    x+

    (-x

    e

    +

    (A+Bx)e

    F +PI =

    GS = C

    x)

    x+

    (-x

    e

    =

    dx

    x)

    x+

    (

    x

    [-x

    e

    =

    )dx

    x

    x+

    (-x

    e

    =

    x))

    x+

    (-x

    e

    (

    D

    =

    x

    x

    x

    x

    x

    x

    cos

    2

    sin

    8

    cos

    2

    sin

    8

    ]

    sin

    sin

    sin

    8

    sin

    cos

    8

    sin

    cos

    8

    1

    ò

    ò

    -

    8

    )

    2

    sin

    2

    (cos

    32

    )

    2

    sin

    4

    2

    cos

    4

    (

    )

    4

    (

    4

    16

    )

    2

    )(cos

    2

    4

    (

    )

    4

    16

    (

    )

    2

    )(cos

    2

    4

    (

    2

    4

    )

    2

    (cos

    2

    )

    2

    (cos

    2

    2

    x

    x

    e

    x

    x

    e

    x

    D

    e

    D

    x

    D

    e

    D

    x

    e

    D

    D

    x

    e

    PI

    x

    x

    x

    x

    x

    x

    +

    -

    =

    -

    -

    =

    -

    -

    +

    -

    =

    -

    +

    -

    =

    -

    -

    =

    -

    =

    D

    D

    x

    e

    D

    D

    D

    x

    e

    D

    D

    x

    e

    D

    D

    x

    e

    PI

    x

    x

    x

    x

    2

    2

    cos

    3

    4

    4

    1

    2

    2

    cos

    3

    )

    1

    (

    4

    )

    1

    (

    2

    cos

    3

    4

    )

    2

    (cos

    2

    2

    2

    2

    -

    =

    +

    -

    -

    +

    +

    =

    +

    +

    -

    +

    =

    +

    -

    =

    8

    )

    2

    sin

    2

    (cos

    Be

    Ae

    3x

    x

    x

    x

    e

    PI

    CF

    GS

    x

    +

    -

    +

    =

    +

    =

    1

    9

    sin

    )

    1

    3

    (

    )

    1

    3

    )(

    1

    3

    (

    sin

    )

    1

    3

    (

    1

    3

    sin

    2

    3

    1

    sin

    2

    3

    sin

    2

    2

    1

    -

    -

    =

    +

    -

    -

    =

    +

    =

    +

    +

    -

    =

    +

    +

    =

    D

    x

    D

    D

    D

    x

    D

    D

    x

    D

    x

    D

    D

    x

    PI

    10

    sin

    cos

    3

    1

    )

    1

    (

    9

    sin

    )

    1

    3

    (

    1

    -

    -

    =

    -

    -

    -

    =

    x

    x

    x

    D

    PI

    ]

    2

    3D)

    +

    (D

    +

    [1

    2

    1

    =

    )

    2

    3D)

    +

    (D

    +

    (1

    2

    1

    =

    3D)

    +

    D

    +

    (2

    x

    =

    PI

    (-1)

    2

    1

    -

    2

    2

    2

    2

    ]

    2

    7)

    -

    6x

    -

    (x

    [

    2

    1

    =

    PI

    (9)]

    2

    1

    +

    3x)

    +

    (1

    -

    [x

    2

    1

    =

    PI

    (9.2)]

    4

    1

    +

    6x)

    +

    (2

    2

    1

    -

    [x

    2

    1

    =

    PI

    )

    ....]x

    )

    2

    3D)

    +

    (D

    (

    +

    2

    3D)

    +

    (D

    -

    ([1

    2

    1

    =

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    +

    2

    7)

    -

    6x

    -

    (x

    2

    1

    10

    sin

    cos

    3

    +

    )

    e

    B

    +

    e

    (A

    =

    PI

    PI

    +

    CF

    =

    GS

    2

    2x

    -

    x

    -

    2

    1

    +

    -

    -

    +

    x

    x

    7

    3

    cos

    16

    9

    3

    cos

    16

    3

    cos

    20

    cos

    )

    15

    (

    4

    cos

    3

    )

    16

    1

    (

    4

    cos

    3

    )

    16

    (

    4

    cos

    3

    )

    16

    (

    4

    3

    cos

    cos

    3

    )

    16

    (

    cos

    2

    2

    2

    1

    2

    2

    3

    x

    x

    D

    x

    PI

    x

    x

    x

    D

    x

    PI

    D

    x

    x

    D

    x

    PI

    =

    +

    -

    =

    +

    =

    =

    =

    +

    -

    =

    +

    =

    +

    +

    =

    +

    =

    7

    3

    cos

    20

    cos

    4

    sin

    4

    cos

    2

    1

    x

    x

    x

    B

    x

    A

    PI

    PI

    CF

    GS

    +

    +

    +

    =

    +

    +

    =

    2

    /

    x

    -

    3

    )

    2

    3

    sin

    2

    3

    (Bcos

    Ae

    CF

    root.

    real

    a

    and

    conjugates

    complex

    are

    roots

    The

    .

    2

    3

    i

    ±

    1

    1,

    -

    =

    m

    i.e.

    -1

    m

    ,

    2

    4)

    -

    (1

    ±

    1

    =

    m

    get

    we

    ,

    m

    for

    Solving

    0

    =

    1

    m

    is

    equation

    auxiliary

    The

    x

    e

    x

    C

    x

    +

    +

    =

    =

    +

    (

    )

    12

    4

    3

    1

    3

    3

    2

    2

    )

    2

    (

    4

    2

    4

    2

    3

    2

    3

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    x

    e

    x

    e

    dx

    x

    e

    x

    D

    e

    dx

    x

    D

    e

    D

    x

    e

    D

    x

    e

    D

    e

    x

    PI

    x

    x

    x

    x

    x

    x

    x

    x

    =

    =

    =

    =

    =

    =

    -

    +

    =

    -

    =

    ò

    ò

    )

    (

    4

    2

    cos

    )

    4

    (

    2

    sin

    2

    case

    Exception

    x

    x

    D

    x

    PI

    -

    =

    +

    =

    (

    )

    )

    1

    (sin

    1

    sin

    sin

    1

    1

    sin

    )

    1

    (

    sin

    2

    2

    2

    2

    -

    =

    -

    =

    =

    -

    +

    =

    -

    =

    D

    ce

    x

    e

    D

    x

    e

    D

    x

    e

    D

    e

    x

    PI

    x

    x

    x

    x

    (

    )

    8

    4

    )

    1

    (

    2

    )

    1

    (

    2

    1

    2

    )

    1

    (

    cosh

    2

    2

    2

    2

    2

    x

    x

    x

    x

    x

    x

    e

    e

    x

    D

    e

    D

    e

    D

    e

    e

    D

    x

    PI

    -

    -

    -

    +

    =

    -

    +

    -

    =

    -

    +

    =

    -

    =

    (

    )

    4

    2

    sinh

    8

    8

    )

    2

    )(

    2

    (

    2

    )

    2

    )(

    2

    (

    2

    4

    2

    )

    4

    (

    2

    cosh

    .

    6

    2

    2

    2

    2

    2

    2

    2

    2

    x

    x

    xe

    xe

    D

    D

    e

    D

    D

    e

    D

    e

    e

    D

    x

    PI

    x

    x

    x

    x

    x

    x

    =

    -

    =

    +

    -

    +

    +

    -

    =

    -

    +

    =

    -

    =

    -

    -

    -

    4

    1

    2

    ,

    2

    ,

    ,

    0

    4

    4

    1

    4

    4

    )

    4

    (

    1

    .

    7

    2

    2

    2

    2

    2

    0

    2

    0

    2

    -

    +

    =

    +

    =

    +

    =

    -

    =

    =

    -

    -

    =

    -

    =

    -

    =

    -

    =

    -

    -

    x

    x

    x

    x

    x

    x

    Be

    Ae

    PI

    CF

    GS

    Be

    Ae

    CF

    m

    get

    we

    m

    for

    solving

    m

    is

    AE

    The

    e

    D

    e

    D

    PI

    (

    )

    )

    (

    )

    2

    2

    (log

    2

    )

    2

    (

    2

    .

    8

    log

    2

    2

    log

    2

    2

    log

    2

    a

    x

    x

    x

    x

    x

    e

    a

    Since

    e

    D

    e

    D

    PI

    =

    -

    =

    -

    =

    -

    =

    )

    1

    (sin

    1

    cos

    cos

    )

    1

    1

    (

    cos

    )

    1

    (

    cos

    .

    9

    2

    2

    2

    2

    -

    =

    -

    =

    =

    +

    -

    =

    +

    =

    -

    -

    -

    -

    ceD

    x

    e

    D

    x

    e

    D

    x

    e

    D

    x

    e

    PI

    x

    x

    x

    x